Сайт о телевидении

Сайт о телевидении

» » Преимущества и недостатки применения теоремы котельникова. Об одной особенности теоремы котельникова

Преимущества и недостатки применения теоремы котельникова. Об одной особенности теоремы котельникова

Часто производители аудио аппаратуры, особено наушников, в процессе пиара своей продукции активно продвигают “кристальную чистоту” звука и широчайший частотный диапазон, который не только за 20 кГц переваливает, но и в некоторых случаях доходит даже до 100 кГц. Конечно это имеет свои плюсы, даже не смотря на то, что выше 20кГц мы не слышим, а то и еще меньше. Но есть определенные проблемы, которые связанны с понятием частота дискретизации и вытекающие из теоремы Котельникова. Они в одночасье поставили жирный крест на применении слова “качественно” для большинства аудио-форматов и аудио устройств в моих глазах.

Любой процесс в природе является непрерывным. Например звуковой сигнал принятый микрофоном и преобразованный в электрический (аналоговый) сигнал — непрерывен.

Термин “Аналоговый сигнал” подчеркивает, что такой сигнал “аналогичен”, т.е. полностью подобен порождающему его процессу, или в данном случае звуку.

И непрерывный он не потому что будет длиться вечно, а потому, что его значение можно измерять в любые моменты времени. А между этими моментами сигнал будет продолжать непрерывно меняться.

Что такое частота дискретизации?

Как только встает вопрос о переводе аналогового сигнала в цифровой, сразу возникает понятие дискретизации, т.е. разбиение непрерывного сигнала на кусочки по времени. Делается это непосредственно в процессе преобразования.

Через равные промежутки времени, называемые шагом дискретизации Δ , Аналогово-Цифровой-Преобразователь (АЦП) измеряет значение сигнала, поступающего на его вход и преобразует это значение в цифровой вид. То, как часто осуществляется измерение величины аналогово сигнала и называется частотой дискретизации .

Какая частота дискретизации считается достаточной?

Товарищ Котельников, еще в 1933 в работе «О пропускной способности эфира и проволоки в электросвязи » создал фундаментальную, для цифровой техники теорию, которая обычно формулируется следующим образом:

Лю бой непрерывный сигнал u(t) с конечным спектром (имеющим максимальное значение частоты F ) можно представить в виде дискретных отсчетов u(k Δ t) , частота дискретизации которых должна быть выбрана не менее чем в два раза выше максимального значения спектра сигнала: f ≥ 2F , передать его по линии связи, а затем восстановить исходный аналоговый сигнал .

Говоря проще, для того чтобы можно было правильно воспроизвести (восстановить) аналоговый сигнал из цифрового вида, достаточно, чтобы частота дискретизации была вдвое выше максимальной частоты в сигнале.

Верхний порог слышимости человека принято ограничивать частотой в 20кГц. Из теоремы Котельникова следует, что для правильного воспроизведения сигнала частотой 20 кГц достаточно частоты дискретизации в 40кГц. Если заглянуть в свойства подавляющего большинства аудио файлов, то можно увидеть строчку:


Почему именно 44.1 кГц? Википедия отвечает так : “Эта цифра выбрана компанией Sony из соображений совместимости с о стандартом телевещания PAL , за счёт записи 3 значений на линию картинки кадра x 588 линий на кадр x 25 кадров в секунду, и достаточности (по теореме Котельникова ) для качественного покрытия всего диапазона частот, различаемых человеком на слух (20 Гц - 20 кГц).”

При частоте дискретизации в 44.1кГц шаг дискретизации Δ составляет всего 0.00002267=22.67*10 -6 секунды или 22.67 микросекунды . Это время между двумя точками сигнала.

Вроде все нормально, так чего же тут не так?

Начнем с частот, кратных частоте дискретизации. На частоте 441 Герц при нашей частоте дискретизации (44.1 кГц), на один период приходится 100 точек. Чтож, тут нет никаких претензий, синусоида идеальная. Если же повысить частоту на порядок, т.е. в 10 раз, то эти же 100 точек будут формировать уже не 1, а 10 периодов. И даже в этом случае Будет формироваться сигнал очень похожий на синусоиду.

