Сайт о телевидении

Сайт о телевидении

» » Разложение в ряд фурье последовательности треугольного сигнала. Примеры разложения в ряд фурье

Разложение в ряд фурье последовательности треугольного сигнала. Примеры разложения в ряд фурье

Разложению в ряд Фурье могут подвергаться периодические сигналы. При этом они представляются в виде суммы гармонических функций, либо комплексных экспонент с частотами, образующими арифметическую прогрессию. Для того, чтобы такое разложение существовало, фрагмент сигнала длительностью в один период должен удовлетворять условиям Дирихле:

1. Не должно быть разрывов второго рода (с уходящими в бесконечность ветвями функции).

2. Число разрывов первого рода (скачков) должно быть конечным.

    Число экстремумов должно быть конечным.

Ряд Фурье может быть применён для представления не только периодических сигналов, но и сигналов конечной длительности. При этом оговаривается временной интервал, для которого строится ряд Фурье, а в остальные моменты времени сигнал считается равным нулю. Для расчёта коэффициентов ряда такой подход фактически означает периодическое продолжение сигнала за границами рассматриваемого интервала.

Методы Фурье используются для анализа линейных схем или систем: для предсказания реакции (отклика) системы; для определения передаточной функции; для оценки результатов тестов.

Произвольный периодический сигнал выражается через бесконечное число гармоник с возрастающими частотами:

основные члены;

гармонические члены (при n > 1, n – целое число);

коэффициенты гармоник;

постоянный член или составляющая постоянного тока.

Период функции
должен равняться или кратной величине; кроме того функция
должна быть однозначной.Ряд Фурье можно рассматривать как «рецепт приготовления» любого периодического сигнала из синусоидальных составляющих. Чтобы данный ряд имел практическое значение, он должен сходиться, т.е. частичные суммы ряда должны иметь предел.

Процесс создания произвольного периодического сигнала из коэффициентов, описывающих смешивание гармоник, называется синтезом. Обратный процесс вычисления коэффициентов именуется анализом. Вычисление коэффициентов облегчается тем, что среднее от перекрёстных произведений синусоиды на косинусоиду (и наоборот) равно 0.

Введём в пространство Гильберта базис:
Для упрощения будем полагать, что он ортонормированный.

Тогда любую функцию
из пространства Гильберта можно представить через проекции вектора х на оси базиса обобщённым рядом Фурье:

Ряды Фурье особенно полезны при описании произвольных периодических сигналов с конечной энергией каждого периода. Кроме того, они могут использоваться для описания непериодических сигналов, имеющих конечную энергию за конечный интервал. На практике для описания таких сигналов используют интеграл Фурье.

Выводы

1. Для описания периодических сигналов широко применяется ряд Фурье. Для описания непериодических сигналов используют интеграл Фурье.

Заключение

1. Сообщения, сигналы и помехи как векторы (точки) в линейном пространстве можно описать через набор координат в заданном базисе.

2. Для ТЭС наибольший интерес при отображении сигналов представляет n-мерное пространство Евклида
, бесконечное пространство Гильберта
и дискретное пространство Хэмминга2 n . В этих пространствах вводится понятие скалярного произведения двух векторов (x , y ) .

3. Любую непрерывную функцию времени как элемент можно представить обобщенным рядом Фурье по заданному ортонормированному базису.

Литература

Основная:

    Теория электрической связи: Учеб. Для вузов / А.Г. Зюко, Д. Д. Кловский, В.И. Коржик, М. В. Назаров; Под ред. Д. Д. Кловского. – М.: Радио и связь, 1998. – 433 с.

Дополнительная:

    Прокис Дж. Цифровая связь: Пер. с англ. / Под ред. Д.Д. Кловского. – М.: Радио и связь, 2000. – 800 с.

    Бернард Скляр. Цифровая связь. Теоретические основы и практическое применение: Пер. с англ. – М.: Издательский дом «Вильямс», 2003. – 1104 с.

    Сухоруков А.С. Теория электрической связи: Конспект лекций. Часть 1. – М.:МТУСИ, ЦЕНТР ДО, 2002. – 65 с.

    Сухоруков А.С. Теория цифровой связи: Учебное пособие. Часть 2. – М.:МТУСИ, 2008. – 53 с.

Формы записи ряда Фурье. Сигнал называется пери­одическим, если его форма циклически повторяется во времени Периодический сигнал u(t) в общем виде записывается так:

u(t)=u(t+mT), m=0, ±1,±2,…

Здесь Т-период сигнала. Периодические сигналы могут быть как простыми, так и сложными.

Для математического представления периодических сигналоа с периодом Т часто пользуются рядом (2.2), в котором как ба­зисные функции выбираются гармонические (синусоидальные и косинусоидальные) колебания кратных частот

y 0 (t)=1; y 1 (t)=sinw 1 t; y 2 (t)=cosw 1 t;

y 3 (t)=sin2w 1 t; y 4 (t)=cos2w 1 t; …,(2.3)

где w 1 =2p/T- основная угловая частота последовательности

функций. При гармонических базисных функциях из ряда (2.2) получаем ряд Фурье (Жан Фурье - французский математик и фи­зик XIX века).

