Сайт о телевидении

Сайт о телевидении

» » Виды активных помех. Виды помех и способы их устранения

Виды активных помех. Виды помех и способы их устранения

Круг вопросов, рассматриваемых при проектировании комплекса технических средств охраны (КТСО), включающего также системы видеонаблюдения, должен быть достаточно широк: от техники заземления до разновидностей защиты - от электромагнитных помех, шумов, генерируемых элементами КТСО и сопряженными система-ми, до “стыкуемости” аппаратуры; от принципов построения систем электропитания (в том числе резервного) до выбора материалов экранирующих корпусов; от технологии выполнения монтажных работ до номенклатуры кабельной продукции, комплектующих

Вся аппаратура, входящая в КТСО, должна иметь не только электромагнитную совместимость, но и стыковаться по своим электрическим параметрам. Следует подвергнуть серьезному анализу электромагнитную обстановку объекта в части определения или прогнозирования уровня электромагнитных помех от оборудования и аппаратуры смежных систем обеспечения безопасности и жизнедеятельности здания: трансформаторных подстанций, приточно-вытяжной вентиляции, систем и способов освещения помещений и территории, мощных потребителей электроэнергии, источников бесперебойного электропитания, систем оповещения и связи, мест проведения периодических работ с применением электросварки. Собственно прогнозирование уровня электромагнитной обстановки должно быть выполнено с учетом возможности возникновения аварийных ситуаций в вышеуказанных системах (узлах) и дать возможность предусмотреть спосбызащиты наиболее чувствительной аппаратуры от последствий влияния аварийных ситуаций на работоспособность и безотказность КТСО.

Источники шумов и шумы, наводимые на провода и кабельные линии

Основным примером такого вида связи являются шумы, проникающие в устройства по проводам сетевого электропитания. В случае если невозможно контролировать сеть или к сети подключают другую аппаратуру (мощный энергопотребитель) возникает необходимость в развязке проводов сети. Тогда уже стоит вопрос о резервировании электропитания систем ССТV. В этих целях используют источники бесперебойного электропитания компьютеров (типа UPS) или источники для охранно-пожарной аппаратуры. Проблемы при этом остаются прежние: различные напряжения, требуемые для электропитания составных частей системы видеонаблюдения, жесткие требования к верхним порогам выходных напряжений, условия электромагнитной совместимости и т.п. Добавляются требования обеспечения минимального времени резервирования электропитания ССТV – 0,5 часа, согласно ГОСТ Р 51558–2000, а на практике необходимо резервирование электропитания на значительно большее время.

Связь через общее сопротивление

Связь через общее сопротивление встречается там, где токи от двух различных устройств проходят через одно сопротивление. При этом падение напряжения, создаваемое каждым из устройств на конкретном участке сопротивления, является для другой системы источником помехи , и чем больше потребление, тем выше амплитуда помехи .

Электромагнитные поля

Еще один вид связи представляет собой излучение электромагнитных полей. Эффективность экранирования зависит от: частоты излучения, конфигурации экрана, положения внутри экрана измерительной точки, вида ослабляемого поля, вектора его распространения и поляризации. Опуская прикладные и промежуточные теоретические выкладки, можно сделать выводы, определяющие эффективность экранирования:

  • для электрических полей и плоских волн потери при их отражении очень велики;
  • для низкочастотных магнитных полей потери при их отражении очень малы;
  • экран толщиной, равной глубине скин-слоя, обеспечивает потери на поглощение примерно 9 дБ;
  • магнитные поля труднее поддаются экранированию, чем электрические;
  • для защиты от низкочастотных магнитных полей следует применять магнитные материалы;
  • для защиты от электрических полей, плоских волн и высокочастотных магнитных полей следует применять экран из качественного проводника;
  • реальная эффективность экранирования, достигаемая на практике, обычно определяется утечками в швах и соединениях, а не собственно эффективностью применяемого материала;
  • величину утечки определяет максимальный линейный размер отверстия, а не его площадь;
  • утечка через большое количество маленьких отверстий меньше, чем через одно отверстие той же площади;
  • наличие на рынке услуг аппаратуры, которая не создает помехи , столь же необходимо, как и наличие аппаратуры, защищающей от помех;
  • подавлением шумов следует заниматься на возможно более ранней стадии проектирования КТСО;
  • шумы возникают в следующих случаях: при наличии наводки по проводам, при осуществлении связи через общее сопротивление, а также при наличии электромагнитного излучения;
  • металлы, используемые в сигнальных цепях и контактирующие друг с другом, должны быть гальванически совместимыми;
  • универсальный метод решения большинства проблем борьбы с электромагнитными помехами и шумами существует далеко не всегда, обычно используются несколько способов одновременно.

Заземление

Заземление – один из основных способов уменьшения нежелательных шумов и наводок, приводящих к сбоям в работе видеосистемы или выходу из строя аппаратуры. Грамотное заземление и экранирование может решить значительную часть проблем шумопо
давления. Надежно заземленная система (комплекс) должна быть спроектирована таким образом, чтобы она работала как единая цель.

Проектирование систем с качественным заземлением преследует две основные цели: первая - минимизировать напряжение шумов, возникающих при прохождении токов от двух или более единиц аппаратуры через общее сопротивление земли; вторая - исключить образование контуров заземления, чувствительных к магнитным полям и разностям потенциалов “земли”. Надо помнить, однако, что неправильно выполненное заземление само может стать основной причиной возникающих шумов и помех.

Защитное заземление

Из соображений без опасности корпус аппаратуры, так же как и вся система, должен быть заземлен. При возникновении пробоя (аварийная ситуация) ток через шину заземления проходит, можно сказать, молниеносна, что приводит к разрыванию цепи защитными устройствами. Поскольку через защитное заземление ток нагрузки не течет, на нем не возникает падение напряжения и подключенные к нему корпуса аппаратуры всегда находятся под потенциалом земли. При этом нейтраль и шину защитного заземления следует соединять только в одной точке. Эту точку следует выбирать таким образом, чтобы она была как можно ближе к распределительному щитку.

