Сайт о телевидении

Сайт о телевидении

» » Из чего состоит элемент пельтье. Для охлаждения процессора. Как изготовить элемент Пельтье своими руками

Из чего состоит элемент пельтье. Для охлаждения процессора. Как изготовить элемент Пельтье своими руками

Стандартные термоэлектрические модули имеют взаимообратный принцип действия. В этой статье мы расскажем о применении модулей Пельтье-Зеебека в теплообменных устройствах и приведём пример сборки кулера для воды и базовой охлаждающей системы для воздуха с возможностью обратного запуска (нагрева).

Принцип действия термоэлектрических модулей (ТЭМ), используемых для охлаждения, основан на эффекте Зеебека — обратном процессе относительно эффекта Пельтье. Основной элемент — всё тот же ТЭМ, описанный в первой части . При подаче постоянного тока на поле термопар наблюдается разность температур на плоскостях керамической пластины. Это факт, основанный на термодинамическом процессе, который мы описывать не будем (чтобы не утомлять научными выкладками), но покажем, как применить его в быту.

Примечание. Для постройки агрегатов, инструкции к которым приведены ниже, понадобятся базовые практические навыки сборки электрических цепей. Приведённые модели узлов являются примерными и могут быть заменены на аналогичные (или более/менее мощные) по усмотрению мастера.

Как самостоятельно изготовить кулер для охлаждения воды

Догадливый читатель уже понял, что «чудо-ковшик» из первой части можно использовать для охлаждения жидкости, если запустить его «в обратную сторону», подключив постоянный ток.

ТЭМ применены в каждом кулере для воды. Аналог этого заводского прибора вполне можно построить своими руками, при этом работать он будет не хуже. Мы опишем сам принцип работы и схему сборки. Компоновку и варианты исполнения можно подобрать, исходя из собственных потребностей. Например, сделать его переносным или стационарным, интегрированным в кухонную мебель или систему подготовки питьевой воды. Последний вариант оптимален, поскольку охлаждение в системе будет управляемым (по факту подачи питания).

Для этого нам понадобится:

  1. Прямоугольная плоская герметичная ёмкость из нержавейки с размерами 100х100х30 (фляга-теплообменник) с резьбовыми выходами на ½ дюйма по коротким сторонам. Это единственный элемент, изготовление которого лучше заказать мастеру на заводе.
  2. Подводка питьевой воды с фитингом на ½ дюйма (из ёмкости или водопровода).
  3. Блок питания на 10-12 вольт с регулировкой силы тока.
  4. Термоэлектрические модули TEC1-12705 (40x40) — 2 шт.
  5. Провода сечением 0,2 мм.
  6. Термоклей или термопаста.
  7. Ключ на 2 канала (тумблер, кнопка).
  8. Кран, паяльник, припой.

При помощи термоклея фиксируем ТЭМ на флягу. Соединяем провода по соответствующим группам (плюс и минус). Определяем удобное место расположения ключа, учитывая возможность замены при ремонте и доступность при использовании. Включаем его в схему. Присоединяем провода к блоку питания. Проводим испытания цепи.

Внимание! При испытаниях ограничьтесь наблюдением самого факта правильной работы, но не пытайтесь дать максимальную нагрузку насухую — это может привести к выходу из строя ТЭМ (ремонту не подлежит).

Затем соединяем входной фитинг фляги-теплообменника с каналом подачи воды, а выходной — с подводкой (гибкой или жёсткой) к крану.

Заполняем систему водой и выставляем оптимальную силу тока при нужном напоре струи. Оптимальный напор — чуть сильнее самотёка. Для забора прохладной питьевой воды этого будет вполне достаточно. Остальные нюансы — крепёж, длина проводов, расположение — сугубо индивидуальны в каждом отдельном случае.

Данную базовую систему можно развивать и совершенствовать. Например, установить термостат в теплообменнике и включить его в цепь вместо ключа (тумблера) — подойдёт там, где постоянно нужна вода определённой температуры. Флягу-теплообменник можно выполнить из серебра для дополнительной ионизации воды. Включив в систему повышающий преобразователь постоянного напряжения ЕК-1674, можно сократить расход электроэнергии до минимума.

Расчёт затрат на построение кулера:

В этой системе не задействован ребристый радиатор, т. к. поставленная цель — охлаждение (но не заморозка) небольшого объёма воды (300 мл) — достигается и без него.