А вот на частоте 22050, т.е. наивысшей частоте, удовлетворяющей теореме Котельникова (при частоте дискретизации 44.1кГц) на 100 точек приходится 50 периодов колебаний.

Эти сигналы генерировались в программе Audacity. И по началу создалось впечатление, что точек там достаточно, просто масштаб не позволяет разглядеть и поэтому так все угловато…

Чтож… приблизим и рассмотрим каждый период по отдельности:

Частота в 4410 Гц вполне себе достойная синусоида, чего никак не скажешь о частоте 22050Гц , с ее двумя точками на период. По факту это уже и не синусоида, а сигнал треугольной формы.

Конечно в любом реальном ЦАПе на выходе применяется НЧ-фильт, который срезает высокочастотную составляющую и немного скругляет этот треугольник. Однако чем выше класс вашего аудио устройства, тем заметнее будет угловатость звука

Ради эксперимента можете попробовать сгенерировать в Audcity сигналы одной и той же частоты но разных форм. У треугольной и прямоугольной форм из-за их “угловатости” и резких фронтов возникают дополнительные гармоники, а вот синусоидальный сигнал звучит гораздо более мягко и естественно.

Но даже и это не самое страшное. До этого момента рассматривались сигналы с частотами кратными частоте дискретизации.

— А что же будет, если взять другие частоты???


Знакомьтесь, цифровая синусоида равной амплитуды и частотой 15 кГц. Красивый узорчик, не правда ли? Как видите амплитуда меняется с частотой. Это уже интермодуляционные искажения, т.е. Наш истинный сигнал в 15 кГц промодулирован частотой кратной 44.1 кГц.

Вы можете возразить, мол узорчик то красивый, но может звучит он как и положенно. Для того чтобы убедиться в этом своими ушами — частота которого меняется от 20 герц до 20 кГц. И вы отчетливо услышите, как с какого-то момента частота перестанет равномерно расти, а начнет плавать туда-сюда.

Оно и понятно, вот так выглядят синусоиды на разных частотах выше 10’000Гц

В защиту теоремы Котельникова стоит отметить, что да, его теорема верна, иначе бы мы не смогли различать в музыке высокие звуки, и что тарелка что маракас звучали бы одинаково неправдоподобно, но она абсолютно не гарантирует высокого качества записи.

В жизни Вы врядли станете наслаждаться звучанием синусоиды, но это был очень наглядный пример проблем качества цифровых аудио записей.

Частота дискретизации и Hi-Res звук

Конечно сегодняшние технологии уже побороли данную проблему. Вероятно вам встречалось сокращение Hi-Res (High Resolution — высокое разрешение), которым обычно обзывают качество звука в 24 бита и частотой дискретизации в 192 кГц.

А это уже 10 точек на частоте 22’050 кГц, такую синусоиду уже явно можно считать идеальной. И вот там «кристально чистые верха» ваших наушников себя точно оправдают.

Возникает только 3 проблемы:

  • Стоимость подобных устройств . Например портативный плеер с такой частотой дискретизации обычно стоит около 200$.
  • Где брать записи в таком качестве.
  • Размеры аудиофайлов очень велики. 1 альбом вашей любимой группы в Hi-Res легко может занимать более 1,5Гб дискового пространства.

В заключение

Конечно от плохого звучания высоких частот еще никто не умирал и, возможно я излишне драматизирую, говоря, что частота дискретизации в 44.1 кГц так уж плоха, однако, как видите особым качеством на высоких частотах она не блещет.

На мой взгляд в домашних условиях гораздо интереснее слушать винил:-) Но т.к. с виниловой вертушкой в метро не поездишь то меломанские запросы вполне можно удовлетворить и цифровым плеером:-P

Всем качественного звука!

(P.S. — комментируем, не стесняемся:-)

В 1933 году В.А. Котельниковым доказана теорема отсчетов , имеющая важное значение в теории связи: непрерывный сигнал с ограниченным спектром можно точно восстановить (интерполировать) по его отсчетам , взятым через интервалы , где – верхняя частота спектра сигнала.

В соответствии с этой теоремой сигнал можно представить рядом Котельникова :

.