Сигнальные “земли”

Сигнальные “земли” делятся, в основном, на два класса: заземление в одной или нескольких точках.

При более глубоком рассмотрении методов заземления необходимо помнить о следующем:

  • все проводники имеют конечный импеданс, состоящий обычно из сопротивления и индуктивности;
  • разнесенные в пространстве точки заземления редко имеют одинаковый потенциал.

Силовая “земля” практически не годится для организации или в качестве сигнальной “земли”. Напряжение, измеряемое между двумя точками земли, в типичных случаях составляет сотни милливольт, а иногда и единицы вольт. Это напряжение достаточно велико для цепей с сигналами низкого уровня. С точки зрения шумов наиболее нежелательным является заземление с общей шиной или общим проводом. При использовании такой схемы наиболее критичное устройство (с наибольшим потреблением тока) следует подключать как можно ближе к точке первичного заземления.

Система заземления в нескольких точках

Для минимизации импеданса земли на высоких частотах применяются многоточечные схемы заземления (рис. 2). В этой схеме устройства подключаются, по возможности, к ближайшей заземленной шине с малым импедансом, при этом сопротивления R1ER3 и индуктивности L1EL3 должны быть как можно меньше. Увеличение толщины заземляющего проводника (поверхности) не влияет на высокочастотный импеданс, поскольку вследствие скин-эффекта ток течет только по его поверхности.

Практические системы заземления

Большинство практических схем заземления представляют собой комбинацию последовательного и параллельного заземления в одной точке. Такая комбинация обычно диктуется компромиссным решением между необходимостью выполнения критериев по электрическим шумам (наводкам) и задачей избежать увеличения сложности проводного монтажа сверх необходимой. Ключ к успешному совмещению этих факторов лежит в выборочной группировке заземляющих проводов, такой, чтобы схемы с достаточно различающимися уровнями потребляемой мощности не имели общего возвратного провода земли. Таким образом, группы слаботочных устройств могут иметь общий возвратный провод “земли”, тогда как другие группы устройств подключаются к “земле” другим возвратным проводником.

В большинстве интегрированных комплексах необходимо как минимум четыре возвратных проводника “земли” (рис. 3), исключая нейтраль и провод защитного заземления.

Использование такой конфигурации схемы заземления интегрированного комплекса безопасности и систем жизнеобеспечения здания (объекта) может значительно уменьшить проблемы неустойчивости работы отдельных подсистем.

Кроме двух перечисленных методов борьбы с помехами (экранирование и заземление) существуют такие, как:

  • балансировка;
  • фильтрация;
  • изоляция;
  • разнесение и ориентация;
  • регулировка величины полного сопротивления;
  • выбор номенклатуры кабельной продукции;
  • снижение амплитуды пускового тока;
  • минимизация энергопотребления;
  • программно-аппаратный метод.

Рассмотренные методы шумоподавления применимы как к аналоговым, так и к цифровым системам, в том числе в системам видеонаблюдения.

Вы включаете телевизор, чтобы посмотреть новости или хоккей, и вдруг экран заполняется черными точками, а из динамиков вместо голоса диктора раздается противное шипение. Что это? А это ваш сосед бреется неисправной электробритвой. Бритву выключили, но стало еще хуже: экран дергается, синхронизация изображения нарушена, а в звуковом канале что-то грохочет и взрывается. А это что? – спросите вы. А это соседка сняла трубку китайского радиотелефона, который по странной случайности настроен на несущую первого метрового телевизионного канала.

В последние десятилетия проблема взаимного воздействия на радиоэлектронные устройства непреднамеренных помех (специалисты говорят о проблеме электромагнитной совместимости, ЭМС) стала настолько острой, что иногда для обеспечения ЭМС приходится искусственно снижать технические характеристики аппаратуры.

В последние десятилетия проблема взаимного воздействия на радиоэлектронные уст-ройства непреднамеренных помех (специалисты говорят о проблеме электромагнитной совместимости, ЭМС) стала настолько острой, что иногда для обеспечения ЭМС приходится искусственно снижать технические характеристики аппаратуры.

Не лучше обстоит дело и при передаче на большие расстояния изображения и звука. Человеческий глаз и ухо – очень чувствительные инструменты, мгновенно замечающие малейшие нарушения качества. Инженерам приходится искать все более сложные и дорогостоящие технические решения, чтобы обеспечить передачу изображения и звука на большие расстояния без существенной потери качества.

  • Индустриальные помехи;
  • Наводки от соседних цепей;
  • Разъемы низкого качества;
До недавних пор борьба с шумами и помехами велась методом проб и ошибок при слабом понимании физики процессов, вызывающих эти шумы и помехи. Такой подход поглощал массу времени, а при малейшем изменении конфигурации аппаратуры все приходилось начинать сначала.

Оставив в стороне эфирные каналы передачи информации, кратко рассмотрим источники шумов и помех в проводных линиях передачи аудио- и видеоинформации.

Итак, требуется передать сигнал (телевизионный, компьютерный, звуковой и т.д.) из одного пункта (Источник ) в другой пункт (Приёмник ). Если кабель короток (например, 1 метр), то многие из рассматриваемых проблем, скорее всего, не возникнут, хотя в некоторых случаях даже такое расстояние может оказаться губительным для сигнала.

Если же реальному кабелю суждено проделать длинный и извилистый путь в помещении или на открытом пространстве, сигнал в нём неизбежно подвергнется воздействию многих негативных факторов.

Основными источниками шумов и помех принято считать:

  • Индустриальные помехи;
  • Наводки от соседних цепей;
  • Разъемы низкого качества;
  • Реактивное сопротивление кабеля и низкое качество кабеля;
  • Неточное согласование кабеля с волновым сопротивлением передатчика и приемника;
  • Питание от разных фаз и наличие «петель заземления», дающих помехи по «земле».

Второстепенными источниками шумов являются гальванические и электролитические процессы, трибоэлектрический эффект 1 и вибрации кабелей.

