Сайт о телевидении

Сайт о телевидении

» » Дайте определение количества информации. Вероятностный подход к определению количества информации "Формула Шеннона. Применение ЭТ Excel для решения задач на нахождение количества информации"

Дайте определение количества информации. Вероятностный подход к определению количества информации "Формула Шеннона. Применение ЭТ Excel для решения задач на нахождение количества информации"

Свойства информации

Понятие «информация» используется многими научными дисциплинами, имеет большое количество разнообразных свойств, но каждая дисциплина обращает внимание на те свойства информации, которые ей наиболее важны. В рамках нашего рассмотрения наиболее важными являются такие свойства, как дуализм, полнота, достоверность, адекватность, доступность, актуальность . Рассмотрим их подробнее.

Дуализм информации характеризует ее двойственность. С одной стороны, информация объективна в силу объективности данных, с другой – субъективна, в силу субъективности применяемых методов. Например, два человека читают одну и ту же книгу и получают подчас весьма разную информацию. Более объективная информация применяет методы с меньшим субъективным элементом.

Полнота информации характеризует степень достаточности данных для принятия решения или создания новых данных на основе имеющихся. И неполный и избыточный наборы данных затрудняют получение информации и принятие адекватного решения.

Достоверность информации – это свойство, характеризующее степень соответствия информации реальному объекту с необходимой точностью. При работе с неполным набором данных достоверность информации может характеризоваться вероятностью, например, при бросании монеты выпадет герб с вероятностью 50 %.

Адекватность информации выражает степень соответствия создаваемого с помощью информации образа реальному объекту, процессу, явлению. Получение адекватной информации затрудняется при недоступности адекватных методов.

Доступность информации – это возможность получения информации при необходимости. Доступность складывается из двух составляющих: доступности данных и доступности методов. Отсутствие хотя бы одного дает неадекватную информацию.

Актуальность информации. Информация существует во времени, т. к. существуют во времени все информационные процессы. Информация, актуальная сегодня, может стать совершенно ненужной по истечении некоторого времени. Например, программа телепередач на нынешнюю неделю будет неактуальна для многих телезрителей на следующей неделе.

Атрибутивные свойства (атрибут – неотъемлемая часть чего-либо). Важнейшими среди них являются - дискретность (информация состоит из отдельных частей, знаков) и непрерывность (возможность накапливать информацию).

Во всякой информации присутствует субъективная компонента. А возможно ли вообще объективно измерить количество информации? Важнейшим результатом теории информации является вывод о том, что в определенных условиях, можно, пренебрегая качественными особенностями информации, выразить ее количество числом , а следовательно, сравнивать количество информации, содержащейся в различных группах данных.



Количеством информации называют числовую характеристику информации, отражающую ту степень неопределенности, которая исчезает после получения информации.

Понятия «информация», «неопределенность», «возможность выбора» тесно связаны. Получаемая информация уменьшает число возможных вариантов выбора (т.е. неопределенность), а полная информация не оставляет вариантов вообще.

Какое количество информации содержится, к примеру, в тексте романа «Война и мир», во фресках Рафаэля или в генетическом коде человека? Возможно ли объективно измерить количество информации?

В научном плане понятие «информация» связывается с вероят­ностью осуществления того или иного события.

Вероятность числовая характеристика степени возможности наступления события. Вероятность достоверного события (обяза­тельно должно произойти) равна 1, невозможного события (не про­изойдет никогда) – 0. Вероятность случайного события лежит в ин­тервале (0, 1). Например, вероятность выпадения «орла» при под­брасывании монеты равна 1/2, а вероятность выпадения каждой из граней при игре в кости – 1/6.

Случайным называется событие , которое может произойти, а может и не произойти. Примерами случайных событий могут слу­жить выпадение «орла» при подбрасывании монеты или число оч­ков (т.е. выпадение определенной грани) при игре в кости.

Американский инженер Р. Хартли (1928) процесс получения ин­формации рассматривал как выбор одного сообщения из конечного заранее заданного множества из N равновероятных сообщений, а количество информации I , содержащееся в выбранном сообщении, определяет как двоичный логарифм N .

Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли I = log 2 N можно вычислить, какое количество информации для этого требуется: I = Iog 2 l00 = 6,644 бит, т.е. сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6,644 бит.

Американский ученый Клод Шеннон предложил в 1948 г. другую формулу определения количества ин­формации, учитывающую возможную неодинаковую вероятность сообщений в наборе:

I = - (P 1 log 2 P 1 + Р 2 log 2 Р 2 + . . . + P N log 2 P N ),

где P i – вероятность того, что именно i -e сообщение выделено в наборе из N сообщений.

Если вероятности P 1 , Р 2 , …, P N равны, то каждая из них равна 1/N , и формула Шеннона превращается в формулу Хартли.

Анализ формулы показывает, что чем выше вероятность собы­тия, тем меньшее количество информации возникает после его осу­ществления, и наоборот. Если вероятность равна 1 (событие досто­верно), количество информации равно 0.

Если вероятность свершения или несвершения какого-либо со­бытия одинакова, т.е. равна 1/2, то количество информации, кото­рое несет с собой это событие, равно 1. Это и есть единица измере­ния информации, которая получила наименование бит .

Бит можно также определить как количество информа­ции, которое содержит один разряд двоичного числа (отсюда назва­ние «бит»: binary digit – двоичный разряд). Бит в теории информа­ции – количество информации , необходимое для различения двух равновероятных сообщений .

Количество информации, равное 8 битам, называется байтом . В восьми разрядах можно записать 256 различных целых двоичных чисел от 00000000 до 11111111. Широко используются более крупные производные единицы информации:

1 Килобайт (Кбайт) = 1024 байт;

1 Мегабайт (Мбайт) = 1024 Кбайт;

1 Гигабайт (Гбайт) = 1024 Мбайт.

1 Терабайт (Тбайт) = 1024 Гбайт;

1 Петабайт (Пбайт) = 1024 Тбайт.

Количество информации (от англ. information content) ― мера информации, сообщаемой появлением события определенной вероятности; мера оценки информации, содержащейся в сообщении; мера, характеризующая уменьшение неопределенности, содержащейся в одной случайной величине относительно другой.
В 1928 г. американский инженер Р. Хартли рассматривал процесс получения информации как выбор одного сообщения из конечного наперёд заданного множества из N равновероятных сообщений, а количество информации I, содержащееся в выбранном сообщении, определял как двоичный логарифм N. I = log 2 N В 1948 г. американский учёный Клод Шеннон предложил другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе.
I = ― (p 1 log 2 p 1 + p 2 log 2 p 2 + . . . + p N log 2 p N) = Н, где p i ― вероятность того, что именно i-е сообщение выделено в наборе из N сообщений, а Н ― информационная энтропия, которая характеризует степень неопределенности состояния источника, степень хаоса. Неопределенность снижается при приеме сообщения, т.е. получении информации. Поэтому получаемая информация, приходящаяся в среднем на один символ источника сообщений, количественно определяет степень уменьшения неопределенности.
Легко заметить, что если вероятности p i , ..., p N равны, то каждая из них равна 1/N, и формула Шеннона превращается в формулу Хартли.
В качестве единицы информации Клод Шеннон предложил принять один бит. в теории информации ― это количество информации, необходимое для различения двух равновероятных сообщений (типа "орел"-"решка", "чет"-"нечет" и т.п.). В вычислительной технике битом называют наименьшую "порцию" памяти компьютера, необходимую для хранения одного из двух знаков "0" и "1", используемых для внутримашинного представления данных и команд.
Бит ― слишком мелкая единица измерения. На практике чаще применяется более крупная единица ― байт, равная восьми битам. Именно восемь битов требуется для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера (256=2 8).
Широко используются также ещё более крупные производные единицы информации:
■ 1 Килобайт (Кбайт) = 1024 байт = 2 10 байт,
■ 1 Мегабайт (Мбайт) = 1024 Кбайт = 2 20 байт,
■ 1 Гигабайт (Гбайт) = 1024 Мбайт = 2 30 байт.
В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:
■ 1 Терабайт (Тбайт) = 1024 Гбайт = 2 40 байт,
■ 1 Петабайт (Пбайт) = 1024 Тбайт = 2 50 байт.
За единицу информации можно было бы выбрать количество информации, необходимое для различения, например, десяти равновероятных сообщений. Это будет не двоичная (бит), а десятичная (дит) единица информации.