Гармонические функции вида (2.3) в ряде Фурье имеют сле­дующие преимущества: 1) простое математическое описание; 2) инвариантность к линейным преобразованиям, т. е. если на входе линейной цепи действует гармоническое колебание, то и на выходе ее также будет гармоническое колебание, отличающееся от входного только амплитудой и начальной фазой; 3) как и сиг­нал, гармонические функции периодические и имеют бесконечную длительность; 4) техника генерирования гармонических функций достаточно проста.

Из курса математики известно, что для разложения периоди­ческого сигнала в ряд по гармоническим функциям (2.3) необхо­димо выполнение условий Дирихле. Но все реальные периодичес­кие сигналы этим условиям удовлетворяют и их можно предста­вить в виде ряда Фурье, который может быть записан в одной из следующих форм:

u(t)=A 0 /2+ (A’ mn cosnw 1 t+A” mn nw 1 t), (2.4)

где коэффициенты

А 0 =

A mn ”= (2.5)

u(t)=A 0 /2+ (2.6)

A mn = (2.7)

или в комплексной форме

u(t)= (2.8)

C n = (2.9)

Из (2.4) - (2.9) следует, что в общем случае периодический сигнал u(t) содержит постоянную составляющую A 0 /2и набор гармонических колебаний основной частоты w 1 =2pf 1 и ее гармоник с частотами w n =nw 1 , n=2,3,4,… Каждое из гармонических

колебаний ряда Фурье характеризуется амплитудойи начальной фазой y n .nn

Спектральная диаграмма и спектр периодиче­ского сигнала. Если какой-либо сигнал представлен в виде суммы гармонических колебаний с разными частотами, то гово­рят, что осуществлено спектральное разложение сигнала.

Спектральной диаграммой сигнала принято называть графиче­ское изображение коэффициентов ряда Фурье этого сигнала. Раз­личают амплитудные и фазовые диаграммы. На рис. 2.6 в неко­тором масштабе по горизонтальной оси отложены значения час­тот гармоник, по зертикальной оси - их амплитуды A mn и фазы y n . Причем амплитуды гармоник могут принимать только поло­жительные значения, фазы - как положительные, так и отрица­тельные значения в интервале -p£y n £p


Спектр сигнала - это совокупность гармонических составляю­щих с конкретными значениями частот, амплитуд и начальных фаз, образующих в сумме сигнал. В технических приложениях на практике спектральные диаграммы называют более кратко - ам­плитудный спектр, фазовый спектр. Чаще всего интересуются ам­плитудной спектральной диаграммой. По ней можно оценить про­центное содержание гармоник в спектре.

Пример 2.3. Разложить в ряд Фурье периодическую последовательность прямоугольных видеоимпульсов с известными параметрами (U m , T, t z), четную "Относительно точки t=0. Построить спектральную диаграмму амплитуд и фаз при U m =2B, T=20мс, S=T/t и =2 и 8.

Заданный периодический сигнал на интервале одного периода можно запи­сать как

u(t) =

Воспользуемся для представления этого сигнала формой записи ряда Фурье в виде (2.4). Так как сигнал четный, то в разложении останутся только косинусоидальные составляющие.

Рис. 2.6. Спектральные диаграммы периодического сигнала:

а - амплитудная; б - фазoвая

Интеграл от нечетной функции за период равеy нулю. По формулам (2.5) находим коэффициенты

позволяющие записать ряд Фурье:

Для построения спектральных диаграмм при конкретных числовых данных задаемся я=0, 1, 2, 3, ... и вычисляем коэффициенты гармоник. Результаты расчета первых восьми составляющих спектра сведены в табл. 2.1. В ряде (2.4) А" mn =0 и согласно (2.7) A mn =|A’ mn |, основная частота f 1 =1/T= 1/20-10 -3 =50 Гц, w 1 =2pf 1 =2p*50=314рад/с. Амплитудный спектр на рис.

2.7 построен для таких n, при которых А mn больше 5% максимального зна­чения.

Из приведенного примера 2.3 следует, что с увеличением скваж­ности увеличивается число спектральных составляющих и умень­шаются их амплитуды. Говорят, что такой сигнал обладает бога­тым спектром. Необходимо отметить, что для многих практиче­ски применяемых сигналов нет необходимости проводить вычисление амплитуд и фаз гармоник по приведенным ранее форму­лам.

Таблица 2.1. Амплитуды составляющих ряда Фурье периодической последова­тельности прямоугольных импульсов

Рис. 2.7. Спектральные диаграммы периодической последовательности импуль­сов: а -при скважности S-2; - б-при скважности S=8

В математических справочниках имеются таблицы разложе­ний сигналов в ряд Фурье. Одна из таких таблиц приведена в приложении (табл. П.2).