Индустриальные помехи – эти помехи, называемые также промышленными помехами, проявляют себя в местностях, где работают электростанции и различные электрические установки, аппараты и приборы: электродвигатели, аппараты электросвязи, медицинские приборы, ЭВМ, электросварочные аппараты, электрические звонки, системы электрического зажигания двигателей внутреннего сгорания. Помехи, создаваемые приему другими радиостанциями также можно отнести к индустриальным помехам.

Наводки от соседних цепей возникают в тех случаях, когда сигнальный провод или кабель попадает в зону действия электромагнитного поля, создаваемого другим проводом или кабелем.

Наводки от соседних цепей возникают в тех случаях, когда сигнальный провод или кабель попадает в зону действия электромагнитного поля, создаваемого другим проводом или кабелем. Например, если в квартире рядом проложены телефонный провод и радиотрансляционная линия, то, сняв телефонную трубку, иногда можно будет услышать музыку или речь. Это и есть наводки от соседних цепей. Особенно чувствительны к таким наводкам кабели для небалансных сигналов (например, коаксиальные) с невысоким качеством экранировки (один слой небрежно выполненной оплётки).

Разъемы низкого качества обычно плохо экранированы, но это еще полбеды. Основным источником шумов в разъемах бывают так называемые контактные шумы, которые возникают вследствие несовершенства контакта между материалами штыря и гнезда. Контактные шумы прямо пропорциональны величине протекающего через контактную пару тока, а плотность распределения мощности шумов обратна частоте. Если разъем совсем скверного качества, то возможно даже возникновение «дребезга» и искрение. Если материалы в разъеме подобраны неправильно, без учета их взаимного положения в гальваническом ряду, то между ними может возникнуть своеобразный электрохимический элемент, создающий шумы и ускоряющий коррозию.

Сам по себе кабель, особенно если он экранированный, не является источником существенных шумов, однако, от его качества сильно зависит затухание сигнала в линии, а от индуктивных и емкостных (реактивных) характеристик – искажения передаваемого сигнала.

Сам по себе кабель, особенно если он экранированный, не является источником существенных шумов, однако, от его качества сильно зависит затухание сигнала в линии, а от индуктивных и емкостных (реактивных) характеристик – искажения передаваемого сигнала. Любой кабель имеет проходное омическое сопротивление, ёмкость и индуктивность. Последние два параметра, равно как и потери в диэлектрике кабеля (tgδ) и некоторые другие факторы особенно сильно влияют на качество передачи высокочастотных составляющих сигнала – информации о мелких деталях и цвете в аналоговом видео, фронтов импульсов в цифровом сигнале. Чем длиннее кабель и чем шире спектр передаваемого сигнала, тем больше будут потери.

Чем длиннее кабель и чем шире спектр передаваемого сигнала, тем больше будут потери.

Характерное для кабеля волновое сопротивление может колебаться по его длине (за счёт его недостаточного качества или ошибок в прокладке), что приводит к возникновению отражений и «размытию» и ряби на картинке.

Неправильно заземленный кабель – мощный источник искажений и помех.

Режим электрической цепи, при котором сопротивление приемника равно сопротивлению линии, называется режимом согласованной нагрузки . Если нагрузка несогласованна, то часть передаваемого сигнала не поступит в приемник, а отразится в виде обратной волны, снижая уровень передаваемого сигнала и создавая искажения.

Если нагрузка несогласованна, то часть передаваемого сигнала не поступит в приемник, а отразится в виде обратной волны, снижая уровень передаваемого сигнала и создавая искажения.

Неправильно спроектированное питание аппаратуры (от разных фаз сети переменного тока) и неправильно организованные контуры заземления способны вызвать появление мощных помех, борьба с которыми в уже смонтированной аппаратуре чрезвычайно сложна и малоэффективна. Подключение «земли» сигнального кабеля к общему контуру заземления (или зануления) в нескольких точках приводит к образованию «петель» заземления, а запитывание приёмника и источника сигнала от разных фаз сети переменного тока может даже при полностью исправных источниках питания устройств вызвать появление значительной разности напряжений между ними (и небольших токов, которые будут «выравниваться» через экран сигнального кабеля, создавая характерный фон переменного тока).

Неправильно спроектированное питание аппаратуры (от разных фаз сети переменного тока) и неправильно организованные контуры заземления способны вызвать появление мощных помех, борьба с которыми в уже смонтированной аппаратуре чрезвычайно сложна и малоэффективна.

Все вышеуказанные факторы приводят к уменьшению расстояния, на который можно передать сигнал без заметных искажений (с допустимым уровнем качества). На практике, при использовании только пассивных мер по обеспечению качества передачи (о них – далее), обычно достигаются следующие расстояния:

Аналоговое видео

Композитный видеосигнал – передаётся по коаксиальному кабелю с волновым сопротивлением 75 Ом, используются байонетные разъёмы (BNC, в бытовой технике используются «тюльпаны» – RCA). Спектр стандартного сигнала не превышает 6 МГц, а расстояние передачи достигает 50-100 метров. Ограничивает расстояние, в основном, затухание сигнала (падение его амплитуды). Толстый коаксиальный кабель с толстым одножильным центральным проводником обеспечивает лучшие результаты. Падение амплитуды до некоторой степени парируется регулятором яркости, при дальнейшем увеличении расстояния в сигнале теряется синхронизация.

Видеосигнал S-video (YC) – передаётся по двум параллельным коаксиальным кабелям. Имеет почти такие же спектральные параметры, что и композитный. Передаётся чуть хуже, т.к. может возникать некоторый разбег фаз между сигналами в двух кабелях.

Компонентный видеосигнал (YUV/YPbPr, RGB, RGBS, RGBHV/VGA) – передаётся по нескольким (3-5) параллельным коаксиальным кабелям. Сигнал имеет гораздо более широкий спектр (до 30 МГц для YUV/RGBS, более 300 МГц для VGA/UXGA). Ограничивает расстояние (5-30 метров) подавление ВЧ-составляющих (потеря резкости), затухание сигнала, разбег фаз сигналов. Максимальное расстояние (до 30-60 метров) достигается только при очень качественных и толстых (дорогих) кабелях.