Используемые источники:
1. Гуров И.П. Теория информации и передачи сигналов;
2. Шауцукова Л.З. Информатика 10 - 11;
3. glossary.ru.

Рассмотрены основы информатики и описаны современные аппаратные средства персонального компьютера. Сформулированы подходы к определению основных понятий в области информатики и раскрыто их содержание. Дана классификация современных аппаратных средств персонального компьютера и приведены их основные характеристики. Все основные положения иллюстрированы примерами, в которых при решении конкретных задач используются соответствующие программные средства.

Книга:

Разделы на этой странице:

Как уже отмечалось, понятие информации можно рассматривать при различных ограничениях, накладываемых на ее свойства, т. е. при различных уровнях рассмотрения. В основном выделяют три уровня – синтаксический, семантический и прагматический. Соответственно на каждом из них для определения количества информации применяют различные оценки.

На синтаксическом уровне для оценки количества информации используют вероятностные методы, которые принимают во внимание только вероятностные свойства информации и не учитывают другие (смысловое содержание, полезность, актуальность и т. д.). Разработанные в середине XX в. математические и, в частности, вероятностные методы позволили сформировать подход к оценке количества информации как к мере уменьшения неопределенности знаний. Такой подход, называемый также вероятностным, постулирует принцип: если некоторое сообщение приводит к уменьшению неопределенности наших знаний, то можно утверждать, что такое сообщение содержит информацию. При этом сообщения содержат информацию о каких-либо событиях, которые могут реализоваться с различными вероятностями. Формулу для определения количества информации для событий с различными вероятностями и получаемых от дискретного источника информации предложил американский ученый К. Шеннон в 1948 г. Согласно этой формуле количество информации может быть определено следующим образом:


где I – количество информации; N – количество возможных событий (сообщений); p i – вероятность отдельных событий (сообщений); ? – математический знак суммы чисел.

Определяемое с помощью формулы (1.1) количество информации принимает только положительное значение. Поскольку вероятность отдельных событий меньше единицы, то соответственно выражение log^,– является отрицательной величиной и для получения положительного значения количества информации в формуле (1.1) перед знаком суммы стоит знак минус.

Если вероятность появления отдельных событий одинаковая и они образуют полную группу событий, т. е.


то формула (1.1) преобразуется в формулу Р. Хартли:


В формулах (1.1) и (1.2) отношение между количеством информации и соответственно вероятностью, или количеством, отдельных событий выражается с помощью логарифма. Применение логарифмов в формулах (1.1) и (1.2) можно объяснить следующим образом. Для простоты рассуждений воспользуемся соотношением (1.2). Будем последовательно присваивать аргументу N значения, выбираемые, например, из ряда чисел: 1, 2, 4, 8, 16, 32, 64 и т. д. Чтобы определить, какое событие из N равновероятных событий произошло, для каждого числа ряда необходимо последовательно производить операции выбора из двух возможных событий. Так, при N = 1 количество операций будет равно 0 (вероятность события равна 1), при N = 2, количество операций будет равно 1, при N = 4 количество операций будет равно 2, при N = 8, количество операций будет равно 3 и т. д. Таким образом получим следующий ряд чисел: 0, 1, 2, 3, 4, 5, 6 и т. д., который можно считать соответствующим значениям функции I в соотношении (1.2). Последовательность значений чисел, которые принимает аргумент N, представляет собой ряд, известный в математике как ряд чисел, образующих геометрическую прогрессию, а последовательность значений чисел, которые принимает функция I , будет являться рядом, образующим арифметическую прогрессию. Таким образом, логарифм в формулах (1.1) и (1.2) устанавливает соотношение между рядами, представляющими геометрическую и арифметическую прогрессии, что достаточно хорошо известно в математике.

Для количественного определения (оценки) любой физической величины необходимо определить единицу измерения, которая в теории измерений носит название меры. Как уже отмечалось, информацию перед обработкой, передачей и хранением необходимо подвергнуть кодированию. Кодирование производится с помощью специальных алфавитов (знаковых систем). В информатике, изучающей процессы получения, обработки, передачи и хранения информации с помощью вычислительных (компьютерных) систем, в основном используется двоичное кодирование, при котором используется знаковая система, состоящая из двух символов 0 и 1. По этой причине в формулах (1.1) и (1.2) в качестве основания логарифма используется цифра 2.

Исходя из вероятностного подхода к определению количества информации эти два символа двоичной знаковой системы можно рассматривать как два различных возможных события, поэтому за единицу количества информации принято такое количество информации, которое содержит сообщение, уменьшающее неопределенность знания в два раза (до получения событий их вероятность равна 0,5, после получения – 1, неопределенность уменьшается соответственно: 1/0,5 = 2, т. е. в 2 раза). Такая единица измерения информации называется битом (от англ. слова binary digit – двоичная цифра). Таким образом, в качестве меры для оценки количества информации на синтаксическом уровне, при условии двоичного кодирования, принят один бит.

Следующей по величине единицей измерения количества информации является байт, представляющий собой последовательность, составленную из восьми бит, т. е.

1 байт = 2 3 бит = 8 бит.

В информатике также широко используются кратные байту единицы измерения количества информации, однако в отличие от метрической системы мер, где в качестве множителей кратных единиц применяют коэффициент 10n, где п = 3, 6, 9 и т. д., в кратных единицах измерения количества информации используется коэффициент 2n. Выбор этот объясняется тем, что компьютер в основном оперирует числами не в десятичной, а в двоичной системе счисления.

Кратные байту единицы измерения количества информации вводятся следующим образом:

1 Килобайт (Кбайт) = 2 10 байт = 1024 байт,

1 Мегабайт (Мбайт) = 2 10 Кбайт = 1024 Кбайт,

1 Гигабайт (Гбайт) = 2 10 Мбайт = 1024 Мбайт,

1 Терабайт (Тбайт) = 2 10 Гбайт = 1024 Гбайт,

1 Петабайт (Пбайт) = 2 10 Тбайт = 1024 Тбайт,

1 Экзабайт (Эбайт) = 2 10 Пбайт = 1024 Пбайт.

Единицы измерения количества информации, в названии которых есть приставки «кило», «мега» и т. д., с точки зрения теории измерений не являются корректными, поскольку эти приставки используются в метрической системе мер, в которой в качестве множителей кратных единиц используется коэффициент 10n, где п = 3, 6, 9 и т. д. Для устранения этой некорректности международная организацией International Electrotechnical Commission, занимающаяся созданием стандартов для отрасли электронных технологий, утвердила ряд новых приставок для единиц измерения количества информации: киби (kibi), меби (mebi), гиби (gibi), теби (tebi), пети (peti), эксби (exbi). Однако пока используются старые обозначения единиц измерения количества информации, и требуется время, чтобы новые названия начали широко применяться.