Часто возникает вопрос: сколько же взять спектральных со-ставляющих (гармоник), чтобы представить реальный сигнал ря­дом Фурье? Ведь ряд-то, строго говоря, бесконечный. Однознач­ного ответа здесь нельзя дать. Все зависит от формы сигнала и точности его представления рядом Фурье. Более плавное измене­ние сигнала - меньше требуется гармоник. Если сигнал имеет скачки (разрывы), то необходимо суммировать большее число гармоник для достижения такой же погрешности. Однако во мно­гих случаях, например в телеграфии, считают, что и для пере­дачи прямоугольных импульсов с крутыми фронтами достаточно трех гармоник.

Общие описания

Французский математик Фурье (Ж. Б. Ж. Фурье 1768-1830) провоз гласил достаточно смелую для своего времени гипотезу. Согласно этой гипотезе не существует функции, которую нельзя было бы разложить в тригонометрический ряд. Однако, к сожалению, в то время такая идея не была воспринята всерьез. И это естественно. Сам Фурье не смог привести убедительных доказательств, а интуитивно поверить в гипотезу Фурье очень трудно. Особенно нелегко представить тот факт, что при сложении простых функций, подобных тригонометрическим, воспроизводятся функции, совершенно на них не похожие. Но если предположить, что гипотеза Фурье верна, то периодический сигнал любой формы можно разложить на синусоиды различных частот, или наоборот, посредством соответствующего сложения синусоид с разными частотами возможно синтезировать сигнал какой угодно формы. Следовательно, если эта теория верна, то ее роль в обработке сигналов может быть очень велика. В этой главе первым делом попы­таемся проиллюстрировать правильность гипотезы Фурье.

Рассмотрим функцию

f(t)= 2sin t – sin 2t

Простой тригонометрический ряд

Функция является суммой тригонометрических функций, иными словами, представлена в виде тригонометрического ряда из двух членов. Добавим одно слагаемое и создадим новый ряд из трех членов

Снова добавив несколько слагаемых, получим новый тригонометрический ряд из десяти членов:

Коэффициенты этого тригонометрического ряда обозначим как b k , где k - целые числа. Если внимательно посмотреть на последнее соотношение, то видно, что коэффициенты можно описать следующим выражением:

Тогда функцию f(t) можно представить следующим образом:

Коэффициенты b k - это амплитуды синусоид с угловой частотой к. Иначе говоря, они задают величину частотных составляющих.

Рассмотрев случай, когда верхний индекс к равен 10, т.е. М= 10. Увеличив значение М до 100, получим функцию f(t).

Эта функция, будучи тригонометрическим рядом, по форме приближается к пилообразному сигналу. И, похоже, гипотеза Фурье совершенно верна по отноше­нию к физическим сигналам, с которыми мы имеем дело. К тому же в этом примере форма сигнала не гладкая, а включает точки разрыва. И то, что функция воспроизводится даже в точках разрыва, выглядит многообещающим.

В физическом мире действительно много явлений, которые можно представить как суммы колебаний различных частот. Типичным примером этих явлений является свет. Он представляет собой сумму электромагнитных волн с длиной волны от 8000 до 4000 ангстрем (от красного цвета свечения до фиолетового). Вы, конечно, знаете, что если белый свет пропустить через призму, то появится спектр из семи чистых цветов. Это происходит потому, что коэффициент преломления стекла, из которого сделана призма, изменяется в зависимости от длины электромагнитной волны. Это как раз и является доказательством того, что белый свет - это сумма световых волн различной дли­ны. Итак, пропустив свет через призму и получив его спектр, мы можем проанализировать свойства света, исследуя цветовые комбинации. Подобно этому, посредством разложения принятого сигнала на различные частотные составляющие, мы можем узнать, как возник первоначальный сигнал, по какому пути он следовал или, наконец, какому внешнему влиянию он подвергался. Одним словом, мы можем получить информацию для выяснения происхождения сигнала.

Подобный метод анализа называется спектральным анализом или анализом Фурье.

Рассмотрим следующую систему ортонормированных функций:

Функцию f(t) можно разложить по этой системе функций на отрезке [-π, π] следующим образом:

Коэффициенты α k , β k , как было показано ранее, можно выразить через скалярные произведения:

В общем виде функцию f(t) можно представить следующим образом:

Коэффициенты α 0 , α k , β k называют коэффициентами Фурье, а подобное представление функции называется разложением в ряд Фурье. Иногда такое представление называют действительным разложением в ряд Фурье, а коэффициенты - действительными коэффициентами Фурье. Термин «действительный» вводится для того, чтобы отличить представленное разложение от разложения в ряд Фурье в комплексной форме.

Как уже было сказано ранее, произвольную функцию можно разложить по системе ортогональных функций, даже если функции из этой системы не представляются в виде тригонометрического ряда. Обычно под разложением в ряд Фурье подразумевается разложение в тригонометрический ряд. Если коэффициенты Фурье выразить через α 0 , α k , β k получим:

Поскольку при k = 0 coskt = 1, то константа а 0 /2 выражает общий вид коэффициента а k при k = 0.