Цифровое видео

Цифровой видеосигнал SDI (Serial Digital Interface) передаётся по толстым коаксиальным кабелям с волновым сопротивлением 75 Ом, используются байонетные разъёмы (BNC). Стандартный видеосигнал имеет полосу до 270 Мбит/с (фактически – МГц), сигналы телевидения высокой чёткости HDTV могут иметь полосу до 1300 Мбит/с. Несмотря на столь широкую полосу сигнала, SDI обычно удаётся передавать на расстояние до 50-200 метров, ограничиваемое, в основном, затуханием сигнала и нарастанием джиттера (дрожания фаз цифровых импульсов). Для сигнала HDTV расстояния обычно значительно меньше.

Цифровой видеосигнал DVI (Digital Video Interface) передаётся по специальному кабелю из медных витых пар. Ширина спектра сигнала – до 165 МГц (для двух каналов получается в сумме до 330 МГц), при этом расстояние передачи ограничено 5 метрами.

Аудиосигналы

Небалансные аудиосигналы обычно передаются по экранированному кабелю, с разъёмами RCA («тюльпаны», иногда используются и другие соединители). На входе приёмника согласованная нагрузка не используется (вход должен быть высокоомным). При спектре сигнала до 20 кГц реально не стоит передавать такие сигналы более чем на 10-30 метров.

Различают пассивные и активные методы борьбы с шумами и помехами.

Балансные аудиосигналы чаще всего транслируются по экранированным витым парам проводов с разъёмами XLR. Такие сигналы гораздо устойчивее к воздействию помех и наводок, поэтому часто используются для подключения микрофонов. Сигналы большего уровня (линейного и выше) можно передавать на расстояние до 200 м и более.

Все возможные источники помех следует предусматривать на этапе проектирования и тогда же закладывать в систему методы и средства противодействия им.

Различают пассивные и активные методы борьбы с шумами и помехами.

Пассивные методы

  • В уменьшении длины кабельных сетей до разумного минимума и уменьшении количества кабелей;
  • В использовании кабелей и разъемов только высокого качества, от известных фирм-производителей;
  • В прокладке кабелей с радиусами большого изгиба, чтобы избежать помех от так называемого трибоэлектрического эффекта (накапливания заряда внутри кабеля);
  • В разделении стволов сигнальных и силовых кабелей;
  • В использовании согласованных нагрузок;
  • В таком использовании аппаратуры, чтобы ее рабочие режимы находились значительно ниже предельных;
  • В использовании самого устойчивого к помехам интерфейса. Лучше всего передавать цифровой сигнал SDI, далее – композитный, S-video и, наконец, компонентный и VGA.

Активные методы борьбы с шумами и помехами состоят:

  • В использовании промежуточных усилителей сигналов, которые компенсируют их затухание в линии из-за омического сопротивления и потери на высоких частотах из-за реактивности кабеля;
  • В переходе на витую пару. Если вместо коаксиального кабеля использовать неэкранированную витую пару (UTP), то кроме весьма существенного экономического выигрыша (витая пара намного дешевле коаксиального кабеля), мы получаем возможность передавать сигналы на очень большие расстояния – композитный или S-video-сигнал на расстояние до 1 км, а VGA-сигнал – на 300 м. Проблемы с наводками и помехами по «земле» при этом в значительной мере снижаются.
  • В переходе на оптоволоконный кабель при необходимости передачи сигнала на очень большие расстояния (до 25 км.). Оптоволоконная линия связи полностью развязана по «земле» и в ней гарантированно отсутствуют помехи.

Если возможности пассивного решения проблемы доставки сигналов исчерпаны (или не дают полной гарантии качества), следует ввести в схему дополнительные активные элементы.

При работе на длинную линию связи многие источники сигнала могут оказаться неспособными «вытянуть» такую линию. К тому же в них обычно не предусмотрено никаких регулировок, способных скомпенсировать потери сигнала в линии. Решением может быть добавление усилителя мощности на выходе источника сигнала.

Использование усилителя мощности

В таком усилителе обычно предусматривается как регулировка усиления (амплитуды сигнала на выходе), позволяющая скомпенсировать омическое сопротивление кабеля, так и регулировка амплитудно-частотной характеристики (АЧХ) в области высоких частот – для компенсации высокочастотных потерь в кабеле из-за его проходной ёмкости, индуктивности и диэлектрических потерь.

Достоинства:

  • Усилитель компенсирует затухание сигнала (из-за сопротивления кабеля) и потери на высоких частотах (из-за ёмкости и индуктивности);
  • Немного улучшает отношение сигнал/шум или помеха (на величину своего усиления, обычно не более 1-2 дБ);
  • Усилитель может иметь несколько выходов для работы на несколько приёмников (называется усилителем-распределителем; стандартный видеовыход источника сигнала не может работать одновременно на несколько приёмников);
  • В некоторых случаях позволяет скомпенсировать (своими регуляторами) различия в уровнях сигналов, выдаваемых источником (иногда даже небольшие отклонения в выходном напряжении передатчика и чувствительности приёмника могут приводить к искажениям яркости и цвета на экране, а иногда и к подрывам синхронизации).

Недостатки:

  • Усилитель не может бороться с помехами эффективно. Максимальное расстояние ограничивается в этом случае именно помехами, т.к. кабель работает в той же помеховой обстановке, что и без усилителя.
  • Возможно ограничение сигнала при слишком сильном усилении. Возможности любого усилителя небезграничны, и слишком большие потери в линии скомпенсировать не удастся - в этом случае можно посоветовать либо разбить длинный кабель на части с промежуточными усилителями между ними (каскадное включение), либо перейти на другой способ передачи (скажем, на витую пару или оптоволоконный кабель)
  • Каскадное включение нескольких усилителей (см. предыдущий абзац) может привести к искажению и зашумлению сигнала, поскольку каждый последующий усилитель усиливает также и все шумы и помехи, которые накопились в линии связи до него.