Вероятностный подход используется и при определении количества информации, представленной с помощью знаковых систем. Если рассматривать символы алфавита как множество возможных сообщений N, то количество информации, которое несет один знак алфавита, можно определить по формуле (1.1). При равновероятном появлении каждого знака алфавита в тексте сообщения для определения количества информации можно воспользоваться формулой (1.2).

Количество информации, которое несет один знак алфавита, тем больше, чем больше знаков входит в этот алфавит. Количество знаков, входящих в алфавит, называется мощностью алфавита. Количество информации (информационный объем), содержащееся в сообщении, закодированном с помощью знаковой системы и содержащем определенное количество знаков (символов), определяется с помощью формулы:


где V – информационный объем сообщения; / = log 2 N, информационный объем одного символа (знака); К – количество символов (знаков) в сообщении; N – мощность алфавита (количество знаков в алфавите).

Поясним вышесказанное в п. 1.2 на примерах.

Пример 1.1

Определим, какое количество информации можно получить после реализации одного из шести событий. Вероятность первого события составляет 0,15; второго – 0,25; третьего – 0,2; четвертого – 0,12; пятого – 0,12; шестого – 0,1, т. е. Р 1 = 0,15; Р 2 = 0,25; Р 3 = 0,2; Р 4 = 0,18; Р 5 = 0,12; Р 6 = 0,1.

Решение.

Для определения количества информации применим формулу (1.1)


Для вычисления этого выражения, содержащего логарифмы, воспользуемся сначала компьютерным калькулятором, а затем табличным процессором Microsoft (MS) Excel, входящим в интегрированный пакет программ MS Office ХР.

Для вычисления с помощью компьютерного калькулятора выполним следующие действия.

С помощью команды: [Кнопка Пуск – Программы – Стандартные – Калькулятор] запустим программу Калькулятор. После запуска программы выполним команду: [Вид – Инженерный] (рис. 1.3).


Рис. 1.3. Инженерный калькулятор

Кнопка log калькулятора производит вычисление десятичного (по основанию 10) логарифма отображаемого числа. Поскольку в нашем случае необходимо производить вычисления логарифмов по основанию 2, а данный калькулятор не позволяет этого делать, то необходимо воспользоваться известной формулой:

logbN = М · log a N,


В нашем случае соотношение примет вид: log 2 N = M log 10 N,


т. е log 2 N = 3,322 · log 10 N, и выражение для вычисления количества информации примет вид:


При вычислении на калькуляторе используем кнопки: +/- (изменение знака отображаемого числа),()(открывающие и закрывающие скобки), log (логарифм числа по основанию 10) и т. д. Результат вычисления показан на рис. 1.3. Таким образом, количество информации I = 2,52 бит.

Воспользуемся теперь табличным процессором MS Excel. Для запуска программы Excel выполним команду: [Кнопка Пуск – Программы – MS Office ХР – Microsoft Excel]. В ячейки А1, В1, С1, D1, E1, F1 открывшегося окна Excel запишем буквенные обозначения вероятностей Р 1 , Р 2 , P 3 , Р 4 , P 5 , P 6 а в ячейку G1 – количество информации I , которое необходимо определить. Для написания нижних индексов у вероятностей Р 1 ? P 6 в ячейках А1, В1, С1, D1, E1, F1 выполним следующую команду: [Формат – Ячейки – Шрифт – Видоизменение (поставим флажок напротив нижнего индекса) ]. В ячейки А2, В2, С2, D2, Е2, F2 запишем соответствующие значения вероятностей.

После записи значений в ячейки необходимо установить в них формат числа. Для этого необходимо выполнить следующую команду: [Формат – Ячейки – Число – Числовой (устанавливаем число десятичных знаков, равное двум) ]. Устанавливаем в ячейке G2 тот же числовой формат. В ячейку G2 записываем выражение = – (A2*LOG(A2;2) + B2*LOG(B2;2) + C2*LOG(C2;2) + D2*LOG(D2;2) + E2*LOG(E2;2) + F2*LOG(F2;2)). После нажатия на клавиатуре компьютера клавиши , в ячейке G2 получим искомый результат – I = 2,52 бит (рис. 1.4).


Рис. 1.4. Результат вычисления количества информации

Пример 1.2

Определим, какое количество байт и бит информации содержится в сообщении, если его объем составляет 0,25 Кбайта.

Решение.

С помощью калькулятора определим количество байт и бит информации, которое содержится в данном сообщении:

I = 0,25 Кбайт · 1024 байт/1 Кбайт = 256 байт;

I = 256 байт · 8 бит/1 байт = 2048 бит.

Пример 1.3

Определим мощность алфавита, с помощью которого передано сообщение, содержащее 4096 символов, если информационный объем сообщения составляет 2 Кбайта.

Решение.

С помощью калькулятора переведем информационный объем сообщения из килобайт в биты:

V = 2 Кбайт 1024 байт/1 Кбайт = 2048 байт 8 бит/1 байт = 16384 бит.

Определим количество бит, приходящееся на один символ (информационный объем одного символа) в алфавите:

I = 16 384 бит/4096 = 4 бит.

Используя формулу (1.3), определим мощность алфавита (количество символов в алфавите) :

N = 2 I = 2 4 = 16.

Как уже отмечалось, если принять во внимание только свойство информации, связанное с ее смысловым содержанием, то при определении понятия информации можно ограничиться смысловым, или семантическим, уровнем рассмотрения этого понятия.

На семантическом уровне информация рассматривается по ее содержанию, отражающему состояние отдельного объекта или системы в целом. При этом не учитывается ее полезность для получателя информации. На данном уровне изучаются отношения между знаками, их предметными и смысловыми значениями (см. рис. 1.1), что позволяет осуществить выбор смысловых единиц измерения информации. Поскольку смысловое содержание информации передается с помощью сообщения, т. е. в виде совокупности знаков (символов), передаваемых с помощью сигналов от источника информации к приемнику, то широкое распространение для измерения смыслового содержания информации получил подход, основанный на использовании тезаурусной меры. При этом под тезаурусом понимается совокупность априорной информации (сведений), которой располагает приемник информации.

Данный подход предполагает, что для понимания (осмысливания) и использования полученной информации приемник (получатель) должен обладать априорной информацией (тезаурусом), т. е. определенным запасом знаков, наполненных смыслом, слов, понятий, названий явлений и объектов, между которыми установлены связи на смысловом уровне. Таким образом, если принять знания о данном объекте или явлении за тезаурус, то количество информации, содержащееся в новом сообщении о данном предмете, можно оценить по изменению индивидуального тезауруса под воздействием данного сообщения. В зависимости от соотношений между смысловым содержанием сообщения и тезаурусом пользователя изменяется количество семантической информации, при этом характер такой зависимости не поддается строгому математическому описанию и сводится к рассмотрению трех основных условий, при которых тезаурус пользователя:

Стремится к нулю, т. е. пользователь не воспринимает поступившее сообщение;

Стремится к бесконечности, т. е. пользователь досконально знает все об объекте или явлении и поступившее сообщение его не интересует;

Согласован со смысловым содержанием сообщения, т. е. поступившее сообщение понятно пользователю и несет новые сведения.

Два первых предельных случая соответствуют состоянию, при котором количество семантической информации, получаемое пользователем, минимально. Третий случай связан с получением максимального количества семантической информации. Таким образом, количество семантической информации, получаемой пользователем, является величиной относительной, поскольку одно и то же сообщение может иметь смысловое содержание для компетентного и быть бессмысленным для некомпетентного пользователя.