В соотношении (5.1) колебание самого большого периода, представленное суммой cos t и sin t, называют колебанием основной частоты или первой гармоникой. Колебание с периодом, равным половине основного периода, называют второй гармоникой. Колебание с периодом, равным 1/3 основного периода, называют третьей гармоникой и т.д. Как видно из соотношения (5.1) a 0 является постоянной величиной, выражающей среднее значение функции f{t) . Если функция f(t) представляет собой электрический сигнал, то а 0 представляет его постоянную составляющую. Следовательно, все остальные коэффициенты Фурье выражают его переменные составляющие.

На Рис. 5.2 представлен сигнал и его разложение в ряд Фурье: на постоянную составляющую и гармоники различных частот. Во временной области, где переменной величиной является время, сигнал выражается функцией f(t), а в частотной области, где переменной величиной является частота, сигнал представляется коэффициен­тами Фурье (a k , b к).

Первая гармоника является периодической функцией с периодом 2 π.Прочие гармоники также имеют период, кратный 2 π. Исходя из этого, при формировании сигнала из составляющих ряда Фу­рье мы, естественно, получим периодическую функцию с периодом 2 π. А если это так, то разложение в ряд Фурье - это, собственно говоря, способ представления периодических функций.

Разложим в ряд Фурье сигнал часто встречающегося вида. Например, рассмотрим упомянутую ранее пилообразную кривую (Рис. 5.3). Сигнал такой формы на отрезке - π < t < π я выражается функцией f(t) = t , поэтому коэффициенты Фурье могут быть выражены следующим образом:

Пример 1.

Разложение в ряд Фурье сигнала пилообразной формы

f(t) = t,

Разложению в ряды Фурье подвергаются периодические сигналы. Как уже было сказано выше, периодическую функцию любой формы, заданную на интервале одного периода Т = b-a и удовлетворяющую на этом интервале условиям Дирихле (ограниченная, кусочно-непрерывная, с конечным числом разрывов 1-го рода), можно представить в виде ряда Фурье:

s(t) = S n exp(jnDwt), S n = S(nDw), Dw = 2p/T, (1)

где весовые коэффициенты S n ряда определяются по формуле:

S n = (1/T) s(t) exp(-jnDwt) dt. (2)

Ряд Фурье представляет собой ансамбль комплексных экспонент exp(jnDwt) с частотами, образующими арифметическую прогрессию. Функцию весовых коэффициентов S(nDw ) принято называть комплексным спектром периодического сигнала или фурье-образом функции s(t). Спектр периодического сигнала является дискретной функцией, т.к. он определен только для целых значений n с шагом по частоте, обратным периоду: Dw = 2p/Т (или Df = 1/T ). Первую частотную составляющую спектра при n = 1, равную w 1 = 1×Dw = 2p/T (или f 1 = 1/T ), называют основной частотой сигнала (первой гармоникой), остальные частоты дискретного спектра nw 1 при n>1 называют гармониками сигнала. Значения S(nDw) по положительным и отрицательным значениям n являются комплексно сопряженными.

С чисто математических позиций множество функций exp(jnDwt) , -¥ < n < ¥ образует бесконечномерный базис линейного пространства L 2 ортогональных синус-косинусных функций, а коэффициенты S n по (2) представляют собой проекции сигнала s(t) на эти базисные функции. Соответственно, сигнал s(t) в форме ряда Фурье (1) – это бесконечномерный вектор в пространстве L 2 , точка с координатами S n по базисным осям пространства exp(jnDwt). Подынтегральную функцию экспоненты в выражении (2) с использованием тождества Эйлера

exp(±jwt) = cos(wt) ± j×sin(wt)

можно разложить на косинусную и синусную составляющие и выразить комплексный спектр в виде действительной и мнимой части:

S n = (1/T) s(t) dt = А n - jB n . (3)

A n ≡ A(nDw) = (1/T) s(t) cos(nDwt) dt, (4)

B n ≡ B(nDw) = (1/T) s(t) sin(nDwt) dt. (5)

На рис. 4 приведен пример периодического сигнала (прямоугольный импульс на интервале (1-3.3), повторяющийся с периодом Т=40) и форма действительной и мнимой части его спектра. Обратим внимание, что действительная часть спектра является четной относительно нуля функцией A(nDw) = A(-nDw), так как при вычислении значений A(nDw) по формуле (4) используется четная косинусная функция cos(nDwt) = cos(-nDwt). Мнимая часть спектра является нечетной функцией B(nDw) = -B(-nDw), так как для ее вычисления по (5) используется нечетная синусная функция sin(nDwt) = - sin(-nDwt).

Рис. 4. Сигнал и его комплексный спектр.

Комплексные числа дискретной функции (3) могут быть представлены в виде модулей и аргументов комплекс. экспоненты, что дает следующую форму записи комплексного спектра:

S n = R n exp(jj n), (3")

R n 2 ≡ R 2 (nDw) = A 2 (nDw)+B 2 (nDw),j n ≡ j(nDw) = arctg(-B(nDw)/A(nDw)).

Рис. 5. Модуль и аргумент спектра.