Использование витой пары (UTP)

Иногда использование коаксиальных кабелей не даёт нужного результата – расстояние оказывается слишком большим, помехи – слишком сильными, а проблемы с «петлями» по контуру заземления – трудноразрешимыми. В этом случае следует с помощью специальных устройств преобразовать сигнал в балансный и передавать его по кабелям из обычной витой пары – и при этом избавляться от перечисленных проблем.

Иногда использование коаксиальных кабелей не даёт нужного результата – расстояние оказывается слишком большим, помехи – слишком сильными, а проблемы с «петлями» по контуру заземления – трудноразрешимыми. В этом случае следует с помощью специальных устройств преобразовать сигнал в балансный и передавать его по кабелям из обычной витой пары.

Специальный передатчик преобразует входной сигнал в сигнал для стандартного кабеля UTP категории 5 или выше (используется для прокладки компьютерных сетей Ethernet), приёмник на другом конце линии связи осуществляет обратное преобразование. Для связи используется только неэкранированный кабель (Unshielded Twisted Pair, UTP), экранированный кабель STP работать не будет (у него слишком большая проходная ёмкость). Кабель UTP много дешевле высококачественного коаксиального кабеля, и при больших длинах линии связи (даже с учётом цены дополнительных передатчика и приёмника) тракт передачи сигнала в целом оказывается даже дешевле. Кабели UTP обычно закладываются в современных зданиях уже на этапе проектирования, то есть во многих случаях для передачи сложных видео и аудиосигналов можно воспользоваться уже имеющейся проводкой, что дополнительно удешевляет проект. Использование специального балансного сигнала и качественной витой пары позволяет передавать сигналы на очень большие расстояния: композитный или S-video – до 1 км, VGA – более 300 м, при этом уменьшаются и проблемы с наводками и помехами по «земле».

Использование ВОЛС

Если нужно передавать видеосигнал на особо длинные расстояния, можно перейти к использованию волоконно-оптической линии связи (ВОЛС).

Если нужно передавать видеосигнал на особо длинные расстояния, можно перейти к использованию волоконно-оптической линии связи (ВОЛС). При этом проблем с помехами и контурами заземления не возникает в принципе. При использовании многомодового кабеля композитный сигнал можно передавать на расстояние до 5 км, а при использовании одномодового кабеля – до 25 км.

Выводы:

  1. Проектирование систем передачи сигналов на большие расстояния должно проводиться с учетом их защиты от шумов и помех.
  2. Защищать от воздействия шумов и помех уже спроектированные без учета ЭМС системы, как правило, сложно, дорого и малоэффективно.
  3. Основными источниками шумов и помех принято считать: индустриальные помехи; наводки от соседних цепей; разъемы низкого качества; реактивное сопротивление кабеля и низкое качество кабеля; неточное согласование кабеля с волновым сопротивлением передатчика и приемника; питание от разных фаз и наличие «петель заземления». Второстепенными источниками шумов являются гальванические и электролитические процессы, трибоэлектрический эффект и вибрации кабелей.
  4. Методы борьбы с шумами и помехами принято делить на пассивные и активные. Пассивные методы, в общем, дешевле, но менее эффективны. Наибольший эффект дают активные методы, состоящие в использовании специальных промежуточных усилителей сигнала, передаче балансного сигнала по витой паре и переходе на оптоволоконные линии связи.

Таблица. Ограничение по расстоянию передачи

Вид сигнала Тип кабеля Разъемы Полоса пропускания Дальность передачи
Видеосигнал
композитный коаксиальный кабель75 Ом разъёмы BNC, в бытовой технике – RCA до 6 МГц до
50-100 м
S-video (YC) практически как для композитного (разъемы - 4-конт. mini-DIN)
компонентный (YUV, RGB, VGA) коаксиальный кабель 75 Ом разъёмы BNC (в бытовой технике – RCA) или D-Sub 15 для VGA до 300 МГц (UXGA), до 70 МГц (HDTV/1080i) до 5-30 м
цифровой SDI (несжатое стандартное видео) коаксиальный кабель 75 Ом разъёмы BNC до 270 Мбит/с (стандарт), до 1300 Мбит/с (HDTV) до
50-200 м
цифровой DVI-D витая пара разъёмы DVI до 165/330 МГц до 5 м
Аудиосигнал
аналоговый небалансный экранированный кабель разъёмы RCA до 20 кГц до 10-30 м
аналоговый балансный экранированный кабель из витой пары проводов разъёмы XLR до 20 кГц до 200 м
1 Трибоэлектрический эффект – это процесс накапливания электрического заряда на диэлектрике кабеля. Обычно он бывает вызван механическим изгибом кабеля. В результате трибоэлектрического эффекта кабель начинает «шуметь».

Понятие помехи

Лекция 3. Дискретный канал с помехами

Цель лекции: ознакомление c понятием помех

а) понятие помех;

б) виды помех;

в) искажения;

г) борьба с помехами.

Помеха – это любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывная связь. Появление импульсных помех часто связано с автоматической коммутацией и с перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Этот вид помех особенно сказывается в диапазоне ультракоротких волн. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

Классификацию помех можно провести по следующим признакам:

По происхождению (месту возникновения);

По физическим свойствам;

По характеру воздействия на сигнал.

К помехам по происхождению в первую очередь относятся внутренние шумы аппаратуры (тепловые шумы) обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Квадрат эффективного напряжения теплового шума определяется известной формулой Найквиста

где Т- абсолютная температура, которую имеет сопротивление R;

F - полоса частот; k =1,37*10 (-23) Вт.сек/град- постоянная Больцмана.