Поэтому возникает сложность получения объективной оценки количества информации на семантическом уровне ее рассмотрения и для получения такой оценки используют различные единицы измерения количества информации: абсолютные или относительные. В качестве абсолютных единиц измерения могут использоваться символы, реквизиты, записи и т. д., а в качестве относительной – коэффициент содержательности, который определяется как отношение семантической информации к ее объему. Например, для определения на семантическом уровне количества информации, полученной студентами на занятиях, в качестве единицы измерения может быть принят исходный балл (символ), характеризующий степень усвояемости ими нового учебного материала, на основе которого можно косвенно определить количество информации, полученное каждым студентом. Это количество информации будет выражено через соответствующий оценочный балл в принятом диапазоне оценок.

При семантическом подходе к оценке количества информации и выборе единицы измерения существенным является вид получаемой информации (сообщения). Так, данный подход к оценке количества экономической информации позволяет выявить составную единицу экономической информации, состоящую из совокупности других единиц информации, связанных между собой по смыслу. Элементарной составляющей единицей экономической информации является реквизит, т. е. информационная совокупность, которая не поддается дальнейшему делению на единицы информации на смысловом уровне. Деление реквизитов на символы приводит к потере их смыслового содержания. Каждый реквизит характеризуется именем, значением и типом. При этом под именем реквизита понимается его условное обозначение, под значением – величина, характеризующая свойства объекта или явления в определенных обстоятельствах, под типом – множество значений реквизита, объединенных определенными признаками и совокупностью допустимых преобразований.

Реквизиты принято делить на реквизиты-основания и реквизиты-признаки .

Реквизиты-основания характеризуют количественную сторону экономического объекта, процесса или явления, которые могут быть получены в результате совершения отдельных операций – вычислений, измерений, подсчета натуральных единиц и т. д. В экономических документах к ним можно отнести, например, цену товара, его количество, сумму и т. п. Реквизиты-основания чаще всего выражаются в цифрах, над которыми могут выполняться математические операции.

Реквизиты-признаки отражают качественные свойства экономического объекта, процесса или явления. С помощью реквизитов-признаков сообщения приобретают индивидуальный характер. В экономических документах к ним можно отнести, например, номер документа, имя отправителя, дату составления документа, вид операции и т. п. Реквизиты-признаки позволяют осуществлять логическую обработку единиц количества информации на семантическом уровне: поиск, выборку, группировку, сортировку и т. д.

Отдельный реквизит-основание вместе с относящимися к нему реквизитами-признаками образует следующую в иерархическом отношении составную единицу экономической информации – показатель. Показатель имеет наименование, в состав которого входят термины, обозначающие измеряемый объект: себестоимость, затраты, мощность, прибыль и т. д. Кроме того, показатель содержит формальную характеристику и дополнительные признаки. К формальной характеристике относится способ его получения (объем, сумма, прирост, процент, среднее значение и т. д.), а к дополнительным – пространственно-временные (где находится измеряемый объект, время, к которому относится данный показатель) и метрологические (единицы измерения).

Таким образом, с помощью совокупности реквизитов и соответствующих им показателей можно оценить количество экономической информации, получаемой от исследуемого объекта (источника информации).

Кроме подхода, основанного на использовании тезаурусной меры, при определении количества информации на семантическом уровне находят применение и другие подходы . Например, один из подходов, связанных с семантической оценкой количества информации, заключается в том, что в качестве основного критерия семантической ценности информации, содержащейся в сообщении, принимается количество ссылок на него в других сообщениях. Количество получаемой информации определяется на основе статистической обработки ссылок в различных выборках.

Подводя итог сказанному, можно утверждать, что существовала и существует проблема формирования единого системного подхода к определению информации на семантическом уровне. Это подтверждается и тем, что в свое время для создания строгой научной теории информации К. Шеннон вынужден был отбросить важное свойство информации, связанное со смысловым ее содержанием.

Кроме перечисленных уровней рассмотрения понятия информации достаточно широко используется прагматический уровень. На данном уровне информация рассматривается с точки зрения ее полезности (ценности) для достижения потребителем информации (человеком) поставленной практической цели. Данный подход при определении полезности информации основан на расчете приращения вероятности достижения цели до и после получения получения информации . Количество информации, определяющее ее ценность (полезность), находится по формуле:


где Р 0 , P 1 – вероятность достижения цели соответственно до и после получения информации.

В качестве единицы измерения (меры) количества информации, определяющей ее ценность, может быть принят 1 бит (при основании логарифма, равном 2), т. е. это такое количество полученной информации, при котором отношение вероятностей достижения цели равно 2.

Рассмотрим три случая, когда количество информации, определяющее ее ценность, равно нулю и когда она принимает положительное и отрицательное значение.

Количество информации равно нулю при Р 0 = Р 1 , т.е. полученная информация не увеличивает и не уменьшает вероятность достижения цели.

Значение информации является положительной величиной при P 1 > P 0 , т. е. полученная информация уменьшает исходную неопределенность и увеличивает вероятность достижения цели.

Значение информации является отрицательной величиной при P 1 < P 0 , т. е. полученная информация увеличивает исходную неопределенность и уменьшает вероятность достижения цели. Такую информацию называют дезинформацией.

Дальнейшее развитие данного подхода базируется на статистической теории информации и теории решений. При этом кроме вероятностныхарактеристик достижения цели после получения информации вводятся функции потерь и оценка полезности информации производится в результате минимизации функции потерь. Максимальной ценностью обладает то количество информации, которое уменьшает потери до нуля при достижении поставленной цели .

Количество информации как мера уменьшения неопределенности знаний. Информацию, которую получает человек, можно считать мерой уменьшения неопределенности знаний. Если некоторое сообщение приводит к уменьшению неопределенности наших знаний, то можно говорить, что такое сообщение содержит информацию.

Сообщения обычно содержат информацию о каких-либо событиях. Количество информации для событий с различными вероятностями определяется по формуле:

или из показательного уравнения:

Пример 2.1. После экзамена по информатике, который сдавали ваши друзья, объявляются оценки («2», «3», «4» или «5»). Какое количество информации будет нести сообщение об оценке учащегосяA, который выучил лишь половину билетов, и сообщение об оценке учащегосяB, который выучил все билеты.

Опыт показывает, что для учащегося Aвсе четыре оценки (события) равновероятны и тогда количество информации, которое несет сообщение об оценке можно вычислить по формуле 2.2:

I = log 2 4 = 2 бит

На основании опыта можно также предположить, что для учащегося Bнаиболее вероятной оценкой является «5» (p 1 = 1/2), вероятность оценки «4» в два раза меньше (p 2 = 1/4), а вероятности оценок «2» и «3» еще в два раза меньше (p 3 = p 4 = 1/8). Так как события неравновероятны, воспользуемся для подсчета количества информации в сообщении формулой 2.1:

I = -(1/2Elog 2 1/2 + 1/4Elog 2 1/4 + 1/8Elog 2 1/8 + 1/8Elog 2 1/8) бит = 1,75 бит

Вычисления показали, что при равновероятных событиях мы получаем большее количество информации, чем при неравновероятных событиях.

Пример 2.2. В непрозрачном мешочке хранятся 10 белых, 20 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика.

Так как количество шариков различных цветов неодинаково, то зрительные сообщения о цвете вынутого из мешочка шарика также различаются и равны количеству шариков данного цвета деленному на общее количество шариков:

p б = 0,1; p к = 0,2; p з = 0,3; p с = 0,4

События неравновероятны, поэтому для определения количества информации, содержащимся в сообщении о цвете шарика, воспользуемся формулой 2.1:

I = -(0,1·log 2 0,1+ 0,2·log 2 0,2 + 0,3·log 2 0,3 + 0,4·log 2 0,4) бит

Пример 2.3. Какое количество вопросов достаточно задать вашему собеседнику, чтобы наверняка определить месяц, в котором он родился?