Как изготовить мини-холодильник, чиллер или кондиционер на теплоэлектрических модулях своими силами

Более сложная задача — охлаждение воздуха. Если в случае с водой эффективность работы кулера гарантирована разницей плотности сред (вода — воздух), то в случае с однородной средой (воздух — воздух) дело обстоит сложнее. Основная трудность — отвод температуры с горячей стороны поверхности ТЭМ. Точнее — синхронный отвод температуры с обеих поверхностей. Если просто запустить элемент Пельтье-Зеебека, нагретый и охлаждённый воздух смешаются, и температура выровняется.

В замкнутых пространствах малого объёма (до 0,7 м 3) вполне применима система охлаждения на основе ТЭМ с двусторонним воздушным отводом. Это позволяет построить новый охлаждающий бокс или дать вторую жизнь старому холодильнику (морозильной камере). Для этого придётся немного усложнить систему, включив в неё пару отводящих вентиляторов обоюдной мощности, реле температуры, ребристый радиатор и использовать более производительные теплоэлектрические модули.

Нам понадобится (для одной базовой точки охлаждения):

  1. ТЭМ ТЕС1-12712 (40Х40), 106 ватт — 1 шт.
  2. Вентилятор RQA 12025HSL 110VAC (или мощнее) — 2 шт.
  3. Радиатор HS 036-100 (100x85x25 мм).
  4. Термостат ТАМ-133-1м (реле температуры с датчиком).
  5. Блок питания постоянного тока 12 вольт, 6 ампер (с регулировкой).
  6. Лист дюралюминия.
  7. Провода, термопаста, крепёж

В готовом боксе, в верхней части охлаждаемой зоны, делаем прямоугольное окно размерами 100х100 мм. Вырезаем две пластины дюралюминия размерами 130х130 мм и 180х180 мм. Закрепляем вентилятор по центру меньшей пластины таки образом, чтобы оставался продух 1 см. Устанавливаем реле температуры внутри бокса. Монтируем меньшую из пластин изнутри бокса (вентилятором внутрь бокса) на шурупы или клёпки через герметик. Наклеиваем ТЭМы на смонтированную пластину и выводим провода. Вырезаем и выгибаем большую пластину так, чтобы она входила в монтажное отверстие, но при этом оставались бортики для фиксации к стенке бокса снаружи. Закрепляем на неё радиатор и второй вентилятор. Обильно смазываем термопастой ТЭМы и монтируем пластину к стенке бокса через герметик.

Внимание! Обязательно должен быть максимальный контакт площади ТЭМ и пластины!

Собираем электрическую цепь. Рекомендуем включить вентиляторы на постоянную максимальную мощность, а силу тока для ТЭМ — через регулятор. Это обеспечит эффективный съём температуры и перемешивание воздуха при работе в разных режимах (не на полную мощность).

Преимущества данной конструкции:

  • бесшумная по сравнению с компрессорными холодильниками работа;
  • отсутствие механизмов и движущихся частей, силы трения (нечему ломаться);
  • не используются жидкие теплоносители (фреон);
  • общая потребляемая мощность около 200 ватт;
  • можно модернизировать конструкцию, варьировать производительность;
  • доступность и ремонтопригодность отдельных агрегатов.

Недостатки:

  • возможно появление конденсата на пластинах дюралюминия;
  • наружный блок управления;
  • многие факторы и нюансы работы выявляются опытным путём при использовании;
  • малая область применения.

Расчёт затрат на построение базовой охлаждающей системы холодильника и кондиционера:

Наименование Ед. изм. Кол-во Цена ед./руб. Ст-ть, руб.
ТЭМ ТЕС1-12712 (40Х40), 106 ватт шт. 1 600 600
Вентилятор RQA 12025HSL 110VAC шт. 2 150 300
Дюралюминий 3 мм шт. 1 300 300
Блок питания постоянного тока шт. 1 300 300
Термостат ТАМ-133-1м шт. 1 250 250
Радиатор HS 036-100 шт. 1 220 220
Провода, термопаста, крепёж, припой - - 300 300
Итого 2270

В принципе, данная конструкция — готовый встраиваемый кондиционер, который можно установить в кабине автомобиля, трактора, в закрытом вольере или будке охраны. Следует лишь продумать конструктивную защиту от атмосферных осадков.

Запас мощности модуля ТЕС1-12712 довольно велик. Амплитуда температур на сторонах элемента может достигать 50 градусов. При температуре воздуха в помещении +27 °С и применении системы жидкостного охлаждения (радиатор + вентилятор), можно извлечь на выходе впечатляющие минус 25 °С! Это позволяет создавать бескомпрессорные и тихие морозильные камеры даже в домашних условиях.