К помехам по происхождению, во вторую очередь, относятся помехи от посторонних источников, находящихся вне каналов связи:

Атмосферные помехи (громовые разряды, полярное сияние, и др.), обусловленные электрическими процессами в атмосфере;

Индустриальные помехи, возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, системы зажигания двигателей, медицинские установки и другие.);

Помехи от посторонних станций и каналов, возникающих от различных нарушений режима их работы и свойств каналов;

Космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.


По физическим свойствам помех различают:

Флуктуационные помехи;

Сосредоточеные помехи.

Флуктуационные помехи . Среди аддитивных помех особое место занимает флуктационная помеха, которая является случайным процессом с нормальным распределением (гауссов процесс). Этот вид помех практически имеет место во всех реальных каналах.

Электрическую структуру флуктуационной помехи можно представить себе как последовательность бесконечно коротких импульсов, имеющих случайную амплитуду и следующих друг за другом через случайные промежутки времени. При этом импульсы появляются один за другим настолько часто, что переходные явления в приемнике от отдельных импульсов накладываются, образуя случайный непрерывный процесс.

Так, источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением.

Длительность импульсов, составляющих флуктуационную помеху, очень мала, поэтому спектральная плотность помехи постоянна вплоть до очень высоких частот.

К сосредоточенным по времени (импульсным) помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в радиоприемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса.

Сосредоточенные по спектру помехи . К этому виду помех принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения и т. п. В отличие от флуктационных и импульсных помех, спектр которых заполняет полосу частот приёмника, ширина спектра сосредоточенной помехи в большинстве случаев меньше полосы пропускания приёмника. В диапазоне коротких волн этот вид помех является основным, определяющим помехоустойчивость связи.

По характеру воздействия на сигнал различают:

Аддитивные помехи;

Мультипликативные помехи.

Аддитивной называется помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействует на приемное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Мешающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. В реальных каналах электросвязи обычно имеют место не одна, а совокупность помех.

Под искажениями понимают такие изменения форм сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигнала – переходные процессы в линии связи, цепях передатчика и приемника. При этом различают искажения: линейные и нелинейные возникающие в соответствующих линейных и нелинейных цепях. В общем случае искажения отрицательно сказываются на качестве воспроизведения сообщений и не должны превышать установленных значений (норм).

При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. Дальнейшие изменения формы сигнала можно скомпенсировать корректирующими цепями или просто учесть при последующей обработке в приемнике. Это уже дело техники.

ДРУГОЕ ДЕЛО ПОМЕХИ - ОНИ заранее не известны и поэтому не могут быть устранены полностью.

Борьба с помехами - основная задача теории и техники связи. Любые теоретические и технические решения, о выполнении кодера или декодера, передатчика и приемника системы связи должны приниматься с учетом того, что в линии связи имеются помехи. При всем многообразии методов борьбы с помехами их можно свести к трем направлениям:

Подавление помех в месте их возникновения. Это достаточно эффективное и широко применяемое мероприятие, но не всегда приемлемо. Ведь существуют источники помех, на которые воздействовать нельзя (грозовые разряды, шумы Солнца и др.);

Уменьшение помех на путях проникновения в приемник;

Ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Именно это направление для нас является предметом изучения.

Для подавления СРС с расширением спектра, в частности СРС с ППРЧ могут применяться различные виды организованных помех. Основными видами помех, которые сравнительно просто реализуются в системах РЭП, являются: шумовая заградительная помеха; шумовая помеха в части полосы; полигармоническая помеха; ответная (ретранслированная) помеха (рис. 1.24) .

Виды помех реализуются в соответствующих станциях помех (СП). Все многообразие вариантов СП определяется в основном путями, которыми их разработчики стремятся сконцентрировать ограниченную мощность передатчиков в определенных частотных диапазонах, временных интервалах и пространственных секторах.

Наиболее универсальной и устойчивой к различным способам помехоустойчивости, применяемым в СРС, является шумовая заградительная помеха (рис. 1.24,а), модель которой представляет собой ограниченный по полосе АБГШ со спектральной плотностью мощности

Заградительная помеха должна перекрывать частотный диапазон СРС и при соответствующей мощности СП в состоянии подавить СРС при любых способах перестройки частоты. В виду значительного частотного диапазона СРС с ППРЧ мощность передатчика помех должна быть достаточно большой. В связи с этим СП заградительного вида представляет большую опасность с точки зрения обеспечения электромагнитной совместимости (ЭМС) для других радиоэлектронных средств (РЭС), работающих в том же диапазоне частот. При этом сама СП становится радиозаметной и, в силу этого, уязвимой целью для самонаводящихся по радиоизлучению ракет. Отмеченные недостатки сужают возможности применения СП заградительного вида, особенно в группировках РЭС. Вместе с тем, в некоторых особых оперативно-тактических ситуациях может потребоваться применение заградительных помех.

Мощность шумовой помехи может быть использована более эффективно за счет сосредоточения ее в ограниченной полосе частот, значительно меньшей, чем диапазон частот СРС с ППРЧ. Такую помеху принято называть шумовой помехой в части полосы (сосредоточенной по спектру помехой, помехой с частичным перекрытием спектра сигналов СРС) (рис. 1.24,б). Спектральная плотность мощности шумовой помехи в части полосы может быть представлена в виде двух уровней:

(1.47)

где - коэффициент, характеризующий часть полосы, занимаемую помехой, .

Как следует из (1.47), спектральная плотность мощности шумовой помехи в части полосы возрастает в раз по сравнению со спектральной плотностью мощности шумовой заградительной помехи (1.46). Станция шумовых помех с равномерно распределенной мощностью в пределах полосы подавляет частотные элементы сигнала с ППРЧ с вероятностью . Вероятность того, что эти же частотные элементы сигнала с ППРЧ не подавляются помехой равна (1–).

В рассматриваются возможности трехуровневой шумовой помехи, спектральная плотность мощности которой

где - мощность помехи большего и меньшего уровней, соответственно; за счет выбора значений и такая помеха имеет дополнительную степень свободы.