Будем рассматривать 12 месяцев как 12 возможных событий. Если спрашивать о конкретном месяце рождения, то, возможно, придется задать 11 вопросов (если на 11 первых вопросов был получен отрицательный ответ, то 12-й задавать не обязательно, так как он и будет правильным).

Правильно задавать «двоичные» вопросы, т.е. вопросы, на которые можно ответить только «Да» или «Нет». Например, «Вы родились во второй половине года?». Каждый такой вопрос разбивает множество вариантов на два подмножества: одно соответствует ответу «Да», а другое - ответу «Нет».

Правильная стратегия состоит в том, что вопросы нужно задавать так, чтобы количество возможных вариантов каждый раз уменьшалось вдвое. Тогда количество возможных событий в каждом из полученных подмножеств будет одинаково и их отгадывание равновероятно. В этом случае на каждом шаге ответ («Да» или «Нет») будет нести максимальное количество информации (1 бит).

По формуле 2.2 и с помощью калькулятора получаем:

I = log 2 12 »3,6 бит

Количество полученных бит информации соответствует количеству заданных вопросов, однако количество вопросов не может быть нецелым числом. Округляем до большего целого числа и получаем ответ: при правильной стратегии необходимо задать не более 4 вопросов.

Единицы измерения количества информации

Единицы измерения количества информации. За единицу количества информации принят 1 бит - количество информации, содержащееся в сообщении, уменьшающем неопределенность знаний в два раза.

Принята следующая система единиц измерения количества информации:

1 байт = 8 бит

1 Кбайт = 2 10 байт

1 Мбайт = 2 10 Кбайт = 2 20 байт

1 Гбайт = 2 10 Мбайт = 2 20 Кбайт = 2 30 байт

Определение количества информации, представленной с помощью знаковых систем

Если рассматривать символы алфавита как множество возможных сообщений (событий) N, то количество информации, которое несет один знак можно определить из формулы 2.1. Если считать появление каждого знака алфавита в тексте событиями равновероятными, то для определения количества информации можно воспользоваться формулой 2.2 или уравнением 2.3.

Количество информации, которое несет один знак алфавита тем больше, чем больше знаков входят в этот алфавит, т.е. чем больше мощность алфавита.

Количество информации, содержащейся в сообщении, закодированном с помощью знаковой системы, равно количеству информации, которое несет один знак, умноженному на число знаков в сообщении.

Пример 2.5. Какова мощность алфавита, с помощью которого записано сообщение, содержащее 2048 символов, если его объем составляет 1,25 Кбайта.

Перевести информационный объем сообщения в биты:

I = 10 240 бит

Определить количество бит, приходящееся на один символ:

10 240 бит: 2 048 = 5 бит

По формуле 2.3 определить количество символов в алфавите.

Основное содержание темы: Известны два подхода к измерению информации: содержательный и алфавитный. Алфавитный подход используется для измерения количества информации в тексте, представленном в виде последовательности символов некоторого алфавита. Такой подход не связан с содержанием текста. Количество информации в этом случае называется информационным объемом текста. С позиции содержательного подхода к измерению информации решается вопрос о количестве информации в сообщении, получаемом человеком.

Практическая работа 2. Решение задач с применением формулы Хартли

Цель работы: определение количества информации при содержательном подходе.

1) человек получает сообщение о некотором событии; при этом заранее известна неопределенность знания человека об ожидаемом событии. Неопределенность знания может быть выражена либо числом возможных вариантов события, либо вероятностью ожидаемых вариантов события;

2) в результате получения сообщения неопределенность знания снимается: из некоторого возможного количества вариантов оказался выбранным один;

3) по формуле вычисляется количество информации в полученном сообщении, выраженное в битах.

Формула, используемая для вычисления количества информации, зависит от ситуаций, которых может быть две:

1. Все возможные варианты события равновероятны. Их число конечно и равно N.

2. Вероятности (p) возможных вариантов события разные и они заранее известны: {p i }, i = 1..N.

Если равновероятные события, то величины i и N связаны между собой формулой Хартли:

2 i = N (1), где

i – количество информации в сообщении о том, что произошло одно из N равновероятных событий, измеряется в битах.

N - число возможных вариантов события.

Формула Хартли - это показательное уравнение. Если i - неизвестная величина, то решением уравнения (1) будет:

Формулы (1) и (2) тождественны друг другу.

Оборудование:

1. Разберите ниже приведенные примеры задач с решениями. Запишите в тетрадь.

Задача 1. Найти количество информации в однозначном сообщении.

Решение :

N=1 => 2 i =1 => i=0 бит

Задача 2. Измерить количество информации при ответе на вопрос: «Какие завтра намечаются осадки?»

Решение:

N=4 => 2 i =4 => i=2 бит

Задача 3. Получено сообщение, объемом 10 бит. Какое количество сообщений возможно составить из полученных данных?

Решение:

i=10 => 2 10 =1024 => N=1024 сообщения

1. Сколько информации содержит сообщение о том, что из колоды карт достали даму пик?

2. Сколько информации содержит сообщение о выпадении грани с числом 3 на шестигранном игральном кубике?

3. Некто задумал натуральное число в диапазоне от 1 до 32. Какое минимальное число вопросов надо задать, чтобы гарантированно угадать задуманное (выделенное) число. Ответы могут быть только «да» или «нет».

4. (Задача о фальшивой монете). Имеется 27 монет, из которых 26 настоящих и одна фальшивая. Каково минимальное число взвешиваний на рычажных весах, за которое можно гарантированно определить одну фальшивую монету из 27, используя то, что фальшивая монета легче настоящей. Рычажные весы имеют две чашки и с их помощью можно лишь установить, одинаково ли по весу содержимое чашек, и если нет, то содержимое какой из чашек тяжелее.

5. Сколько вопросов следует задать и как их нужно сформулировать, чтобы узнать с какого из 16 путей отправляется ваш поезд?

6. Какое количество информации получит первый игрок после первого хода второго игрока в игре "крестики - нолики" на поле 4 х 4?

7. После реализации одного из возможных событий получили количество информации равное 15 бит. Какое количество возможных событий было первоначально?

8. Определить стратегию угадывания одной карты из колоды из 32 игральных карт (все четыре шестерки отсутствуют), если на вопросы будут даны ответы "да" или "нет".

9. При игре в кости используется кубик с шестью гранями. Сколько бит информации получает игрок при каждом бросании кубика?

10. Сообщение о том, что ваш друг живет на 6 этаже несет 4 бита информации. Сколько этажей в доме.

11. Информационная емкость сообщения о том, что из корзины, где лежало некоторое количество разноцветных шаров, достали зеленый шар, несет в себе 0, 375 байта информации. Сколько в корзине было шаров.

12. В библиотеке 16 стеллажей. На каждом стеллаже по 8 полок Библиотекарь сказал Оле, что интересующая ее книга находится на 3 стеллаже, на 2-й сверху полке. Какое количество информации получила Оля?

13. В мешке находятся 30 шаров, из них 10 белых и 20 черных. Какое количество информации несет сообщение о том, что достали белый шар, черный шар?

14. В классе 30 человек. За контрольную работу по математике получено 6 пятерок, 15 четверок, 8 троек и 1 двойка. Какое количество информации в сообщении о том, что Иванов полу­чил четверку?