Где ещё применяют термоэлектрические модули

Эффект Пельтье-Зеебека известен с 1840-х годов. Его активно используют и по сей день, благодаря устойчивости законов физики. Термоэлектрическому модулю всегда найдётся место там, где есть избыточная энергия или нужно быстро и бесшумно совершить теплообмен.

Основное применения теплоэлектрических модулей:

  1. Охлаждение микросхем. Вентиляторы, как основной теплообменник, уходят в прошлое. Им на смену идут компактные, бесшумные и практически вечные ТЭМ.
  2. Машиностроение. Даже самый современный ДВС выделяет отработавшие газы из камеры сгорания. Инженеры используют их высокую температуру для получения дополнительной энергии при помощи элементов Пельтье. Собранная энергия подаётся обратно в системы двигателя, но уже в виде постоянного тока, что позволяет экономить топливо.
  3. Бытовая техника. Всё, что описано выше плюс большинство бытовых приборов, работающих на охлаждение или подогрев (кроме компрессорных холодильников).

И маленький секрет напоследок. Наш модуль имеет почти чудесное свойство — обратимость. Это значит, что при перемене полярности постоянного тока на проводах модуля (с помощью переключателя) горячая и холодная поверхность меняются местами. Кулер превращается в нагреватель, холодильник в тепловую камеру (инкубатор), а кондиционер — в маломощный тепловентилятор. Для этого не придётся изменять схему устройства. Достаточно просто поменять полярность.

Этот принцип использован в устройстве под названием рекуператор. Он представляет собой бокс, состоящий из двух изолированных камер, которые сообщаются между собой при помощи вентиляторов. При помощи модулей Пельтье холодный воздух с улицы подогревается энергией, извлечённой из нагретого воздуха, который отводится из помещения. Приспособление позволяет экономить на отоплении дома.

Виталий Долбинов, рмнт.ру

Термоэлектрический охладитель Пельтье.

Принцип действия заимствовал из нета: В основе работы элементов Пельтье лежит контакт двух токопроводящих материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используются контакт двух полупроводников.

Внешний вид элемента Пельтье. При пропускании тока тепло переносится с одной стороны на другую.Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов - одного n-типа и одного p-типа в паре (обычно теллурида висмута, Bi2Te3 и германида кремния), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются - или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 К/

Описание
Элемент пельтье представляет из себя термоэлектрический преобразователь, который при подаче напряжения способен создать разность температур на пластинах, то есть перекачать тепло или холод. Представленный элемент Пельтье применяется при охлаждении компьютерных плат (при условии эффективного отведения тепла), для охлаждения или нагрева воды. Так же элементы Пельтье используются в переносных и автомобильных холодильниках.

Элемент Пельтье, работающий от 12 Вольт.

Для нагрева необходимо просто поменять полярность.
Размеры пластины Пельтье: 40 х 40 х 4 миллиметра.
Рабочий диапазон температур: от -30 до +70?..
Рабочее напряжение: 9-15 Вольт.
Потребляемая сила тока: 0.5-6 А.
Максимальная потребляемая мощность: 60 Вт.
Забавная вещица, подключаем 12v +- холодит меняем полярность греет. Используется во многих авто холодильниках, во всяком случае у меня такой. Можно приделать компактную схему в бардачок что б летом шоколад не таял! Для использования и эффективного применения нужно использовать радиатор охлаждения - в качестве теста применил радиатор от компьютерного процессора, можно с куллером. Чем лучше охлаждение тем эффект Пельтье сильнее и эффективнее. При подключении к авто акб на 12v ток потребления составил 5 ампер. Одним словом элемент прожорлив. Так как еще не собрал всё схему, а провел лишь пробные тесты, без приборных замеров температур. Так при режиме охлаждения в течении 10ти минут появилась легкая изморозь. В режиме подогрева вода в металлической чашки закипела. Эффективность конечно же этого охладителя низка, но цена девайса и возможность по экспериментировать делают покупку оправданной. Остальное на фото

Элементы Пельтье называются специальные термоэлектрические преобразователи, работающие по принципу Пельтье. (образования разности температур при подключении электрического тока, другими словами, термоэлектрический охладитель).

Ни для кого не секрет, что электронные устройства при работе греются. Нагрев отрицательно влияет на процесс работы, поэтому, чтобы как-то охладить приборы, в корпус устройств встраивают специальные элементы, называющиеся по имени изобретателя из Франции – Пельтье. Это малогабаритный элемент, который может охлаждать радиодетали на платах устройств. При его установке собственными силами никаких проблем не возникнет, монтаж в схему производится обычным паяльником.

1 — Изолятор керамический
2 — Проводник n — типа
3 — Проводник p — типа
4 — Проводник медный

В ранние времена вопросы охлаждения никого не интересовали, поэтому это изобретение осталось без применения. Два века спустя, при использовании электронных устройств в быту и промышленности, стали применять миниатюрные элементы Пельтье, вспомнив об эффекте французского изобретателя.

Принцип действия

Чтобы понять, как работает элемент на основе изобретения Пельтье, необходимо разобраться в физических процессах. Эффект заключается в соединении двух материалов с токопроводящими свойствами, обладающими различной энергией электронов в районе проводимости. При подключении электрического тока к зоне связи, электроны получают высокую энергию, для перехода в зону с более высокой проводимости второго полупроводника. Во время поглощения энергии проводники охлаждаются. При течении тока в обратную сторону происходит обычный эффект нагревания контакта.

Вся работа осуществляется на уровне решетки атома материала. Чтобы лучше понять работу, представим газ из частиц – фононов. Температура газа имеет зависимость от параметров:

  • Свойства металла.
  • Температуры среды.

Предполагаем, что металл состоит из смеси электронного и фононного газа, находящегося в термодинамическом равновесии. Во время касания двух металлов с различной температурой, холодный электронный газ перемещается в теплый металл. Создается разность потенциалов.

На стыке контакта электроны поглощают энергию фононов и отдают ее на другой металл фононам. При смене полюсов источника тока, весь процесс будет обратного действия. Разность температур будет возрастать до того момента, пока имеются в наличии свободные электроны с большим потенциалом. При их отсутствии наступит уравновешивание температур в металлах.

Если на одну сторону пластины Пельтье установить качественный теплоотвод в виде радиатора, то вторая сторона пластины создаст более низкую температуру. Она будет ниже на несколько десятков градусов, чем окружающий воздух. Чем больше значение тока, тем сильнее будет охлаждение. При обратной полярности тока холодная и теплая сторона поменяются друг с другом.

При соединении элемента Пельтье с металлом, эффект становится незначительным, поэтому практически устанавливают два элемента. Их количество может быть любым, это зависит от потребности в мощности охлаждения.

Эффективность действия эффекта Пельтье зависит от того, насколько точно выбраны свойства металлов, силы тока, протекающей по прибору, скорости отвода тепла.

Сфера использования

Чтобы применить практически элемент Пельтье, ученые произвели несколько опытов, показавших, что повышение отвода тепла достигается увеличением числа соединений 2-х материалов. Чем больше число спаев материалов, тем выше эффект. Чаще в нашей жизни такой элемент служит для охлаждения электронных устройств, уменьшения температуры в микросхемах.

Вот их некоторые области использования:

  • Устройства ночного видения.
  • Цифровые камеры, приборы связи, микросхемы, нуждающиеся в качественном охлаждении, для лучшего эффекта картинки.
  • Телескопы с охлаждением.
  • Кондиционеры.
  • Точные часовые системы охлаждения кварцевых электрических генераторов.
  • Холодильники.
  • Кулеры для воды.
  • Автомобильные холодильники.
  • Видеокарты.

Элементы Пельтье часто используются в системах охлаждения, кондиционирования. Есть возможность достижения довольно низких температур, что открывает возможность применения для охлаждения оборудования с повышенным нагревом.

В настоящее время специалисты используют элементы Пельтье в акустических системах, выполняющих роль кулера. Элементы Пельтье не создают никаких звуков, поэтому бесшумность является одним из их достоинств. Такая технология стала популярной из-за мощной отдачи тепла. Элементы, изготовленные по современной технологии, имеют компактные размеры, радиаторы охлаждения поддерживают определенную температуру долгое время.

Достоинством элементов является длительный срок службы, потому что они сделаны в виде монолитного корпуса, неисправности маловероятны. Простая конструкция обычного широко применяемого вида простая, состоит из двух медных проводов с клеммами и проводами, изоляции из керамики.

Это небольшой перечень мест применения. Он расширяется за счет устройств бытового назначения, компьютеров, автомобилей. Можно отметить использование элементов Пельтье в охлаждении микропроцессоров с высокой производительностью. Ранее в них устанавливались только вентиляторы. Теперь, при монтаже модуля с элементами Пельтье значительно снизился шум в работе устройств.

Будут ли меняться схемы охлаждения в обычных холодильниках на схемы с использованием эффекта Пельтье? Сегодня вряд ли это возможно, так как элементы имеют низкий КПД. Стоимость их также не позволит применить их в холодильниках, так как она достаточно высока. Будущее покажет, насколько будет развиваться это направление. Сегодня проводятся эксперименты с твердотельными растворами, аналогичными по строению и свойствам. При их использовании цена модуля охлаждения может уменьшиться.

Обратный эффект элементов Пельтье

Технология подобного вида имеет особенность с интересными фактами. Это заключается в эффекте образования электрического тока путем охлаждения и нагревания пластины модуля Пельтье. Другими словами, он служит генератором электрической энергии, при обратном эффекте.

Такие генераторы электричества существуют пока чисто теоретически, но можно надеяться на будущее развитие этого направления. В свое время французский изобретатель не нашел применения своему открытию.

Сегодня этот термоэлектрический эффект широко используется в электронике. Границы применения постоянно расширяются, что подтверждается докладами и опытами исследователей и ученых. В будущем бытовая и электронная техника станет обладать совершенными инновационными возможностями. Холодильники станут бесшумными, так же, как и компьютеры. А пока модули Пельтье монтируют в разные схемы для охлаждения радиодеталей.

Преимущества и недостатки

Достоинствами элементов Пельтье можно назвать следующие факты:

  • Компактный корпус элементов, позволяет монтировать его на плату с радиодеталями.
  • Нет движущихся и трущихся частей, что повышает его срок службы.
  • Позволяет соединение множества элементов в один каскад, по схеме, позволяющей уменьшать температуру очень горячих деталей.
  • При смене полярности питающего напряжения элемент станет работать в обратном порядке, то есть, стороны охлаждения и нагрева поменяются местами.

Недостатками можно назвать такие моменты:

  • Недостаточный коэффициент действия, влияющий на увеличение подводимого тока, для достижения необходимого перепада температур.
  • Довольно сложная система отведения тепла от поверхности охлаждения.
Как изготовить элементы Пельтье для холодильника

Изготовить такие элементы Пельтье можно самому быстро и просто. Для начала нужно определиться с материалом пластин. Нужно взять пластины элементов из прочной керамики, приготовить проводники в количестве больше 20 штук, для того, чтобы обеспечить наибольший перепад температур. При достаточном числе элементов КПД произойдет значительное увеличение производительности холодильника.

Большую роль играет мощность применяемого холодильника. Если он действует на жидком фреоне, то с производительностью проблем не возникнет. Пластины элементов монтируются возле испарителя, смонтированного вместе с двигателем. Для такого монтажа понадобится некоторый набор прокладок и инструмента. Таким образом, обеспечится быстрое охлаждение нижней части холодильника.

Необходима тщательная изоляция проводников, только после этого их подключают к компрессору. После окончания монтажа нужно проверить напряжение мультиметром. При нарушении работы элементов (например, короткое замыкание), сработает терморегулятор.

Другие применения термоэлектрических модулей

Эффект модуля Пельтье применяется сегодня, благодаря законам физики. Избыточная энергия элементов всегда пригодится там, где необходима бесшумный и быстрый обмен теплом.

Основные места использования модулей:

  • Охлаждение микропроцессоров.
  • Двигатели внутреннего сгорания выпускают отработанные газы, которые ученые стали применять для образования вспомогательной энергии с помощью термоэлектрических модулей. Полученная таким способом энергия подается снова в мотор, в виде электричества. Это создает экономию топлива.
  • В бытовых устройствах, действующих на нагревание или охлаждение.

Охлаждающий кулер может превратиться в нагреватель, а холодильник может выполнять функцию теплового шкафа, если изменить полярность постоянного тока. Это называется обратимым эффектом.

Такой принцип применяют в рекуператорах. Он состоит из бокса из двух камер. Они между собой сообщаются вентилятором. Элементы Пельтье нагревают холодный воздух, поступающий снаружи, с помощью энергии, которая извлечена из теплого воздуха в помещении. Такое устройство экономит расходы на отопление помещений.

В 1834 году французский учёный-физик Жан Шарль Пельтье, исследуя воздействие электричества на проводники, обнаружил очень интересный эффект. Если пропускать ток через два разнородных проводника, находящихся в непосредственной близости друг от друга, то один из этих проводников начинает сильно греться, а второй, наоборот, сильно охлаждаться. Количество выделяемого и поглощаемого тепла, напрямую зависит от силы и направления электрического тока. Если поменять направление тока, то поменяются местами холодная и горячая стороны. Чуть позже этот феномен получил название эффекта Пельтье и был благополучно забыт из-за практической невостребованности на тот момент.

И лишь спустя сто с лишним лет, с расцветом полупроводниковой эры , появилась настоятельная необходимость в компактных, недорогих и эффективных охладителях. Так, в 60х годах 20 века появились первые полупроводниковые термоэлектрические модули, которые получили название элементы Пельтье.

В основе любого термоэлектрического модуля лежит тот факт, что разные проводники имеют разные уровни энергии электронов. Иными словами, один проводник можно представить как высокоэнергетическую область, второй проводник, как низкоэнергетическую область. При контакте двух токопроводящих материалов, во время пропускания через них электрического тока, электрону из низкоэнергетической области необходимо перейти в высокоэнергетическую область.

Этого не произойдет, если электрон не приобретёт необходимое количество энергии. В момент поглощения этой энергии электроном, происходит охлаждение места контакта двух проводников. Если поменять направление протекания тока, возникнет, наоборот, эффект нагревания места контакта.

Можно использовать любые проводники , но этот эффект становится физически заметным и значимым только в случае использования полупроводников. Например, при контактировании металлов, эффект Пельтье настолько незначителен, что практически незаметен на фоне омического нагрева.

Термоэлектрический модуль (ТЭМ), независимо от своего размера и места применения состоит из разного количества, так называемых термопар. Термопара - это тот самый кирпичик, из которых строится любой ТЭМ. Она состоит из двух полупроводников различающихся типом проводимости. Как известно, существуют два типа проводимости p и n типа. Соответственно существует и два типа полупроводников. Два этих разнородных элемента соединяются в термопаре с помощью медного мостика. В качестве полупроводников применяют соли таких металлов, как висмут, теллур, селен или сурьма.

ТЭМ - совокупность подобных термопар, соединённых друг с другом последовательно. Все термопары располагаются между двух керамических пластин. Пластина Пельтье. Пластины изготовлены из нитрида или оксида алюминия. Непосредственно само количество термопар в одном элементе может варьировать в очень широких пределах , от нескольких штук, до нескольких сотен или тысяч.

Иными словами, элементы Пельтье могут быть абсолютно любой мощности, от сотых долей, до нескольких сот или тысяч ватт. Постоянный ток последовательно проходит через все термопары и в результате верхняя керамическая пластина охлаждается, а нижняя, наоборот, греется. Если поменять направление тока, то пластины поменяются местами, верхняя начнёт греться, а нижняя охлаждаться.

В работе элемента присутствует одна особенность, которую активно используют для усиления охлаждающей эффективности этого приспособления. Как известно, при пропускании тока через элемент Пельтье возникает разность температур между поверхностью, разогревающейся и поверхностью охлаждающейся. Так вот, если ту поверхность, что активно нагревается подвергнуть принудительному охлаждению. Например, с помощью специального кулера, то это приведёт к ещё более сильному охлаждению поверхности, то есть той, что охлаждается. При этом разница температур с окружающим воздухом может достигнуть нескольких десятков градусов.

Достоинства и недостатки

Как у любого технического устройства, у термоэлектрического модуля есть свои достоинства и свои недостатки:

Проблема повышения КПД у ТЭМов упирается в неразрешимую пока, техническую головоломку. Свободные электроны обладают, по сути, двойной природой, что на практике проявляется и они одновременно являются переносчиками как электрического тока, так и тепловой энергии. Как следствие, высокоэффективный элемент Пельтье должен быть изготовлен из материала, обладающего одновременно двумя взаимоисключающими свойствами. Материал этот должен хорошо проводить электрический ток и плохо проводить тепло. Пока такого материала не существует в природе, но учёные активно работают в этом направлении.

Все термоэлектрические модули обладают соответствующими техническими характеристиками:

Применение ТЭМов

Несмотря на серьёзный недостаток присущий всем без исключения элементам Пельтье, а именно очень низкий КПД, эти устройства нашли довольно широкое применение как в науке и технике, так и в быту.

Термоэлектрические модули являются важными элементами конструкции таких устройств, как:

Элемент Пельтье в руках домашнего мастера

Нужно сразу оговориться, самостоятельное изготавливание термоэлектрического элемента занятие по меньшей мере бессмысленное и никому не нужное. Если только изготавливающий не является учеником седьмого класса и не закрепляет таким образом, полученные на уроках физики, знания.

Гораздо проще купить новый термоэлектрический элемент в соответствующем магазине. Благо стоят они недорого и недостатка в выборе конкретной модели не наблюдается. А кроме того, что в них нечему ломаться или изнашиваться, любой термоэлемент, снятый со старого компьютера или автомобильного кондиционера, не будет отличаться по своим техническим характеристикам от нового.