Трехуровневая помеха является эффективной для схем приема, сигналов с тестом порога отношения сигналов, соответствующих символам 1 и 0, и стиранием символов, подверженных воздействию помех.

С целью повышения эффективности СП спектр шумовой помехи в части полосы целесообразно скачкообразно по случайному закону перемещать по всему диапазону частот, занимаемому СРС с ППРЧ. При данной модели помехи для любого отношения сигнал-помеха имеет место оптимальное значение части подавляемой полосы , при которой помехоустойчивость СРС будет минимальной. Помеха с такими параметрами является наихудшей для СРС. С целью текущей оптимизации ширины спектра помехи в части полосы и мощности помехи в СП необходимо иметь станцию РТР для измерения параметров сигналов подавляемых СРС.

Для СРС с ППРЧ эффективной помехой при определенных условиях является пол и гармоническая помеха (многотональная помеха), представляющая собой набор из немодулированных гармонических колебаний равной мощности, распределенных по диапазону частот в соответствии с заданной постановщиком помех стратегией (рис. 1.24,в),

(1.48)

Для создания эффективной полигармонической помехи требуется достаточно точное наведение узкополосных помех на центральные частоты каналов СРС с ППРЧ, а также обеспечение на входе -го канала приемника СРС определенного соотношения мощности помехи и мощности сигнала

где - некоторое положительное число (параметр распределения мощности), выбираемое постановщиком помех в соответствии с заданной стратегией таким образом, чтобы оптимизировать эффективность помехи.

Заметим, что эффективность гармонической помехи, действующей в том же канале, в котором находится и сигнал, зависит от разности фаз между помехой и сигналом. При неблагоприятных фазовых соотношениях и равенстве помеха может полностью подавить полезный сигнал.

Средняя мощность передатчика полигармонической помехи в случае равномерного распределения узкополосных помех по всем частотным каналам диапазона СРС должна быть в раз больше мощности полезного сигнала. Таков энергетический выигрыш СРС с ППРЧ при воздействии на нее полигармонической помехи. В простейшей одноканальной СРС с ППРЧ доля частотных каналов, пораженных полигармонической помехой . В этом случае одна гармоническая помеха при воздействии на СРС с ППРЧ, имеющей, например каналов, может привести к появлению ошибки с вероятностью , что явно недопустимо при цифровой передаче информации.

Такие простейшие СРС не могут использоваться в условиях РЭП и требуется разработка более помехоустойчивых СРС.

Основными методами постановки многотональных помех СРС с -ичной ЧМ являются :

А. Метод «полосового подавления», сущность которого состоит в распределении немодулированных сигналов в каждой -ичиой полосе, . При этом каждая -ичная полоса содержит или точно тонов, или не содержит ни одного тона.

Б. Метод «независимого многотонального подавления» заключается в случайном распределении немодулированных сигналов по сегментам ППРЧ в полосе , при котором постановщик помех не управляет их числом в отдельных каналах СРС.

На рис. 1.25 изображены указанные методы многотонального подавления (А и Б) для случая, когда частотная полоса сегмента равна , где .

Эффективность методов подавления А и Б зависит от априорной информации о характеристиках сигналов -ичной СРС. Так, метод «полосового подавления» применяется в случае, когда постановщику помех известна частота -ичного сегмента и имеется возможность разместить помеху в поражаемый сегмент.

Учитывая изложенное, а также соотношение (1.49), для пораженных помехами -ичных сегментов при методе «полосового подавления» (по аналогии с параметром в случае шумовой помехи в части полосы)

(1.50)

Так как стратегия метода «полосового подавления» требует, чтобы -ичная полоса содержала или точно тонов, или ни одного, то -ичная полоса будет подавляться с вероятностью

Из (1.51) следует, что метод «полосового подавления» наиболее эффективен при . Метод «независимого многоканального подавления» не требует таких допущений (как метод А), поэтому при вероятность подавления -ичной полосы

(1.52)

или при больших отношениях вероятность подавления .

В силу того, что одной гармонической помехи достаточно, чтобы вызвать ошибку в -ичном символе, а постановщику помех неизвестна последовательность переключения частот, то он попытается охватить помехами как можно больше -ичных полос, максимизируя тем самым вероятность подавления .

Имеющуюся мощность СП наиболее рационально можно использовать при создании ответных помех. Мощность передатчика помех в этом случае концентрируется лишь в полосе частот основного или дополнительного (или основного и дополнительного) каналов подавляемой СРС и только во время ее работы. В качестве ответной помехи могут применяться шумовая и узкополосная (гармоническая) помеха (рис. 1.24,г), а также комбинация шумовой и узкополосной помех.

Ответные помехи в определенной степени являются копией частотных элементов сигнала подавляемой СРС. Это может привести к тому, что на приемной стороне СРС с ППРЧ и ЧМ такие помехи могут быть восприняты как полезные сигналы своего корреспондента. В общем же случае ответные помехи могут представлять собой модулированные шумом перехваченные частотные элементы сигнала с ППРЧ. Моделью таких помех является стационарный узкополосный гауссовский процесс.

Для применения ответных помех станция РТР должна осуществлять анализ радиоэлектронной обстановки и выбор на этой основе СРС, подлежащей подавлению. При отсутствии приема сигналов от СРС излучение помехи прекращается и станция РТР переходит в режим поиска сигналов СРС. В результате повышается пропускная способность СП, лучше обеспечивается ЭМС этих СП с другими РЭС. Следует отметить, что ответная помеха особенно эффективна против СРС с межсимвольной (медленной) ППРЧ. Применение в СРС скачков частоты с малой длительностью, случайной ЧМ, а также соответствующее размещение передатчика и приемника СРС относительно СП в принципе позволяют обеспечить «уход» сигналов СРС от перехвата, что, в конечном счете, может полностью исключить воздействие ответной помехи на приемник СРС.