15. В корзине лежат 32 клубка шерсти. Среди них – 4 красных. Сколько информации несет сообщение о том, что достали клубок красной шерсти?

16. В коробке лежат 64 цветных карандаша. Сообщение о том, что достали белый карандаш, несет 4 бита информации. Сколько белых карандашей было в корзине?

17. В ящике лежат перчатки (белые и черные). Среди них – 2 пары черных. Сообщение о том, что из ящика достали пару черных перчаток, несет 4 бита информации. Сколько всего пар перчаток было в ящике?

Контрольные вопросы:

1. Какой принцип положен в основу измерения количества информации?

2. Каким образом определяется единица количества информации при кибернетическом подходе?

3. Что принимается за минимальную единицу количества информации с точки зрения уменьшения неопределенности знаний в 2 раза?

4. В каких случаях применяют формулу Хартли?

Практическая работа 3. Вычисление количества информации на основе вероятностного подхода

Цель работы: совершенствование навыка по определению количества информации на основе вероятностного подхода

Краткое теоретическое обоснование: см. практическую работу 2.

Оборудование: дидактические материалы по теме «Определение количества информации»

Последовательность выполнения:

Задача 1. В языке племени Мумбо-Юмбо всего 20 разных слов. Сколько бит нужно, чтобы закодировать любое из этих слов?

Решение .

· По условию задачи у нас имеется 20 различных вариантов.

· Количество бит информации, необходимое для задания 20 равновероятных (одинаково принимаемых в расчет) вариантов можно рассчитать по формуле:

h=log 2 20» 4,32 бит

или при выборе двухсимвольного алфавита для кодирования достаточно составить слово из 5 бит.

Задача 2. В доме 14 окон. Сколько различных сигналов можно подать, зажигая свет в окнах? Сколько бит информации несет в себе каждый такой сигнал?

Решение .

· Каждое окно несет в себе 1 бит информации: горит - не горит.

· Количество различных равновероятных сигналов, передаваемое с помощью 14 бит равно 2 14 = 16 384.

· Каждый из 16 384 сигналов несет в себе 14 бит информации.

2. Решите следующие задачи. Результат оформите в тетради.

1. В корзине лежат шары. Все разного цвета. Сообщение о том, что достали синий шар, несет 5 бит информации. Сколько всего шаров в корзине?

2. В соревновании участвуют 4 команды. Сколько информации в сообщении, что выиграла 3-я команда?

3. Группа школьников пришла в бассейн, в котором 4 дорожки для плавания. Тренер сообщил, что группа будет плавать на дорожке номер 3. Сколько информации получили школьники из этого сообщения?

4. В коробке 5 синих и 15 красных шариков. Какое количество информации несет сообщение, что из коробки достали синий шарик?

5. В коробке находятся кубики трех цветов: красного, желтого и зеленого, причем желтых в два раза больше красных, а зеленых на 6 больше, чем желтых. Сообщение о том, что из коробки случайно вытащили желтый кубик, содержало 2 бита информации. Сколько было зеленых кубиков?

6. Студенты группы изучают один из трех языков: английский, немецкий или французский, причем 12 студентов не учат английский. Сообщение, что случайно выбранный студент Петров изучает английский, несет log23 бит информации, а что Иванов изучает французский – 1 бит. Сколько студентов изучают немецкий язык?

7. В составе 16 вагонов, среди которых К – купейные, П – плацкартные и СВ – спальные. Сообщение о том, что ваш друг приезжает в СВ, несет 3 бита информации. Сколько в поезде вагонов СВ?

8. Студенческая группа состоит из 21 человека, которые изучают немецкий или французский языки. Сообщение о том, что студент A изучает немецкий язык, несет log 2 3 бит информации. Сколько человек изучают французский язык?

9. Сколько информации несет сообщение о том, что было угадано число в диапазоне целых чисел от 684 до 811?

10. Для дистанционной передачи роботу различных команд применяются сигналы в 6 бит, причем сигнала в 5 бит недостаточно для передачи всех команд. Может ли общее количество всех команд для этого робота быть равно:

42 командам? 70 командам?

28 командам? 55 командам?

Какое наименьшее и какое наибольшее количество команд может получать робот?

11. Одиннадцать одноклассников решают голосованием, куда пойти после уроков. При голосовании каждый может быть либо “за” либо “против”. Сколько различных вариантов голосования может быть? Сколько бит потребуется, чтобы закодировать результаты голосования?

12. Какое минимальное количество бит информации требуется для кодирования всех букв русского алфавита?

13. Друзья в соседних домах договорились передавать друг другу сообщения в виде световых сигналов. Сколько лампочек им понадобиться для кодирования 10 различных слов?

14. В компьютерной игре распознаются 65 различных команд управления. Сколько бит требуется отвести в блоке памяти для кодирования каждой команды? Достаточно ли отведенных бит для кодирования 100 команд?

Контрольные вопросы:

1. Какие события являются равновероятностными?

2. Приведите примеры из жизни равновероятностных событий.

3. Какая формула связывает между собой количество возможных событий и количествоинформации?

4. Как зависит количество информации от количества возможных событий?

5. Верно ли высказывание о том что, чем больше количество возможных событий, тем меньше количество информации будет содержать сообщение о результатах опыта.

Ответ обоснуйте.

Практическая работа 4 . Решение задач с применением формулы Шеннона

Цель работы: приобретение навыка по определению количества информации на основе вероятностного подхода

Краткое теоретическое обоснование:

Степень неопределенности – одна из характеристик случайного события, которую назвали энтропией. Обозначается - Н(α). За единицу энтропии принимается неопределенность, содержащаяся в опыте, имеющем два равновероятностных исхода. Существуют множества ситуаций, когда возможные события имеют различные вероятности реализации. Например, если монета не симметрична (одна сторона тяжелее другой), то при её бросании вероятности выпадения «орла» и «решки» будут различаться. Формулу для вычисления количества информации в случае различных вероятностей событий предложил К.Шеннон в 1948 году. В этом случае количество информации определяется по формуле:

P i log 2 p i , где I –количество информации, N –количество возможных событий, p i –вероятности отдельных событий. Вероятность события p i =1/N.

Для решения задач такого типа нам необходимо знать формулу расчета вероятности исхода. Она выглядит так:

где M – это величина, показывающая сколько раз произошло событие, N – это общее число возможных исходов какого-то процесса.

Необходимо знать, что в сумме все вероятности дают единицу или в процентном выражении 100%.

Оборудование: дидактические материалы по теме «Определение количества информации».

Последовательность выполнения:

Задача 1. Из колоды выбрали 16 карт (все “картинки” и тузы) и положили на стол рисунком вниз. Верхнюю карту перевернули. Верхняя перевернутая карта оказалась черной дамой. Сколько информации будет заключено в сообщении о том, какая именно карта оказалась сверху?

Решение .

В результате сообщения об исходе случайного события не наступает полной определенности: выбранная карта может иметь одну из двух черных мастей.

Так как информация есть уменьшение неопределенности знаний:

До переворота карты неопределенность (энтропия) составляла

H1 = log 2 N1, после него – H2 = log 2 N2.

(причем в условиях задачи N1 = 16, а N2 = 2).

В итоге информация вычисляется следующим образом:

I = H1 – H2 = log 2 N1 – log 2 N2 = log 2 N1/N2 = log 2 16/2 = 3 бита.

Задача 2. Вероятность перового события составляет 0,5, а второго и третьего 0,25. Какое количество информации мы получим после реализации одного из них?

Решение .

Р 1 =0,5; Р 2 =Р 3 =0,25 Þ бита.