Модуль спектра R(nDw) называют двусторонним спектром амплитуд или АЧХ - сигнала, а аргумент спектра (последовательность фазовых углов j(nDw)) - двусторонним спектром фаз или ФЧХ. Спектр амплитуд всегда представляет собой четную функцию: R(nDw) = R(-nDw), а спектр фаз нечетную: j(nDw) = -j(-nDw). Пример спектра в амплитудном и фазовом представлении для сигнала, показанного на рис. 4, приведен на рис. 5. При рассмотрении спектра фаз следует учитывать периодичность 2p угловой частоты (при уменьшении фазового значения до величины менее -p происходит сброс значения -2p).

Если функция s(t) является четной, то все значения B(nDw) по (5) равны нулю, т.к. четные функции ортогональны синусным гармоникам и подынтегральное произведение s(t)·sin(nDwt) дает нулевой интеграл. Следовательно, спектр функции будет представлен только вещественными коэффициентами. Напротив, при нечетности функции s(t) обнуляются все значения коэффициентов А(nDw) (нечетные функции ортогональным косинусным гармоникам) и спектр является чисто мнимым. Этот фактор не зависит от выбора границ задания периода функции на числовой оси. На рис. 6(А) можно наглядно видеть ортогональность первой гармоники синуса и четной функции, а на рис. 6(В) соответственно косинуса и нечетной функции в пределах одного периода. Учитывая кратность частот последующих гармоник первой гармонике спектра, ортогональность сохраняется для всех гармоник ряда Фурье.

Рис. 6. Ортогональность функций.

При n = 0 имеем В о = 0, и получаем постоянную составляющую сигнала:

S 0 ≡ A o ≡ R o ≡ (1/T) s(t) dt.

2.5. Тригонометрическая форма рядов Фурье.

Объединяя комплексно сопряженные составляющие (члены ряда, симметричные относительно центрального члена ряда S 0), можно перейти к ряду Фурье в тригонометрической форме:

s(t) = А о +2 (A n cos(nDwt) + B n sin(nDwt)), (6)
s(t) = А о +2 R n cos(nDwt + j n). (6")

Значения A n , B n вычисляются по формулам (4-5), значения R n и j n - по формулам (3").

Ряд (6) представляют собой разложение периодического сигнала s(t) на сумму вещественных элементарных гармонических функций (косинусных и синусных) с весовыми коэффициентами, удвоенные значения которых (т.е. значения 2×A n , 2×B n) не что иное, как амплитуды соответствующих гармонических колебаний с частотами nDw. Совокупность амплитудных значений этих гармоник образует односторонний физически реальный (только для положительных частот nDw) спектр сигнала. Для сигнала на рис. 4, например, он полностью повторяет правую половину приведенных на рисунке спектров с удвоенными значениями амплитуд (за исключением значения А о на нулевой частоте, которое, как это следует из (6), не удваивается). Но такое графическое отображение спектров используется довольно редко (за исключением чисто технических приложений). Более широкое применение для отображения физически реальных спектров находит формула (6"). Спектр амплитуд косинусных гармоник при таком отображении называется амплитудно-частотным составом сигнала, а спектр фазовых углов гармоник – фазовой характеристикой сигнала. Форма спектров повторяет правую половину соответствующих двусторонних спектров (см. рис. 5) также с удвоенными значениями амплитуд. Для четных сигналов отсчеты фазового спектра могут принимать только значения 0 или p, для нечетных соответственно ±p/2.

Ряды Фурье произвольных аналоговых периодических сигналов могут содержать бесконечно большое количество членов. Однако одним из важных достоинств преобразования Фурье является то, что при ограничении (усечении) ряда Фурье до любого конечного числа его членов обеспечивается наилучшее по средней квадратической погрешности приближение к исходной функции (для данного количества членов).

На верхнем графике рисунка 7 приведен реконструированный сигнал при N = 8 (гармоники первого пика спектра, центр которого соответствует главной гармонике сигнала и члену ряда n = w s /Dw), N = 16 (гармоники двух первых пиков) и N=40 (пять первых пиков спектра). Естественно, что чем больше членов ряда включено в реконструкцию, тем ближе реконструированный сигнал к форме исходного сигнала. Принцип последовательного приближения к исходной форме наглядно виден на нижнем графике рисунка. На нем же можно видеть и причины появления пульсаций на реконструкции скачков функций, которые носят название эффекта Гиббса . При изменении количества суммируемых членов ряда эффект Гиббса не исчезает. Не изменяется также относительная амплитуда пульсаций (по отношению к амплитуде скачка) и относительное затухание (по коэффициенту последовательного уменьшения амплитуды пульсаций по отношению к максимальному выбросу), изменяется только частота пульсаций, которая определяется частотой последних суммируемых гармоник.

Эффект Гиббса имеет место всегда при резких нарушениях монотонности функций. На скачках эффект максимален, во всех других случаях амплитуда пульсаций зависит от характера нарушения монотонности функции.