Ответные помехи с точки зрения энергетических возможностей являются одними из эффективных для подавления СРС с ППРЧ. Их эффективность не зависит от коэффициента выигрыша, который имеет СРС за счет расширения спектра сигналов методом перестройки частоты. Однако создание ответных помех СРС с ППРЧ за сравнительно короткое время передачи частотных элементов сигнала (скачков частоты) наталкивается на технические и организационные трудности.

Серьезной проблемой, с которой сталкиваются, при создании ответных помех, является не только ограничения по времени передачи помех, но и ограничения по мощности станции помех. Если одновременно перехватывается несколько сигналов в различных частотных каналах, то СП вынуждена либо распределять свою мощность между этими сигналами равномерно, либо попытаться выделить сигналы только подлежащей подавлению СРС.

Кроме организованных помех в трактах приемника СРС неизбежно присутствуют собственные (тепловые) шумы. Общепринято, что собственные шумы на входе приемника СРС представляют собой стационарный нормальный случайный процесс с нулевым средним и энергетическим спектром до . Величина (Вт/Гц) называется двусторонней спектральной плотностью мощности шумов. При оценке характеристик реальных приемных устройств используется односторонняя (физическая) спектральная плотность мощности собственных шумов , которая равна нулю при (рис.1.26).

При работе СРС с ППРЧ в окружении других радиоэлектронных средств (РЭС) на приемное устройство СРС действуют мешающие сигналы этих средств, так называемые непреднамеренные (взаимные) помехи.

Анализ влияния непреднамеренных помех на СРС относится к области обеспечения электромагнитной совместимости (ЭМС). В общем случае под ЭМС понимается способность СРС совместно функционировать с требуемыми значениями показателей качества при воздействии непреднамеренных помех на приемные устройства СРС и не создавать недопустимые помехи приемным устройствам других РЭС. Проблема ЭМС, перекрываясь частично с проблемой помехоустойчивости СРС, тем не менее, имеет существенные отличия в составе рассматриваемых мешающих воздействии (помех), каналах проникновения непреднамеренных помех в приемные устройства СРС, целях и задачах, а также в методическом обеспечении их решения.

В связи с этим воздействие непреднамеренных помех на СРС с ППРЧ в дальнейшем не рассматривается.

Помеха – это любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывная связь. Появление импульсных помех часто связано с автоматической коммутацией и с перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Этот вид помех особенно сказывается в диапазоне ультракоротких волн. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

Классификацию помех можно провести по следующим признакам:

— по происхождению (месту возникновения);

— по физическим свойствам;

— по характеру воздействия на сигнал.

К помехам по происхождению в первую очередь относятся внутренние шумы аппаратуры (тепловые шумы) обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Квадрат эффективного напряжения теплового шума определяется известной формулой Найквиста

где Т- абсолютная температура, которую имеет сопротивление R;

F — полоса частот; k =1,37*10 (-23) Вт.сек/град- постоянная Больцмана.

К помехам по происхождению, во вторую очередь, относятся помехи от посторонних источников, находящихся вне каналов связи:

— атмосферные помехи (громовые разряды, полярное сияние, и др.), обусловленные электрическими процессами в атмосфере;

— индустриальные помехи, возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, системы зажигания двигателей, медицинские установки и другие.);

— помехи от посторонних станций и каналов, возникающих от различных нарушений режима их работы и свойств каналов;

— космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.

По физическим свойствам помех различают:

— Флуктуационные помехи;

— Сосредоточеные помехи.

Флуктуационные помехи . Среди аддитивных помех особое место занимает флуктационная помеха, которая является случайным процессом с нормальным распределением (гауссов процесс). Этот вид помех практически имеет место во всех реальных каналах.

Электрическую структуру флуктуационной помехи можно представить себе как последовательность бесконечно коротких импульсов, имеющих случайную амплитуду и следующих друг за другом через случайные промежутки времени. При этом импульсы появляются один за другим настолько часто, что переходные явления в приемнике от отдельных импульсов накладываются, образуя случайный непрерывный процесс.

Так, источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением.

Длительность импульсов, составляющих флуктуационную помеху, очень мала, поэтому спектральная плотность помехи постоянна вплоть до очень высоких частот.

К сосредоточенным по времени (импульсным) помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в радиоприемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса.

Сосредоточенные по спектру помехи . К этому виду помех принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения и т. п. В отличие от флуктационных и импульсных помех, спектр которых заполняет полосу частот приёмника, ширина спектра сосредоточенной помехи в большинстве случаев меньше полосы пропускания приёмника. В диапазоне коротких волн этот вид помех является основным, определяющим помехоустойчивость связи.

По характеру воздействия на сигнал различают:

— аддитивные помехи;

— мультипликативные помехи.

Аддитивной называется помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействует на приемное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Мешающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. В реальных каналах электросвязи обычно имеют место не одна, а совокупность помех.

Под искажениями понимают такие изменения форм сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигнала – переходные процессы в линии связи, цепях передатчика и приемника. При этом различают искажения: линейные и нелинейные возникающие в соответствующих линейных и нелинейных цепях. В общем случае искажения отрицательно сказываются на качестве воспроизведения сообщений и не должны превышать установленных значений (норм).

При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. Дальнейшие изменения формы сигнала можно скомпенсировать корректирующими цепями или просто учесть при последующей обработке в приемнике. Это уже дело техники.

ДРУГОЕ ДЕЛО ПОМЕХИ — ОНИ заранее не известны и поэтому не могут быть устранены полностью.

Борьба с помехами — основная задача теории и техники связи. Любые теоретические и технические решения, о выполнении кодера или декодера, передатчика и приемника системы связи должны приниматься с учетом того, что в линии связи имеются помехи. При всем многообразии методов борьбы с помехами их можно свести к трем направлениям:

— подавление помех в месте их возникновения. Это достаточно эффективное и широко применяемое мероприятие, но не всегда приемлемо. Ведь существуют источники помех, на которые воздействовать нельзя (грозовые разряды, шумы Солнца и др.);

— уменьшение помех на путях проникновения в приемник;

— ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Именно это направление для нас является предметом изучения.