Задача 3. Определить количество информации, получаемое при реализации одного из событий, если бросают

а) несимметричную четырехгранную пирамидку;

б) симметричную и однородную четырехгранную пирамидку.

Решение .

а) Будем бросать несимметричную четырехгранную пирамидку.

Вероятность отдельных событий будет такова:

тогда количество информации, получаемой после реализации одного из этих событий, рассчитывается по формуле Шеннона т.к. неравновероятностные события:

I = -(1 / 2 log 2 1/2 + 1 / 4 log 2 1/4 + 1 / 8 log 2 1/8 + 1 / 8 log 2 1/8) = 1 / 2 + 2 / 4 + + 3 / 8 + 3 / 8 = 14/8 = 1,75 (бит).

б) Теперь рассчитаем количество информации, которое получится при бросании симметричной и однородной четырехгранной пирамидки, т.е. равновероятностные события:

I = log 2 4 = 2 (бит).

2. Решите следующие задачи. Результат оформите в тетради.

1. В классе 30 человек. За контрольную работу по информатике получено 15 пятерок, 6 четверок, 8 троек и 1 двойка. Какое количество информации несет сообщение о том, что Андреев получил пятерку?

2. В непрозрачном мешочке хранятся 10 белых, 20 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?

3. За контрольную работу по информатике получено 8 пятерок, 13 четверок, 6 троек и 2 двойки. Какое количество информации получил Васечкин при получении тетради с оценкой?

4. Известно, что в ящике лежат 20 шаров. Из них 10 - черных, 4 - белых, 4 - желтых и 2 - красный. Какое количество информации несёт сообщения о цвете вынутого шара?

5. В сейфе банкира Богатеева лежат банкноты достоинством 1, 10 или 100 талеров каждая. Банкир раскрыл свой сейф и наугад вытащил из него одну банкноту. Информационный объем сообщения "Из сейфа взята банкнота достоинством в 10 талеров" равен 3 бита. Количество информации, содержащееся в сообщении "Из сейфа взята банкнота достоинством не в 100 талеров", равно 3-log25 бит. Определите информационный объем зрительного сообщения о достоинстве вынутой банкноты.

3. Выполните упражнение

Ниже приведены 11 событий:

1. Первый встречный человек мужского пола.

2. За понедельником будет вторник.

3. За контрольную работу можно получить «отлично».

4. К телефону из пяти членов семьи подойдет младший сын.

6. После лета буде зима.

7. Каждый из 15 учеников, посещающих данные занятия, поступит на математическую специальность.

8. В лотерее победит билет с номером 777777.

9. Подброшенная монетка упадет гербом вверх.

10. На подброшенном кубике выпадет шесть очков.

11. Из выбираемых наугад карточек с цифрами выберем карточку с цифрой 5.

Задание среди 11 событий записать номера тех, которые:

1. Достоверные _________________________________________________

2. Невозможные ________________________________________________

3. Неопределенные______________________________________________

4. Среди неопределенных указать те, которые имеют 2 равновозможных исхода ______________________________________________________

5. Неопределенные события расставить в порядке возрастания числа равновероятных исходов _______________________________________

6. Назвать событие более неопределенное____________________________

7. Назвать событие менее неопределенное. ___________________________

8. Учитывая задания № 6 и № 7, установить зависимость степени неопределенности от числа равновероятных исходов. ____________________________________________________________

9. Сделать тот же вывод, используя понятие вероятности. ____________________________________________________________

Контрольные вопросы:

1. Какие бывают события?

2. Приведите примеры равновероятных и неравновероятных событий?

3. Как определить вероятность выполнения определенного события?

4. При каких событиях применяют формулу Шеннона для определения количества информационного сообщения?

5. При каком условии формула Хартли становится частным случаем формулы Шеннона?

Практическая работа 5 . Решение задач на определение количества информации

Цель работы: приобретение навыка по определению количества информации на основе вероятностного и содержательного подхода

Краткое теоретическое обоснование: В качестве основной характеристики сообщения теория информации принимает величину, называемую количеством информации. Это понятие не затрагивает смысла и важности передаваемого сообщения, а связано со степенью его неопределенности.

Клод Шеннон определил количество информации через энтропию - величину, известную в термодинамике и статистической физике как мера разупорядоченности системы, а за единицу количества информации принял то, что впоследствии назвали битом (bit). Количество информации, приходящееся на один элемент сообщения (знак, букву), называется энтропией. Энтропия и количество информации измеряются в одних и тех же единицах – в битах.

Так как современная информационная техника базируется на элементах, имеющих два устойчивых состояния, то обычно выбирают основание логарифма равным двум, т.е. энтропию выражают как: H0 = log 2 m.

В общем случае количество энтропии H произвольной системы X (случайной величины), которая может находиться в m различных состояниях x 1 , x 2 , … x m c вероятностями p 1 , p 2 , … p m , вычисляют по формуле Шеннона.

Оборудование: дидактические материалы по теме «Определение количества информации».

Последовательность выполнения:

1. Разберите примеры решения задач

Задача 1. Определите количество информации, которое содержится в телевизионном сигнале, соответствующем одному кадру развертки. Пусть в кадре 625 строк, а сигнал, соответствующий одной строке, представляет собой последовательность из 600 случайных по амплитуде импульсов, причем амплитуда импульса может принять любое из 8 значений с шагом

Решение.

В рассматриваемом случае длина сообщения, соответствующая одной строке, равна числу случайных по амплитуде импульсов в ней: n = 600.

Количество элементов сообщения (знаков) в одной строке равно числу значений, которое может принять амплитуда импульсов в строке m = 8.

Количество информации в одной строке: I = n log m = 600 log 8, а количество информации

в кадре: I = 625 I = 625 600 log 8 = 1,125 =106 бит

Задача 2. В велокроссе участвуют 119 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Каков информационный объем сообщения, записанного устройством, после того как промежуточный финиш прошли 70 велосипедистов?

1) 70 бит 2) 70 байт 3) 490 бит 4) 119 байт

Решение.

1) велосипедистов было 119, у них 119 разных номеров, то есть, нам нужно закодировать 119 вариантов;

2) по таблице степеней двойки находим, что для этого нужно минимум 7 бит (при этом можно закодировать 128 вариантов, то есть, еще есть запас); итак, 7 бит на один отсчет;

3) когда 70 велосипедистов прошли промежуточный финиш, в память устройства записано 70 отсчетов;

4) поэтому в сообщении 70*7 = 490 бит информации (ответ 3).

2. Решите следующие задачи. Результат оформите в тетради.

1. В зоопарке 32 обезьяны живут в двух вольерах, А и Б. Одна из обезьян – альбинос (вся белая). Сообщение «Обезьяна-альбинос живет в вольере А» содержит 4 бита информации. Сколько обезьян живут в вольере Б?

2. В корзине лежат 32 клубка шерсти, из них 4 красных. Сколько бит информации несет сообщение о том, что достали клубок красной шерсти?

3. Двое играют в «крестики-нолики» на поле 4 на 4 клетки. Какое количество информации получил второй игрок, узнав ход первого игрока?

4. В некоторой стране автомобильный номер длиной 7 символов составляется из заглавных букв (всего используется 26 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер – одинаковым и минимально возможным количеством байт. Определите объем памяти, необходимый для хранения 20 автомобильных номеров.

5. В велокроссе участвуют 678 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Каков информационный объем сообщения, записанного устройством, после того как промежуточный финиш прошли 200 велосипедистов?

Контрольные вопросы:

1. Дайте определение энтропии.

2. Как связаны между собой понятия количества информации и энтропии?

3. Какие подходы к определению количества информации вам известны?

4. В чем смысл каждого из подходов к определению количества информации?

5. Что называется измерением информации?

6. Какие способы определения количества информации существуют?

7. Дайте определение количества информации.

Практическая работа 6 . Решение задач на определение объема информации

Цель работы: приобретение навыка по определению количества информации на основе алфавитного подхода

Краткое теоретическое обоснование:

Алфавитный подход основан на том, что всякое сообщение можно закодировать с помощью конечной последовательности символов некоторого алфавита.

Алфавит – упорядоченный набор символов, используемый для кодирования сообщений на некотором языке.

Мощность алфавита – количество символов алфавита. Двоичный алфавит содержит 2 символа, его мощность равна двум. Сообщения, записанные с помощью символов ASCII, используют алфавит из 256 символов. Сообщения, записанные по системе UNICODE, используют алфавит из 65 536 символов.

Чтобы определить объем информации в сообщении при алфавитном подходе, нужно последовательно решить задачи:

1. Определить количество информации (i) в одном символе по формуле

2 i = N, где N - мощность алфавита.

2. Определить количество символов в сообщении (m).

3. Вычислить объем информации по формуле: I = i * K.

Количество информации во всем тексте (I), состоящем из K символов, равно произведению информационного веса символа на К:

I = i * К.

Эта величина является информационным объемом текста.

Единицы измерения информации

Основная единица измерения информации –бит. 8 бит составляют 1 байт . Наряду с байтами для измерения количества информации используются более крупные единицы:

1 Кбайт = 2 10 байт = 1024 байта;

1 Мбайт = 2 10 Кбайт = 1024 Кбайт;

1 Гбайт = 2 10 Мбайт = 1024 Мбайт.

1 Терабайт (Тб) = 1024 Гбайт = 2 40 байта,

1 Петабайт (Пб) = 1024 Тбайта = 2 50 байта.

Оборудование: дидактические материалы по теме «Определение количества информации».

Последовательность выполнения:

1. Разберите примеры решения задач и запишите их в тетрадь.

Задача 1. Для записи текста использовался 256-символьный алфавит. Каждая страница содержит 32 строки по 64 символа в строке. Какой объем информации содержат 5 страниц этого текста?

Решение:

N=256, => 2 i = 256, => i=8 bit

k=32*64*5 символов

I=i*k=8*32*64*5 bit = 8*32*64*5/8 b = 32*64*5/1024 kb = 10 kb

Задача 2. Можно ли уместить на одну дискету книгу, имеющую 432 страницы, причем на каждой странице этой книги 46 строк, а в каждой строке 62 символа?

Решение :

Т.к. речь идет о книге, напечатанной в электронном виде, то мы имеем дело с компьютерным языком. Тогда N=256, => 2 i = 256, => i=8 bit

k = 46*62*432 символов

I = i*k = 8*46*62*432 bit = 8*46*62*432/8 b = 46*62*432/1024 kb = 1203,1875 kb = 1,17 Mb

Т.к. объем дискеты 1,44 Mb, а объем книги 1,17 Mb, то она на дискету уместится.

Задача 3 . Скорость информационного потока – 20 бит/с. Сколько минут потребуется для передачи информации объемом в 10 килобайт.

Решение :

t = I/v = 10 kb/ 20 бит/c = 10*1024 бит/ 20 бит/c = 512 c = 8,5 мин

Задача 4 . Лазерный принтер печатает со скоростью в среднем 7 Кбит в секунду. Сколько времени понадобится для распечатки 12-ти страничного документа, если известно, что на одной странице в среднем по 45 строк, в строке 60 символов.

Решение :

Т.к. речь идет о документе в электронном виде, готовым к печати на принтере, то мы имеем дело с компьютерным языком. Тогда N=256, => 2 i = 256, => i=8 bit

K = 45*60*12 символов

I = i*k = 8*45*60*12 bit = 8*45*60*12/8 b = 45*60*12/1024 kb = 31,6 kb

t = I/v = 31,6 kb/ 7 Кбит/c = 31,6*8 kбит/ 7 Кбит/c = 36 c

Задача 5. Автоматическое устройство осуществило перекодировку информационного сообщения на русском языке, из кодировки Unicode, в кодировку КОИ-8. При этом информационное сообщение уменьшилось на 480 бит. Какова длина сообщения?

Решение :

Объем 1 символа вкодировке КОИ-8 равен 1 байту, а в кодировке Unicode – 2 байтам.

Пусть x – длина сообщения, тогда I КОИ-8 = 1*x b, а I Unicode = 2*x b.

Получаем 2*x8 bит – 1*x*8 бит = 480 бит, 8x = 480, х = 60 символов в сообщении.

2. Решите следующие задачи. Результат оформите в тетради.

1. Некоторый алфавит содержит 128 символов. Сообщение содержит 10 символов. Определите объем сообщения.

2. Считая, что один символ кодируется 8-ю битами, оцените информационный объем следующей поговорки в кодировке КОИ-8: Верный друг лучше сотни слуг.

3. Один и тот же текст на русском языке записан в различных кодировках. Текст, записанный в 16-битной кодировке Unicode, на 120 бит больше текста, записанного в 8-битной кодировке КОИ-8. Сколько символов содержит текст?

4. Сколько гигабайт содержит файл объемом 235 бит?

5. Текстовый файл copia.txt имеет объем 40960 байт. Сколько таких файлов можно записать на носитель объемом 5 Мбайт?

6. К текстовому сообщению объемом 46080 байт добавили рисунок объемом 2,5 Мбайт. Сколько кбайт информации содержит полученное сообщение?

7. В алфавите некоторого языка два символа Х и О. Слово состоит из четырех символов, например: ООХО, ХООХ. Укажите максимально возможное количество слов в этом языке.

8. Для записи текста использовался 64-символьный алфавит. Сколько символов в тексте, если его объем равен 8190 бита?

9. Укажите наибольшее натуральное число, которое можно закодировать 8 битами (если все числа кодируется последовательно, начиная с единицы).

10. Некоторый алфавит содержит 2 символа. Сообщение занимает 2 страницы, на каждой по 16 строк, и в каждой строке по 32 символа. Определите объем сообщения.

11. Сколько бит информации содержится в сообщении объемом 1/4 килобайта?

12. Найдите х из следующего соотношения: 8х бит = 16 Мбайт.

13. Цветное растровое графическое изображение с палитрой 256 цветов имеет размер 64х128 пикселей. Какой информационный объем имеет изображение?

14. Для хранения растрового изображения размером 64х128 пикселей отвели 4 Кбайта памяти. Каково максимально возможное количество цветов в палитре изображения?

Контрольные вопросы:

1. Как измеряется информация при содержательном подходе?

2. В чем заключается алфавитный подход к определению количества информации?

3. Что такое алфавит? Что называется мощностью алфавита? Что называется объемом информации?

4. Чему равен информационный вес символа компьютерного алфавита?

6. Почему информационная емкость русской буквы «а» больше информационной ёмкости английской буквы?

7. Какие единицы измерения информации существуют?

Практическая работа7 . Комплексная работа по определению количества информации

Цель работы: контроль навыков определения количества информации.

Краткое теоретическое обоснование: см.практические работы 1-6.

Оборудование: Контрольные материалы из КОС по дисциплине «Основы теории информации»

Последовательность выполнения:

· Выполните ТЗ№1. Тест 3. Единицы измерения информации. В тесте необходимо выбрать только один ответ из предложенных вариантов. Выполнять тест лучше самостоятельно, без применения конспектов, учебников и прочей вспомогательной литературы.

· Выполните ПЗ№2. Задачи 1-10.