Таким образом, сигнал , можно абсолютно точно представить с помощью последовательности отсчетов , заданных в дискретных точках (рис.1.16).

образуют ортогональный базис в пространстве сигналов, характеризующихся ограниченным спектром:

При .

Обычно для реальных сигналов можно указать диапазон частот, в пределах которого сосредоточена основная часть его энергии и которым определяется ширина спектра сигнала. В ряде случаев спектр сознательно сокращают. Это обусловлено тем, что аппаратура и линия связи должны иметь минимальную полосу частот. Сокращение спектра выполняют, исходя из допустимых искажений сигнала. Например, при телефонной связи хорошая разборчивость речи и узнаваемость абонента обеспечиваются при передаче сигналов в полосе частот . Увеличение приводит к неоправданному усложнению аппаратуры и повышению затрат. Для передачи телевизионного изображения при стандарте в 625 строк полоса частот, занимаемая сигналом, составляет около 6 МГц.

Из вышесказанного следует, что процессы с ограниченными спектрами могут служить адекватными математическими моделями многих реальных сигналов.

Функция вида называется функцией отсчетов (рис.1.17).

Она характеризуется следующими свойствами. Если , функция отсчетов имеет максимальное значение при , а в моменты времени () она обращается в нуль; ширина главного лепестка функции отсчетов на нулевом уровне равна , поэтому минимальная длительность импульса, который может существовать на выходе линейной системы с полосой пропускания , равна ; функции отсчетов ортогональны на бесконечном интервале времени.

На основании теоремы Котельникова может быть предложен следующий способ дискретной передачи непрерывных сигналов:

Для передачи непрерывного сигнала по каналу связи с полосой пропускания определим мгновенные значения сигнала в дискретные моменты времени , (). После этого передадим эти значения по каналу связи каким - либо из возможных способов и восстановим на приемной стороне переданные отсчеты. Для преобразования потока импульсных отсчетов в непрерывную функцию пропустим их через идеальный ФНЧ с граничной частотой .

Можно показать, что энергия сигнала находится по формуле :

Выражение (1.25) широко применяется в теории помехоустойчивого приема сигналов, но является приближенным, т.к. сигналы не могут быть одновременно ограничены по частоте и времени.

В 1933 г. В. А. Котельников доказал теорему, которая является одним из фундаментальных положений теоретической радиотехники. Эта теорема устанавливает возможность сколь угодно точного восстановления мгновенных значений сигнала с ограниченным спектром исходя из отсчетных значений (выборок), взятых через равные промежутки времени.

Построение ортонормированного базиса.

Как было показано, любые два сигнала с ограниченным спектром, принадлежащие семейству

являются ортогональными. Путем соответствующего выбора амплитудного множителя А можно добиться того, чтобы норма каждого из этих сигналов стала единичной. В результате будет построен ортонормированный базис, позволяющий разложить произвольный сигнал с ограниченным спектром в обобщенный ряд Фурье.

Достаточно рассмотреть лишь функцию

так как норма любого сигнала одинакова независимо от сдвига во времени. Поскольку

функции и будут ортонормированными, если

Бесконечная совокупность функций

образует базис Котельникова в линейном пространстве низкочастотных сигналов со спектрами, ограниченными сверху значением Отдельная функция называется отсчетной функцией.

Ряд Котельникова. Если - произвольный сигнал, спектральная плотность которого отлична от нуля лишь в полосе частот - , то его можно разложить в обобщенный ряд Фурье по базису Котельникова:

Коэффициентами рада служат, как известно, скалярные произведения разлагаемого сигнала и отсчетной функции:

Удобный способ вычисления этих коэффициентов заключается в применении обобщенной формулы Рэлея. Легко проверить, что отсчетная функция в пределах отрезка имеет спектральную плотность, равную . Это видно из сравнения формул (5.3) и (5.13). Тогда, если - спектр изучаемого сигнала то

Величина в фигурных скобках есть не что иное, как т. е. мгновенное значение сигнала отсчетной точке

Таким образом,

откуда следует выражение ряда Котельникова:

Теорему Котельникова на основании последнего равенства принято формулировать так: произвольный сигнал, спектр которого не содержит частот выше Гц, может быть полностью восстановлен, если известны отсчетные значения этого сигнала, взятые через равные промежутки времени

Пример 5.1. Дан сигнал

Выбрав некоторый фиксированный интервал между отсчетами получаем возможность однозначно восстановить по отсчетам любой сигнал, спектр которого не содержит составляющих на частотах выше граничной частоты

Если то к рассматриваемому гармоническому сигналу применима теорема Котельникова; отсчетные значения (выборки) данного сигнала

В предельном случае, когда частота стремится к слева, т. е.