В ряд Фурье может разлагаться и произвольная непериодическая функция, заданная (ограниченная, вырезанная из другого сигнала, и т.п.) на интервале (a,b), если нас не интересует ее поведение за пределами данного интервала. Однако следует помнить, что применение формул (1-6) автоматически означает периодическое продолжение данной функции за пределами заданного интервала (в обе стороны от него) с периодом Т = b-a. Однако при этом на краях интервала может возникнуть явление Гиббса, если уровень сигнала на краях не совпадает и образуются скачки сигнала при его периодическом повторении, как это видно на рис. 8. При разложении исходной функции в ограниченный ряд Фурье и его обработке в частотной области на самом деле при этом обрабатывается не исходная функция, а реконструированная из ограниченного ряда Фурье. При усечении рядов Фурье определенное искажение функций существует всегда. Но при малой доле энергии отсекаемой части сигнала (при быстром затухании спектров функций) этот эффект может быть и мало заметен. На скачках и разрывах функций он проявляется наиболее ярко.

Рис. 7. Реконструкция (восстановление) сигнала

Рис. 8. Проявление эффекта Гиббса


Похожая информация.


5. Линейные электрические цепи в режиме периодических негармонических воздействий. Теория электрических цепей

5. Линейные электрические цепи в режиме периодических негармонических воздействий

5.1. Негармонические периодические сигналы

При передаче информации по каналам связи в процессе преобразования сигналов в различных устройствах, как правило, используют негармонические колебания, поскольку чисто гармонические колебания не могут являться носителями информации. Для передачи сообщений осуществляют модуляцию гармонического колебания по амплитуде – амплитудная модуляция (AM), частоте – частотная модуляция (ЧМ) или фазе – фазовая модуляция (ФМ), либо используют импульсные сигналы, модулируемые по амплитуде – амплитудно-импульсная модуляция (АИМ), ширине – широтно-импульсная модуляция (ШИМ), временному положению – время-импульсная модуляция (ВИМ). Существуют и другие, более сложные сигналы, формируемые по специальным законам. Отличительной чертой указанных сигналов является сложный негармонический характер. Несинусоидальный вид имеют токи и напряжения, формируемые в различных импульсных и цифровых устройствах (19. Дискретные сигналы и цепи), несинусоидальный характер приобретают гармонические сигналы, проходящие через различные нелинейные устройства (11. Нелинейные электрические цепи при гармонических воздействиях) и т. д. Все это приводит к необходимости разработки специальных методов анализа и синтеза электрических цепей, находящихся под воздействием периодических несинусоидальных и непериодических токов и напряжений. В основе этих методов лежат спектральные представления несинусоидальных воздействий, базирующиеся на разложении в ряд или интеграл Фурье.

Из математического анализа известно, что периодическая негармоническая функция f(t) , удовлетворяющая условиям Дирихле, может быть разложена в ряд Фурье:
(5.1)
где a k , b k - коэффициенты разложения, определяемые уравнениями
(5.2)

Величина представляет среднее за период значение функции f(t) и называется постоянной составляющей.

В теоретических исследованиях обычно вместо формулы (5.1) используют другую, основанную на замене независимой переменной :
(5.3)
где
(5.4)

Уравнение (5.3) есть тригонометрическая форма ряда Фурье. При анализе цепей часто удобней пользоваться комплексной формой ряда Фурье, которая может быть получена из (5.3) с помощью формул Эйлера:
(5.5)

Подставив (5.5) в уравнение (5.3), после несложных преобразований получим комплексную форму ряда Фурье:
(5.6)
где A k - комплексная амплитуда k -й гармоники:
(5.7)
где – амплитуда; – начальная фаза k -й гармоники.

Подставив значения a k и b k из (5.4) в (5.7), получим:
(5.8)

Совокупность амплитуд 0,5А k = 0,5А k в разложении (5.6), отложенных против соответствующих положительных и отрицательных частот, образует симметричный относительно оси координат (вследствие четности коэффициентов а k ) линейчатый амплитудный спектр .

Совокупность ординат k = – –k из (5.7), входящих в разложение (5.6) и отложенных против соответствующих положительных и отрицательных частот, образует симметричный относительно начала оси координат (вследствие нечетности коэффициентов b k ) линейчатый фазовый спектр .

Разложение (5.3) можно представить и в другой форме. Если учесть, что а k = А k cos k и b k = А k sin k , то после подстановки в (5.3) получим:
(5.9)

Если рассматривать постоянную составляющую a 0 /2 как нулевую гармонику с начальной фазой 0 = 0, то разложение (5.9) примет вид
(5.10)

В частном случае, когда функция f (a) симметрична относительно оси ординат (рис. 5.1, а ), в разложении (5.3) окажутся только четные (косинусоидальные) гармоники:

(5.11)

а при симметричности f (a) относительно начала координат (рис. 5.1, б ) нечетные гармоники
(5.12)

При сдвиге начала отсчета функции f (a) ее амплитудный спектр не изменяется, а меняется только фазовый спектр. Действительно, сдвинем функцию f (a) по оси времени влево на t 0 и обозначим .

Тогда разложение (5.9) примет вид
(5.13)

Пример. Разложить в ряд Фурье прямоугольные колебания (рис. 5.1, б ). Учитывая, что f (a) симметрична относительно начала координат в разложении (5.3) останутся только синусоидальные гармоники (5.12), где b k определится согласно (5.4):

Подставив b k в (5.12), получим разложение в ряд Фурье:
(5.14)

Далее сдвинем f (a) на p/2 влево (см. рис. 5.1, а ). Тогда согласно (5.13) получим

(5.15)

Т. е. получили разложение по косинусоидальным составляющим как и должно быть для симметричного относительно оси ординат сигнала.