Наибольшей популярностью пользуется модель термоэлемента: TEC1-12706. Размеры этого устройства 40 на 40 миллиметров. Состоит он из 127 термопар, соединённых между собою последовательно. Рассчитан на ток в 5 А, при напряжении цепи 12 В. Стоит такой элемент в среднем от 200 до 300 рублей. Но можно найти и за сто, или, вообще, за так, если снять со старого компьютера или какого другого ненужного устройства.

Изготовить с помощью такого элемента можно, как минимум два очень интересных и полезных в хозяйстве устройства.

Как сделать холодильник своими руками

Производство портативных холодильников, в частности, для машин целиком основано на эффекте Пельтье. Для изготовления подобного устройства в домашних условиях понадобиться:

  • Термоэлемент марки TEC1-12706. Стоит 200 рублей в ближайшем магазине (специализированном).
  • Радиатор и вентилятор. Снимаются с отслужившего своё старого компьютера.
  • Контейнер. Любая ненужная ёмкость из пластика, металла или дерева. Снаружи и изнутри такая ёмкость оклеивается теплосберегающими пластинами из пенопласта или пенополистирола.

Термоэлектрический модуль встраивается в крышку контейнера. В этом случае поступление холода будет происходит сверху вниз, что приведёт к равномерному охлаждению ёмкости. Изнутри контейнера, в его крышку с помощью термопасты и крепёжных болтов прикрепляют радиатор.

Для того чтобы увеличить мощность будущего холодильного устройства, можно увеличить количество термоэлементов, до двух-трёх и более. В этом случае модули приклеиваются друг к другу, с соблюдением полярности. Иными словами, горячая сторона нижележащего элемента контактирует с холодной стороной вышележащего.

Снаружи на крышку крепится ещё один радиатор вместе с компьютерным кулером. В месте крепежа радиаторов должна быть хорошая термоизоляция между холодной - внутренней и горячей - внешней сторонами. Необходимо очень аккуратно стягивать верхний и нижний радиаторы крепёжными болтами, чтобы не треснули керамические пластины, располагающихся между ними термоэлементов.

Электричество подключается с помощью блока питания, который можно взять от старого компьютера .

Портативный термоэлектрогенератор

Такая мини-электростанция может очень выручить туриста или охотника, когда в лесу сядут батареи всех электронных гаджетов. Очень романтично в этой ситуации взять несколько сухих щепок и шишек, развести небольшой костерок и с его помощью зарядить разряженные аккумуляторы, а заодно и поесть приготовить. Именно это позволяет сделать портативный термогенератор, построенный на термоэлементе.

Для постройки этого чудо-девайса необходимо наличие портативной походной печки, работающей на любом виде топлива. В крайнем случае сгодится даже небольшая свечка или таблетка сухого спирта.

В печке разводят огонь, а снаружи с помощью термопасты к ней крепится термоэлектрический модуль. Посредством проводов он подключается к преобразователю напряжения.

Величина получаемого тока напрямую будет зависеть от разницы температур между холодной и горячей сторонами термоэлемента. Для эффективной работы необходима разница между холодной и горячей поверхностью как минимум в 100 градусов.

В этом случае необходимо понимать, что максимальная температура ограничена температурой плавления припоя, с помощью которого изготовлен сам модуль. Поэтому для подобных устройств используют специальные термомодули, которые изготавливают с помощью специального тугоплавкого припоя. В обычных модулях температура плавления припоя составляет 150 градусов. В модулях тугоплавких, припой начинает плавиться при температуре 300 градусов.

Чуть чуть теории.

Единичным элементом термоэлектрического модуля (ТЭМ) является термопара, состоящая из двух разнородных элементов с p- и n- типом проводимости. Элементы соединяются между собой при помощи коммутационной пластины из меди. В качестве материала элементов традиционно используются полупроводники на основе висмута, теллура, сурьмы и селена.

Термоэлектрический модуль (Элемент Пельтье) представляет собой совокупность термопар, электрически соединенных, как правило, последовательно. В стандартном термоэлектрическом модуле термопары помещаются между двух плоских керамических пластин на основе оксида или нитрида алюминия. Количество термопар может изменяться в широких пределах - от единиц до сотен пар, что позволяет создавать ТЭМ практически любой холодильной мощности - от десятых долей до сотен ватт.

При прохождении через термоэлектрический модуль постоянного электрического тока между его сторонами образуется перепад температур -одна сторона (холодная) охлаждается, а другая (горячая) нагревается. Если с горячей стороны ТЭМ обеспечить эффективный отвод тепла, например, с помощью радиатора, то на холодной стороне можно получить температуру, которая будет на десятки градусов ниже температуры окружающей среды. Степень охлаждения будет пропорциональной величине тока. При смене полярности тока горячая и холодная стороны меняются местами.

Практика.

Элементы Пельте широко используются в системах охлаждения. Но не многие знают об их другом свойстве – вырабатывать энергию. Изучению этих их возможностей и посвящена данная лабораторная работа.

50*50 мм элемент, установлен между двумя алюминиевыми брусками. Предварительно их поверхности притёрты и смазаны пастой КПТ. В одном из брусков просверлены сквозные отверстия, через которые пропущена медная трубка, для водяного охлаждения. Вот, что получилось:

Подключаем воду к охладителю к одной стороне элемента Пельтье , а другую ставим на конфорку. К выходу элемента подключаем 10Вт 6 вольтовою лампочку. Результат - наш генератор работает!

Опыт доказывает, что элемент Пельтье хорошо вырабатывает электричество. Лампочка горит достаточно ярко, напряжение около 4.5 вольта.

Нагрев до 160 градусов оказался не оптималенлен, при 120 градусах результат был хуже всего на 10%.

Температура охлаждающей жидкости на выходе десять градусов, на входе на один градус меньше. Судя по таким результатам, вода, для охлаждения, не так уж необходима…

При помощи элементов Пельтье можно добывать электричество в экспедиции, в турпоходе, на охотничьем зимовье, словом в любом месте, где это может понадобиться. Естественно, при наличии дров или яркого солнца, ну и обязательно смекалки.

Использование термоэлектрического модуля.

Такой термоэлектрический генератор прекрасно помнят те, кто помнит советские совхозы и колхозы. Говорят, в войну немцы не могли понять, как партизаны могут подолгу вести радиопередачи из осажденного леса.

Да, как говорится - если бы нашим ученым платили деньги, то они бы iphone ещё в `85 изобрели бы! :-)

Термоэлектрический холодильник

Термоэлектрический холодильник (вариант 2)

Термоэлектрический холодильник (вариант 3)

Автомобильный охладитель для баночных напитков

Кулер для питьевой воды

Термоэлектрический кондиционер для кабины КАМАЗа

В такой "ковшик" наливается вода, ставится на огонь и, пожалуйста, подзаряжай мобильник. Весь секрет в дне, там "зарыт" Пельтье

Давайте поподробней об этой конструкции.

В настоящее время растет интерес к использованию термоэлектрических генераторных модулей в бытовых устройствах. В первую очередь это касается возможности питания маломощных потребителей электроэнергии - радиоприемники, сотовые и спутниковые телефоны, переносные компьютеры, устройства автоматики и т.п. от имеющихся источников тепла. Термоэлектрический генератор, в котором отсутствуют вращающиеся, трущиеся и какие-либо другие изнашиваемые части, позволяет непосредственно получать электричество из любого источника тепла: выхлопных газов двигателей внутреннего сгорания, горячей воды геотермальных источников, "бросового" тепла ТЭЦ и т.п. Руководствуясь опытом, полученным при создании промышленных термоэлектрических генераторов (ТЭГ) различной мощности - от нескольких Ватт до нескольких килоВатт ИПФ КРИОТЕРМ приступила к серийному производству бытового ТЭГ номинальной мощностью 8 Вт. Конструктивно генератор выполнен в виде алюминиевого ковшика с внутренним объемом около 1 л в донной части которого установлены генераторные модули производства ИПФ Криотерм.

Необходимый для работы генератора перепад температур достигается при разогреве ковшика, например, пламенем костра. Вода, нагреваемая внутри ковшика может идти на приготовление пищи или на другие цели. Данный генератор в первую очередь предназначен для использования в глухих, труднодоступных местах для подзарядки элементов питания индивидуальных средств связи и навигации, освещения и т.п. Он незаменим для охотников, туристов, моряков, сотрудников спасательных и специальных служб, вынужденных долгое время находится вдали от источников центрального энергоснабжения.

Преимуществом генератора является малый вес и объем, высокая удельная генерируемая мощность, функциональность и высокая надежность. Конструкция генератора исключает возможность его перегрева при правильном использовании. В качестве дополнительной опции к генератору предлагается ступенчатый стабилизатор напряжения с диапазонами 3 В - 6 В - 9В -12В и переходники для зарядных устройств.

БЫТОВОЙ ГЕНЕРАТОР ТЕРМОЭЛЕКТРИЧЕСКИЙ 1TG-8

Техническая спецификация

Масса без жидкости, кг, не более0,55

Габаритные размеры, мм

без ручки250х130х110 ? 123, h=100