на каждый период гармонического сигнала должно приходиться ровно две выборки.

Если же условия теоремы Котельникова нарушаются и отсчеты во времени берутся недостаточно часто, то однозначное восстановлен ние исходного сигнала принципиально невозможно. Через отсчетные точки можно провести бесчисленное множество кривых, спектральные плотности которых отличны от нуля вне полосы -

Рис. 5.2. Аппаратурная реализация синтеза сигнала по ряду Котельникова

Аппаратурная реализация синтеза сигнала, представленного рядом Котельникова.

Важная особенность теоремы Котельникова состоит в ее конструктивном характере; она не только указывает на возможность разложения сигнала в соответствующий ряд но и определяет способ восстановления непрерывного сигнала, заданного своими отсчетными значениями (рис. 5.2).

Пусть имеется совокупность генераторов, создающих на выходных зажимах отсчетные функции . Генераторы являются управляемыми - амплитуда их сигналов пропорциональна отсчетным значениям Если объединить колебания на выходах, подав их на сумматор, то с выхода сумматора в соответствии с формулой (5.18) можно будет снимать мгновенные значения синтезируемого сигнала s(t).

Пример 5.2. Прямоугольный видеоимпульс с единичной амплитудой и длительностью не принадлежит к числу сигналов с ограниченным спектром. Тем не менее модуль его спектральной плотности достаточно быстро (по закону ) уменьшается с ростом частоты.

Описание такого сигнала двумя отсчетами в начале и в конце импульса будет означать замену исходного колебания сигналом со спектром, ограниченным сверху частотой Математическая модель этого сигнала такова:

Если же описать импульс тремя равноотстоящими отсчетами, то приходим к аппроксимирующему сигналу, содержащему частоты вплоть до

Естественно, что с ростом числа учитываемых членов, т. е. с уменьшением временного интервала между выборками, точность аппроксимации будет повышаться.

Оценка ошибки, возникающей при аппроксимации произвольного сигнала рядом Котельникова.

Если - произвольный сигнал, то его можно представить суммой к в которую входит сигнал со спектром, ограниченным значением а также сигнал ошибки аппроксимации со спектром, занимающим в обшем случае бесконечную полосу частот .

Спектры указанных сигналов не перекрываются, поэтому сигналы ортогональны, а их энергии, т. е. квадраты норм, складываются:

В качестве меры ошибки аппроксимации можно принять расстояние, равное норме сигнала ошибки. Если - энергетический спектр сигнала то по теореме Рэлея

Пример 5.3. Дан экспоненциальный видеоимпульс , характеризующийся энергетическим спектром и нормой

Эффективная длительность этого импульса (см. гл. 2)

Спектр рассматриваемого сигнала неограничен. Поэтому следует предварительно подвергнуть сигнал низкочастотной фильтрации, пропустив его через фильтр нижних частот (ФНЧ). Значение верхней частоты полосы пропускания фильтра следует выбирать в зависимости от того, сколь часто берутся отсчеты сигнала на выходе ФНЧ. Предположим, что за время измеряются отсчетов с интервалом . Согласно теореме Котельникова, это означает, что .

Сигнал с выхода ФНЧ восстанавливается по своим отсчетным значениям точно. Однако по отношению к исходному видеоимпульсу неизбежна ошибка. В данном случае норма сигнала ошибки

Квантование сигналов. Частота дискретизации. Основные методы. Ошибки, оценка ошибок.

Теорема Котельникова

В области цифровой обработки сигналов, Теоре́ма Коте́льникова (в англоязычной литературе - теорема Найквиста - Шеннона, или теорема отсчётов) связывает аналоговые и дискретные сигналы и гласит, что, если аналоговый сигнал имеет конечный (ограниченный по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своимотсчётам, взятым с частотой, большей или равной удвоенной верхней частоте :

Такая трактовка рассматривает идеальный случай, когда сигнал начался бесконечно давно и никогда не закончится, а также не имеет во временно́й характеристике точек разрыва. Если сигнал имеет разрывы любого рода в функции зависимости его от времени, то его спектральная мощность нигде не обращается в нуль. Именно это подразумевает понятие «спектр, ограниченный сверху конечной частотой ».

Разумеется, реальные сигналы (например, звук на цифровом носителе) не обладают такими свойствами, так как они конечны по времени и обычно имеют разрывы во временно́й характеристике. Соответственно, ширина их спектра бесконечна. В таком случае полное восстановление сигнала невозможно, и, из теоремы Котельникова, вытекают два следствия:

1. Любой аналоговый сигнал может быть восстановлен с какой угодно точностью по своим дискретным отсчётам, взятым с частотой , где - максимальная частота, которой ограничен спектр реального сигнала;

2. Если максимальная частота в сигнале превышает половину частоты дискретизации, то способа восстановить сигнал из дискретного в аналоговый без искажений не существует.

Говоря шире, теорема Котельникова утверждает, что непрерывный сигнал можно представить в виде интерполяционного ряда:

где - функция sinc. Интервал дискретизации

удовлетворяет ограничениям

Мгновенные значения данного ряда есть дискретные отсчёты сигнала .

Хотя в западной литературе теорема часто называется теоремой Найквиста со ссылкой на работу 1928 года «Certain topics in telegraph transmission theory», в этой работе речь идёт лишь о требуемой полосе линии связи для передачи импульсного сигнала (частота следования должна быть меньше удвоенной полосы). Таким образом, в контексте теоремы отсчётов справедливо говорить лишь о частоте Найквиста. Примерно в это же время Карл Купфмюллер получил тот же результат . О возможности полной реконструкции исходного сигнала по дискретным отсчётам в этих работах речь не идёт. Теорема была предложена и доказана В. А. Котельниковым в 1933 году в работе «О пропускной способности эфира и проволоки в электросвязи», в которой, в частности, была сформулирована одна из теорем следующим образом : «Любую функцию , состоящую из частот от 0 до , можно непрерывно передавать с любой точностью при помощи чисел, следующих друг за другом через секунд». Независимо от него эту теорему в 1949 (через 16 лет) году доказал Клод Шеннон , поэтому в западной литературе эту теорему часто называют теоремой Шеннона.

Частота дискретизации (или частота сэмплирования ) - частота, с которой происходит оцифровка, хранение, обработка или конвертация сигнала из аналога в цифру. Частота дискретизации, согласно Теореме Котельникова, ограничивает максимальную частоту оцифрованного сигнала до половины своей величины.

Чем выше частота дискретизации, тем более качественной будет оцифровка. Как следует из теоремы Котельникова для того чтобы одназначно восстановить исходный сигнал, частота дискретизации должна превышать наибольшую необходимую частоту сигнала в два раза.

На данный момент, в звуковой технике среднего уровня глубина дискретизации находится в пределах 10-12 бит. Но на слух заметить разницу между 10 и 12 битами не представляется возможным в связи с тем, что человеческое ухо не способно различить такие малые отклонения. Ещё одной причиной бесполезности служит Коэффициент нелинейных искажений УМЗЧ и других компонентов звукогого тракта, явно превышающий величину шага квантования. Бо́льшее разрешение зачастую носит лишь маркетинговый смысл и фактически на слух не заметно.

Оцифро́вка (англ. digitization ) - описание объекта, изображения или аудио- видеосигнала (в аналоговом виде) в виде набора дискретных цифровых замеров (выборок) этого сигнала/объекта, при помощи той или иной аппаратуры, т. е. перевод его вцифровой вид, пригодный для записи на электронные носители.

Для оцифровки объект подвергается дискретизации (в одном или нескольких измерениях, например, в одном измерении для звука, в двух для растрового изображения) и аналогово-цифровому преобразованию конечных уровней.

Полученный в результате оцифровки массив данных («цифровое представление» оригинального объекта) может использоваться компьютером для дальнейшей обработки, передачи по цифровым каналам, сохранению на цифровой носитель. Перед передачей или сохранением цифровое представление, как правило, подвергается фильтрации и кодированию для уменьшения объема.

Иногда термин «оцифровка» используется в переносном смысле, в качестве замены для соответствующего термина [ уточнить ] , при переводе информации из аналогового вида в цифровой. Например:

· Оцифровка звука.

· Оцифровка видео.

· Оцифровка изображения.

· Оцифровка книг - как сканирование, так и (в дальнейшем) распознавание.

· Оцифровка бумажных карт местности - означает сканирование и, как правило, последующую векторизацию (растрово-векторное преобразование, т. е. перевод в формат векторного описания).

Дискретизация

При оцифровке сигнала привязанного ко времени, дискретизацию обычно характеризуют частотой дискретизации - частотой снятия замеров

При сканировании изображения с физических объектов, дискретизация характеризуется количеством результирующих пикселов на единицу длины (например, количеством точек на дюйм - англ. dot per inch, DPI ) по каждому из измерений.

В цифровой фотографии дискретизация характеризуется количеством пикселей на кадр.

Квантование сигналов

Дискретные сигналы создаются на основе непрерывных сигналов. Процесс преобразования непрерывного сигнала в дискретный называется «квантование сигнала». Исходный непрерывный сигнал называется «квантуемый сигнал», сигнал, получаемый в результате квантования, называется «квантованный сигнал». Существуют разные способы квантования непрерывного сигнала.

Квантование по времени . Квантованный сигнал содержит отдельные значения (дискреты) квантуемого сигнала, которые выделяются в фиксированные моменты времени. Процесс квантования по времени показан на рис. 21, где x(t) – квантуемый сигнал, x(t) – квантованный сигнал.

Значения сигнала выделяются через равные промежутки времени T, где T – период (интервал) квантования. Следовательно, квантованный сигнал будет состоять из последовательности дискрет квантуемого сигнала, выделенных в моменты времени, кратные периоду квантования. Квантованный сигнал при квантовании по времени описывается решетчатой функцией времени квантуемого сигнала

где m – целочисленный аргумент времени, m=1,2,3…

Квантование по уровню . В моменты достижения квантуемым сигналом некоторых фиксированных уровней, квантованному сигналу присваивается значение достигнутого уровня, и это значение квантованного сигнала сохраняется до момента достижения квантуемым сигналам следующего уровня (рис.22).

На рис. 22 для квантуемого сигнала x(t) определены уровни квантования с интервалом (шагом) a. Значения квантованного сигнала x(t) изменяются в момент достижения квантуемым сигналом очередного уровня. В результате квантованный сигнал представляет собой ступенчатую функцию времени.

Типичным устройством, которое осуществляет квантование по уровню, является электромагнитное реле (рис. 23), содержащее электромагнит K и переключаемые электромагнитом электрические контакты S. Входом для реле является напряжение U на обмотке электромагнита, а выходом – состояние контактов S. При непрерывном изменении напряжения на электромагните состояние контактов (замкнуты или разомкнуты) будет изменяться только при переходе величины напряжения через уровень срабатывания U ср реле (уровень срабатывания – значение тока, при котором электромагнит срабатывает и переключает контакты реле).

Таким образом, для реле квантованный сигнал может принимать только два уровня: контакты S разомкнуты, или контакты S замкнуты. Состояние контактов удобно описывать как логическую величину, принимающую значение «1» при замкнутых контактах, и значение «0» при разомкнутых контактах.

Характеристика преобразования входного напряжения U в состояние контактов S для реле показана на рис.23. Это ступенчатая характеристика, изменение уровня которой происходит при входном напряжении U = U ср. Характеристика подобного вида получила название «релейная характеристика». Релейная характеристика является одним из случаев нелинейной характеристики.

Квантование по времени и по уровню . В этом случае оба предыдущих способа комбинируются, поэтому способ квантования называют также комбинированным. При комбинированном квантовании квантованному сигналу в наперед заданные моменты времени присваивается значение ближайшего фиксированного уровня, которого достиг квантуемый сигнал. Это значение сохраняется до следующего момента квантования.

Графики квантуемого и квантованного сигналов показаны на рис. 24. На графике квантуемого сигнала x(t) точками показаны значения достигнутых уровней, ближайших к значениям квантуемого сигнала в момент квантования. Изменения квантованного сигнала происходят в моменты квантования, кратные периоду T квантования по времени. Таким образом, квантованный сигнал будет характеризоваться периодом квантования и значением ближайшего фиксированного уровня.

Типичным примером устройства, в котором имеет место комбинированное квантование, является аналого-цифровой преобразователь (АЦП) и цифровой прибор, построенный с использованием аналого-цифрового преобразователя. Выходная информация таких устройств обновляется с периодом, определяемым длительностью преобразования входного сигнала в цифровой код (квантование по времени), а выходная информация представляется с конечной точностью, определяемой разрешающей способностью квантования или разрядностью кода для представления квантованного сигнала.

Частота дискретизации (или частота семплирования , англ. sample rate ) - частота взятия отсчетов непрерывного во времени сигнала при его дискретизации (в частности, аналого-цифровым преобразователем). Измеряется в герцах.

Термин применяется и при обратном, цифро-аналоговом преобразовании, особенно если частота дискретизации прямого и обратного преобразования выбрана разной (Данный приём, называемый также «Масштабированием времени», встречается, например, при анализе сверхнизкочастотных звуков, издаваемых морскими животными).

Чем выше частота дискретизации, тем более широкий спектр сигнала может быть представлен в дискретном сигнале. Как следует из теоремы Котельникова, для того, чтобы однозначно восстановить исходный сигнал, частота дискретизации должна более чем в два раза превышать наибольшую частоту в спектре сигнала.

Некоторые из используемых частот дискретизации звука:

· 8 000 Гц - телефон, достаточно для речи, кодек Nellymoser;

· 12 000 Гц (на практике встречается редко);

· 22 050 Гц - радио;

· 44 100 Гц - используется в Audio CD;

· 48 000 Гц - DVD, DAT;

· 96 000 Гц - DVD-Audio (MLP 5.1);

· 192 000 Гц - DVD-Audio (MLP 2.0);

· 2 822 400 Гц - SACD, процесс однобитной дельта-сигма модуляции, известный как DSD - Direct Stream Digital, совместно разработан компаниями Sony и Philips;

· 5 644 800 Гц - DSD с удвоенной частотой дискретизации, однобитный Direct Stream Digital с частотой дискретизации вдвое больше, чем у SACD. Используется в некоторых профессиональных устройствах записи DSD.

Для того, чтобы восстановить исходный непрерывный сигнал из дискретизированного с малыми искажениями (погрешностями), необходимо рационально выбрать шаг дискретизации. Поэтому при преобразовании ана­логового сигнала в дискретный обязательно возникает вопрос о величине шага дискретизации . Интуитивно нетрудно понять следующую идею. Ес­ли аналоговый сигнал обладает низкочастотным спектром, ограниченным некоторой верхней частотойF e , (т.е. функцияu(t) имеет вид плавно изме­няющейся кривой, без резких изменений амплитуды), то вряд ли на некото­ром небольшом временном интервале дискретизацииэта функция может существенно изменяться по амплитуде. Совершенно очевидно, что точность восстановления аналогового сиг­нала по последовательности его отсчетов зависит от величины интервала дискретизации. Чем он короче, тем меньше будет отличаться функция u(t) от плавной кривой, проходящей через точки отсчетов. Однако с уменьшени­ем интервала дискретизациисущественно возрастает сложность и объем обрабатывающей аппаратуры. При достаточно большом интервале дискре­тизациивозрастает вероятность искажения или потери информации при восстановлении аналогового сигнала.

Оптимальная величина интервала дискретизации устанавливается тео­ремой Котельникова (другие названия - теорема отсчетов, теорема К. Шеннона, теорема X. Найквиста: впервые теорема была открыта в мате­матике О. Коши, а затем описана повторно Д. Карсоном и Р. Хартли), дока­занной им в 1933 г. Теорема В. А. Котельникова имеет важное теоретическое и практическое значение: дает возмож­ность правильно осуществить дискре­тизацию аналогового сигнала и опреде­ляет оптимальный способ его восста­новления на приемном конце по отсчетным значениям.

Рис.14.1. Представление спектральной плотности

Согласно одной из наиболее из­вестных и простых интерпретаций тео­ремы Котельникова, произвольный сиг­нал u(t), спектр которого ограничен некоторой частотой F e может - быть полностью восстановлен по последо­вательности своих отсчетных значений, следующих с интервалом времени

Интервал дискретизации и частотуF e (1) в радиотехнике часто называют соответственно интервалом и частотой Найквиста. Аналитически теорема Котельникова представляется рядом

(2)

где k - номер отсчета; - значение сигнала в точках отсчета;- верхняя частота спектра сигнала.

Для доказательства теоремы Котельникова рассмотрим произвольный непрерывный сигнал и(t), спектральная плотность которого сосредото­чена в полосе частот(сплошная линия на рис.14.1).

Мысленно дополним график спектральной плотности симметрично значениям, повторяющимся с периодом, (штриховые линии на рис.14.1). Полученную таким образом периодическую функцию разложим в ряд Фу­рье, заменив в формуле

аргумент t на с, частотунаи (фор­мально)п наk . Тогда

(3)

Полагая, что в соотношении

период - это , а интервал дис­кретизациизапишем

(4)

Воспользуемся формулой обратного преобразования Фурье и представим исходный непрерывный сигнал в следующем виде:

(5)

Таким же образом запишем значение дискретизированного сигнала для некоторого k-то отсчета времени. Поскольку время , то

Сравнив это выражение с формулой для C k , замечаем, чтоС учетом этого соотношения спектральная функция (3), после несложных преобра­зований, примет вид:

Затем проделаем следующее: подставим выражение в соотношение, изменим порядок интегрирования и суммирования, представим отно­шение как, и вычислим интеграл.

В результате получим такую фор­мулу:

Из этого соотношения следует, что непрерывная функция u(t) дейст­вительно определяется совокупностью ее дискретных значений амплиту­ды в отсчетные моменты времени , что и доказывает теорему Ко­тельникова.

Простейшие сигналы вида ортогональные друг другу на интерва­ле времени -,, называются функ­циями отсчетов, базисными функция­ми, или функциями Котельникова. График k-й функции Котельникова представлен на рис. 2. Каждая из ба­зисных функцийs k (t) сдвинута относи­тельно подобной ближайшей функцииs k-1 (t) илиs k+1 (t) на интервал дискрети­зации. Элементарный анализ фор­мулы (10) и графика на рис. 14.3 пока­зывает, что сигналs k (t) отражается

Рис. 14.2. График базисной функции Котельникова

Рис.14.3. Аппроксимация непрерывного сигнала рядом Котельникова функцией sinx/x, которая также характеризует огибающую спектральной плотности прямоугольного импульса.

Представление (точнее, аппроксимация) заданного непрерывного сигнала u(t) рядом Котельникова (2) иллюстрируется диаграммами на рис. 14.3. графике (здесь базисные функции для упрощения показаны без аргумента t построены четыре первых члена ряда, соответствующие отсчетам сигнала в моменты времени 0,, 2и 3, взятым в соответствии с теоремой Котельникова. При суммировании этих членов ряда в любые отсчетные моменты времени kDt, непрерывный сигнал абсолютно точно аппроксимируется независимо от числа выбранных отсчетов. В интервале же между любыми отсчетами сигнал u(t) аппроксимируется тем точнее, чем больше суммируется членов ряда Котельникова (2).

Оценим возможность применения теоремы Котельникова к импульсному сигналу u(t) конечной длительности T х . Как известно, такие сигналы теоретически обладают бесконечно широким спектром. Однако на практике можно ограничиться некоторой верхней частотойF в за пределами которой в спектре содержится пренебрежительно малая доля энергии по сравнению с энергией всего исходного сигнала. В радиотехнике таким критерием является содержание 90% средней мощности сигнала в границах спектра. В этом случае сигнал u(t) длительностьюT х с верхней граничной частотой спектраF в может быть представлен рядом Котельникова с определенным, ограниченным числом отсчетов

(10)

Здесь - число отсчетов.

Рис.14.4. Представление прямоугольного импульса отсчетами.