В ряде случаев, когда периодичная функция f (a) задана графически и имеет сложную форму, ее разложение в ряд Фурье можно осуществить графо-аналитическим способом. Его суть заключается в том, что период сигнала Т (рис. 5.2) разбивают на m интервалов, равных , причем точки разрыва f (a) не должны попадать на середину участков разбиения; определяют значение сигнала f (a n ) в середине каждого участка разбиения.

Находят коэффициенты разложения а k и b k путем замены интеграла в (5.2) конечной суммой
(5.16)

Уравнение (5.16) легко программируется и при вычислении а k и b k , может использоваться ЭВМ.

5.2. Действующее, среднее значение и мощность периодического негармонического сигнала

Для определенности положим, что f (t ) имеет смысл тока i (t ). Тогда действующее значение периодического негармонического тока определяется согласно (3.5), где i (t ) определяется уравнением (5.10):
(5.17)

Подставив это значение тока в (3.5), после интегрирования получим
(5.18)

т. е. действующее значение периодического негармонического тока I полностью определяется действующими значениями его гармоник I k и не зависит от их начальных фаз k .

Аналогичным образом находим действующее значение периодического несинусоидального напряжения:
(5.19)

Среднее значение тока определяется согласно общему выражению (3.9). Причем обычно берут среднее значение i (t ) по абсолютной величине
(5.20)

Аналогично определяется U ср(2) .

С точки зрения теории цепей, большой интерес представляет средняя активная мощность негармонического сигнала и распределение ее между отдельными гармониками.

Средняя активная мощность периодического несинусоидального сигнала
(5.21)
где
(5.22)

k - фазовый сдвиг между током и напряжением k -й гармоники.

Подставляя значения i (t ) и u (t ) из (5.22) в уравнение (5.21), после интегрирования получаем:
(5.23)
т, е. средняя за период активная мощность периодического негармонического сигнала равна сумме мощностей отдельных гармоник. Формула (5.23) является одной из форм широко известного равенства Парсеваля .

Аналогично находим реактивную мощность
(5.24)
и полную мощность
(5.25)

Следует подчеркнуть, что в отличие от гармонических сигналов для негармонических сигналов
(5.26)

Величина P иcк = носит название мощности искажений и характеризует степень различия в формах тока i (t ) и напряжения u (t ).

Кроме мощности искажений периодические негармонические сигналы характеризуются еще рядом коэффициентов : мощности, k м = P/S; формы K ф = U/U ср(2) ; амплитуды K a = U m /U; искажений k и = U 1 /U; гармоник k г = и др.

Для синусоидального сигнала k ф = /21,11; k a = 1,41; k и = 1; k г = 0.

5.3. Спектры периодических негармонических сигналов

Рассмотрим последовательность прямоугольных импульсов, изображенную на рис. 5.3, а . Сигналы подобной формы находят очень широкое применение в радиотехнике и электросвязи: телеграфия, цифровые системы передачи, системы многоканальной связи с временным разделением каналов, различные импульсные и цифровые устройства и др. (см. гл. 19). Импульсная последовательность характеризуется следующими основными параметрами: амплитудой импульса A и и может иметь смысл как напряжения, так и тока."> , его длительностью t и и периодом следования Т . Отношение периода Т к длительности t и называется скважностью импульсов и обозначается через q = T/t и . Обычно значения скважности импульсов лежат в пределах от нескольких единиц (в измерительной технике, устройствах дискретной передачи и обработки информации), до нескольких сотен или тысяч (в радиолокации).

Для нахождения спектра последовательности прямоугольных импульсов воспользуемся рядом Фурье в комплексной форме (5.6). Комплексная амплитуда k -й гармоники равна согласно (5.8) после возвращения к исходной переменной t .



(5.27)

Подставив значение A k в уравнение (5.6), получим разложение в ряд Фурье:
(5.28)

На рис. 5.4 изображен спектр комплексных амплитуд для q = 2 и q = 4. Как видно из рисунка, спектр последовательности прямоугольных импульсов представляет собой дискретный спектр с огибающей (штриховая линия на рис. 5.4), которая описывается функцией
(5.29)
носящей название функции отсчетов (см. гл. 19). Число спектральных линий между началом отсчета по оси частот и первым нулем огибающей равно q- 1. Постоянная составляющая сигнала (среднее значение) , а действующее значение A = , т.е. чем больше скважность, тем меньше уровень постоянной составляющей и действующее значение сигнала. С увеличением скважности q число дискретных составляющих увеличивается - спектр становится гуще (см. рис. 5.4, б ), и амплитуда гармоник убывает медленнее. Следует подчеркнуть, что в соответствии с (5.27) спектр рассматриваемой последовательности прямоугольных импульсов вещественный.

Из спектра комплексных амплитуд (5.27) можно выделить амплитудный A k = |A k | и фазовый спектр k = argA k , изображенный на рис. 5.5 для случая q = 4. Из рисунков видно, что амплитудный спектр является четной, а фазовый - нечетной функцией частоты. Причем, фазы отдельных гармоник принимают либо нулевое значение между узлами, где синус положительный, либо ±, где синус отрицательный (рис. 5.5, б )

На основании формулы (5.28) получим тригонометрическую форму разложения в ряд Фурье по четным гармоникам (сравни с (5.15)):
(5.30)

При сдвиге импульсной последовательности по оси времени (рис. 5.2, б ) в соответствии с (5.13) ее амплитудный спектр останется прежним, а фазовый спектр изменится:
(5.31)

В случае, когда периодическая последовательность имеет разнополярную форму (см. рис. 5.1), в спектре будет отсутствовать постоянная составляющая (сравните (5.30) и (5.31) с (5.14) и (5.15)).

Аналогичным образом можно исследовать спектральный состав периодических негармонических сигналов другой формы. В табл.5.1 приведено разложение в ряд Фурье некоторых наиболее распространенных сигналов.

Таблица 5.1

Типы сигнала Разложение в ряд Фурье
1
2
3
4
5
6

5.4. Расчет цепей при периодических негармонических воздействиях

В основе расчета линейных электрических цепей, находящихся под воздействием периодических негармонических сигналов, лежит принцип наложения. Его суть применительно к негармоническим воздействиям заключается в разложении негармонического периодического сигнала в одну из форм ряда Фурье (см. 5.1. Негармонические периодические сигналы. Разложение в ряд Фурье) и определении реакции цепи от каждой гармоники в отдельности. Результирующая реакция находится путем суперпозиции (наложения) полученных частичных реакций. Таким образом, расчет цепей при периодических негармонических воздействиях включает в себя задачу анализа спектрального состава сигнала (разложение его в ряд Фурье), расчет цепи от каждой гармонической составляющей и задачу синтеза, в результате которого определяется результирующий выходной сигнал как функция времени (частоты) или его действующее (амплитудное значение).

При решении задачи анализа обычно пользуются тригонометрической (5.3) или комплексной (5.6) формой ряда Фурье с ограниченным числом членов разложения, что приводит к некоторой погрешности аппроксимации истинного сигнала. Коэффициенты разложения a k и b k в (5.3) или A k и k в (5.6) определяются с помощью уравнений (5.4), (5.7) и (5.8). При этом входной сигнал f (a) должен быть задан аналитически. В случае, если сигнал задается графически, например в виде осциллограммы, то для нахождения коэффициентов разложения a k и b k можно использовать графоаналитический метод (см. (5.16)).

Расчет цепи от отдельных гармоник ведется обычно символическим методом. При этом необходимо иметь в виду, что на k -й гармонике индуктивное сопротивление X L (k ) = kL , а емкостное сопротивление X C (k ) = 1/(), т. е. на k -й гармонике индуктивное сопротивление в k раз больше, а емкостное в k раз меньше, чем на первой гармонике. Этим в частности объясняется то обстоятельство, что высокие гармоники в емкости выражены сильнее, а в индуктивности слабее, чем в приложенном к ним напряжении. Активное сопротивление R на низких и средних частотах можно считать не зависящим от частоты.

После определения искомых токов и напряжений от отдельных гармоник методом наложения находят результирующую реакцию цепи на негармоническое периодическое воздействие. При этом либо определяют мгновенное значение результирующего сигнала на основании расчета амплитуд и фаз отдельных гармоник, либо его амплитудные или действующие значения согласно уравнениям (5.18), (5.19). При определении результирующей реакции необходимо помнить, что в соответствии с представлением периодических негармонических колебаний на комплексной плоскости векторы различных гармоник вращаются с различной угловой частотой.

Пример. К цепи, изображенной на рис. 5.6, приложено напряжение u (t ) в форме прямоугольных импульсов с периодом повторения T = 2t и и амплитудой A и = 1В (см. рис. 5.3, б ). Определить мгновенное и действующее значения напряжения на емкости.

Разложение данного напряжения в ряд Фурье определяется по формуле (5.31). Ограничимся первыми тремя членами разложения (5.31):k -й гармонике называется такое состояние электрической цепи, состоящей из разнохарактерных реактивных элементов, при котором фазовый сдвиг между входным током и приложенным напряжением k -x гармоник равен нулю. Явление резонанса может быть использовано для выделения отдельных гармоник из периодического несинусоидального сигнала. Следует подчеркнуть, что в цепи может одновременно быть достигнут резонанс токовна одной частоте и резонанс напряжений на другой.

Пример. Для цепи, изображенной на рис. 5.7, при заданной 1 , L 1 найти значение C 1 и C 2 , при которых одновременно возникает резонанс напряжений на 1-й и резонанс токов на 5-й гармонике.

Из условия резонанса напряжений находим, что входное реактивное сопротивление цепи на первой гармонике должно равняться нулю:
(5.32)

а на пятой - бесконечности (входная реактивная проводимость на пятой гармонике должна быть равна нулю):
(5.33)

Из условий (5.32) и (5.33) находим искомое значение емкостей: