Сайт о телевидении

Сайт о телевидении

» » Стеганография - учебная и научная деятельность анисимова владимира викторовича. Защита от стеганографии. Основные стеганографические понятия

Стеганография - учебная и научная деятельность анисимова владимира викторовича. Защита от стеганографии. Основные стеганографические понятия

Приоритеты и основные направления внешней политики Российской Федерации.

Процесс глобализации и основные тенденции развития международных отношений.

Неолиберальный, Реалистический, Либеральный, Неореалистический

v Формирование многополюсного мира. После развала Советского Союза исчезло разделение мира на два основных центра. Появляются новые центры силы, в том числе и в Азии. Происходит деидеологизация международных отношений – борьба капитализма с социалистическим лагерем прекращается (по крайней мере, открытого противоборства не наблюдается);

v Глобализация международных отношений. Этот процесс обусловлен взаимопроникновением национальных экономик и культур. Страны взаимодействуют в различных сферах, и изменение в одной из них может влиять на состояние других. Это проявляется не только в сотрудничестве стран, но и в создании влиятельных международных экономических и политических организаций, устанавливающих единые правила поведения для стран-участников.

v Обострение глобальных проблем. Наряду с техническим прогрессом появились проблемы, которые условно можно разделить на политические, экономические, экологические и социальные. Такие проблемы, как международный терроризм, сохранение окружающей среды, невозможно решить каждой стране самостоятельно. Появились новые общие проблемы в социальной сфере. К ним относятся тяжелые заболевания, вредные пристрастия и т.д. Также остро стоит проблема разрыва в уровне жизни населения различных стран мира. Растет уровень преступности.

v Усиление различий между той частью мира, которая живет благополучно, и той частью, где ситуация нестабильна. Большая часть населения Земли проживает в зоне нестабильности. Это страны Африки, Латинской Америки, Азии и часть стран, образовавшихся после распада СССР. Продолжительность жизни людей в таких странах ниже среднемировой, экономика развита слабо, а политическая ситуация значительно отличается от демократии в странах Западной Европы, Канады, Японии и др.

v Демократизация.

v Десуверенизация современных государств – государства теряют свой суверенитет и становятся фактически зависимыми от воли других стран либо появляются так называемые «несостоявшиеся» государства - те государства, которые не обрели своей национальной основы в силу территориальных или культурно-цивилизационных проблем (например, Приднестровье, Нагорный Карабах и др.)

v усиление роли нетрадиционных акторов международных отношений

1. Установление доверительных отношений со странами Запада и Востока. Т.е. для стран Западной Европы Россия будет поставлять нефть, газ, хим. продукты, пиломатериалы. Для стран Ближнего Востока, Южной и Ю-В Азии Россия может стать промышленным, культурным партнёром.
2. Защита прав 25 млн. русских, оказавшихся иммигрантами в новых суверенных государствах.
3. Решение глобальных проблем современности.



Но самое важное условие обретения достойного статуса в международных отношениях, это укрепление целостности Российской Федерации, а также развитие экономики.

Внешняя политика в настоящее время должна быть сориентирована на то, чтобы избежать изоляции, включиться в мировое сообщество в качестве суверенной, уважающей себя державы. Россия должна занять достойное место в системе международных отношений, основанных на равенстве сторон, взаимном уважении, взаимовыгодном сотрудничестве.

Профессор Факультета глобальных процессов

Доктор культурологии В.И.Бажуков

Способы решения задачи тайной передачи информации:

1. Создать абсолютно надежный, недоступный для других канал связи между абонентами.

2. Использовать общедоступный канал связи, но скрыть сам факт передачи информации.

3. Использовать общедоступный канал связи, но передавать по нему нужную информацию в преобразованном виде, таком, что восстановить ее мог бы только адресат.

Решением второй задачи занимается стеганография, а третьей криптография.

Криптография – это наука поиска и исследования математических методов преобразования (шифрования) информации с целью ее защиты от незаконных пользователей.

Открытый текст – информация в исходном виде.

Шифрованный текст – информация, подвергнутая действию алгоритма шифрования.

Алгоритм – метод, используемый для преобразования открытого текста в шифрованный текст.

Ключ – входные данные, посредством которых с помощью алгоритма происходит преобразование открытого текста в шифрованный или обратно.

Шифрование – процесс преобразования открытого текста в шифр.

Дешифрование – процесс преобразования шифра в открытый текст.

Криптография - это наука о способах преобразования информации с целью ее защиты от незаконных пользователей.

Криптограф – лицо, занимающееся криптографией.

Криптоанализ – искусство анализа криптографических алгоритмов на предмет наличия уязвимостей.

Криптоаналитик – лицо, использующее криптоанализ для определения и использования уязвимостей в криптографических алгоритмах.

Задачи криптографии: обеспечить: конфиденциальность, целостность, аутентификацию, невозможность отказа от авторства.

Шифры перестановки используют перестановку фрагментов открытого текста местами.

Шифры замены используют преобразования, при которых фрагменты открытого текста заменяются некоторыми символами или группами символов в шифртексте.

По связи между ключами шифрования и дешифрования шифрования шифры замены подразделяют на: симметричные (одноключевые системы, использующие для шифрования и дешифрования текста один и тот же секретный ключ) и асимметричные (двухключевые системы, использующие различные ключи для шифрования и дешифрования текста).

По возможности изменения криптографического алгоритма в процессе шифрования шифры замены подразделяют на: одноалфавитные (каждая шифрвеличина заменяется шифробозначением по неизменному алгоритму) и многоалфавитные (каждая шифрвеличина может заменяться шифробозначениями по нескольким алгоритмам).

По минимальному размеру фрагмента открытого текста шифры замены подразделяют на: потоковые шифры (за один раз обрабатывается один символ) и блочные шифры (за один раз обрабатывается блок символов фиксированной длины).

По количеству возможных замен фрагментов открытого текста шифры замены подразделяют на: однозначные (каждая шифрвеличина может быть заменена только на одно шифробозначение) и многозначные (каждая шифрвеличина может быть заменена на одно из нескольких шифробозначений).

По количестве возможных вариантов открытого текста, получаемых по шифртексту, шифры замены подразделяют на: равнозначные (из шифртекста получается один вариант открытого текста) и разнозначные (из шифртекста получается несколько вариантов открытого текста).

Композиционные шифры представляют собой последовательное применение нескольких процедур шифрования разных типов.

Криптограмма (шифр - текст) - шифрованное сообщение, т.е. защищаемая информация, к которой был применен процесс шифрования.

Стеганография - это наука, изучающая такие методы организации передачи секретных сообщении, которые скрывают сам факт передачи информации (маскировка информации).

Сообщение - секретная информация, наличие которой в контейнере необходимо скрыть.

Контейнер - любая информация, предназначенная для сокрытия тайных сообщений.

Ключ - секретный ключ, необходимый для сокрытия информации.

Направления приложения стеганографии:

1. сокрытие данных (сообщений). Сокрытие внедряемых данных, которые в большинстве случаев имеют большой объем, предъявляет серьезные требования к контейнеру: размер контейнера в несколько раз должен превышать размер встраиваемых данных;

2. цифровые водяные знаки используются для защиты авторских или имущественных прав на цифровые изображения, фотографии или другие оцифрованные произведения искусства. Основными требованиями, которые предъявляются к таким встроенным данным, являются надежность и устойчивость к искажениям.

3. заголовки используются в основном для маркирования изображений в больших электронных хранилищах (библиотеках) цифровых изображений, аудио- и видеофайлов. В данном случае стеганографические методы используются не только для внедрения идентифицирующего заголовка, но и иных индивидуальных признаков файла. Заголовки должны вносить незначительные искажения и быть устойчивы к основным геометрическим преобразованиям.

Стеганографические методы защиты информации:

1. Предполагают небольшую модификацию изображений (Image Domain). Методы Image Domain - иногда их еще называют Bit Wise Method - обычно используют побитную модификацию, например, изменение наименьшего по значению бита (least significant bit, LSB). Эти методы относят к числу простых, они легче поддаются декодированию и допускают потерю информации при тех или иных преобразованиях файла-носителя, например, при сжатии. Из трех наиболее популярных алгоритмов сжатия изображений - Windows Bitmap (BMP), Graphic Interchange Format (GIF) и Joint Photographic Experts Group (JPEG) - чаще используют BMP и GIF, отличающиеся меньшими потерями. Самыми распространенными инструментами, реализующими методы группы Image Domain, являются Hide and Seek, Mandelsteg, Steganos, StegoDos, S-TOOLS и White Noise Storm.

2. Используют трансформацию изображений (Transform Domain). В методах группы Transform Domain используют тригонометрические преобразования (discrete cosine transformation, DCT) или наложения наподобие ряби, незаметной для глаза (wavelet transformation). Эти методы более устойчивы, вложенная информация не теряется ни при каких преобразованиях, поэтому их чаще всего применяют при создании цифровых водяных знаков. Обычно при этом используются файлы формата JPEG; к числу наиболее популярных инструментов относятся Jpeg-Jsteg, JPHide, Outguess, PictureMarc и SysCop.

В настоящее время методы компьютерной стеганографии развиваются по двум основным направлениям:

Методы, основанные на использовании специальных свойств компьютерных форматов;

Методы, основанные на избыточности аудио и визуальной информации.

Атаки на стегосистемы:

Атака по известному заполненному контейнеру - у взломщика имеется одно или несколько стегосообщений. В случае нескольких стегосообщений считается, что запись скрытой информации проводилось отправителем одинаковым способом. Задача взломщика заключается в обнаружении факта наличия стегоканала, а также доступа к нему или определения ключа. Имея ключ, можно раскрыть другие стегосообщения.

Атака по известной математической модели контейнера - взломщик определяет отличие подозрительного послания от известной ему модели. К примеру, пусть биты внутри отсчета изображения коррелированны. Тогда отсутствие корреляции может служить сигналом о наличии скрытого сообщения. При этом задача внедряющего сообщение состоит в том, чтобы не нарушить статистических закономерностей в контейнере.

Атака на основе известного пустого контейнера - если злоумышленнику известен пустой контейнер, то сравнивая его с предполагаемым стего можно установить наличие стего канала. Несмотря на кажущуюся простоту метода0 существует теоретическое обоснование эффективности этого метода. Особый интерес представляет случай, когда контейнер нам известен с некоторой погрешностью (такое возможно при добавлении к нему шума).

Введение

Задача защиты информации от несанкционированного доступа решалась во все времена на протяжении истории человечества. Уже в древнем мире выделилось два основных направления решения этой задачи, существующие и по сегодняшний день: криптография и стеганография. Целью криптографии является скрытие содержимого сообщений за счет их шифрования. В отличие от этого, при стеганографии скрывается сам факт существования тайного сообщения.

Слово «стеганография» имеет греческие корни и буквально означает «тайнопись». Исторически это направление появилось первым, но затем было вытеснено криптографией. Тайнопись осуществляется самыми различными способами. Общей чертой этих способов является то, что скрываемое сообщение или секретная информация (дополнительная информация ) встраивается в некоторый безобидный, не привлекающий внимание объект, называемый далее контейнером или основным сообщением . Результат такого встраивания будем называть стеганосообщением , а сам процесс встраивания – стеганопреобразованием контейнера. Затем стеганосообщение открыто транспортируется адресату.

При криптографии наличие шифрованного сообщения само по себе привлекает внимание противников, при стеганографии же наличие скрытой связи остается незаметным.

Для защиты своих секретов люди использовали самые различные стеганографические методы. Известные примеры включают в себя использование покрытых воском дощечек, вареных яиц, спичечных коробков и даже головы раба (сообщение читалось после сбривания волос гонца). В прошлом веке широко использовались так называемые симпатические чернила, невидимые при обычных условиях. Скрытое сообщение размещали в определенные буквы невинных словосочетаний, передавали при помощи внесения в текст незначительных стилистических, орфографических или пунктуационных погрешностей. С изобретением фотографии появилась технология микрофотоснимков, успешно применяемая Германией во время мировых войн. Крапление карт шулерами – это тоже пример стеганографии.

Во время Второй мировой войны правительством США придавалось большое значение борьбе против тайных методов передачи информации. Были введены определенные ограничения на почтовые отправления. Так, не принимались письма и телеграммы, содержащие кроссворды, ходы шахматных партий, поручения о вручении цветов с указанием времени и их вида; у пересылаемых часов переводились стрелки. Был привлечен многочисленный отряд цензоров, которые занимались даже перефразированием телеграмм без изменения их смысла.

Скрытие информации перечисленными методами возможно лишь благодаря тому, что противнику неизвестен метод скрытия. Между тем, еще в 1883 году Кергофф писал о том, что система защиты информации должна обеспечивать свои функции даже при полной информированности противника о ее структуре и алгоритмах функционирования . Вся секретность системы защиты передаваемых сведений должна заключаться в ключе, то есть в предварительно (как правило) разделенном между адресатами фрагменте информации. Несмотря на то, что этот принцип известен уже более 100 лет, и сейчас встречаются разработки, пренебрегающие им. Конечно, они не могут применяться в серьезных целях.

Стеганография – это наука, которая изучает способы и методы скрытия конфиденциальной информации, основной задачей которой является скрытие самого факта существования секретных данных при их передаче, хранении или обработке. Под скрытием существования информации подразумевается не только невозможность обнаружения в перехваченном сообщении наличия иного (скрытого) сообщения, но и вообще сделать невозможным возникновение любых подозрений на этот счет.

Развитие средств вычислительной техники в последнее десятилетие дало новый толчок для развития компьютерной стеганографии . Появилось много новых областей применения. Сообщения встраивают теперь в цифровые данные, как правило, имеющие аналоговую природу. Это – речь, аудиозаписи, изображения, видео. Известны также предложения по встраиванию информации в текстовые файлы и в исполняемые файлы программ.

Существуют два основных направления в компьютерной стеганографии: связанный с цифровой обработкой сигналов и не связанный. В последнем случае сообщения могут быть встроены в заголовки файлов, заголовки пакетов данных. Это направление имеет ограниченное применение в связи с относительной легкостью вскрытия и/или уничтожения скрытой информации. Большинство текущих исследований в области стеганографии так или иначе связаны с цифровой обработкой сигналов. Это позволяет говорить о цифровой стеганографии , которая и рассматривается далее.

Можно выделить две причины популярности исследований в области стеганографии в настоящее время: ограничение на использование криптосредств в ряде стран мира и появление проблемы защиты прав собственности на информацию, представленную в цифровом виде. Первая причина повлекла за собой большое количество исследований в духе классической стеганографии (то есть скрытия факта передачи информации), вторая – еще более многочисленные работы в области так называемых водяных знаков. Цифровой водяной знак (ЦВЗ) – специальная метка, незаметно внедряемая в изображение или другой сигнал с целью тем или иным образом контролировать его использование.

Цифровая стеганография. Предмет, терминология, области применения

Цифровая стеганография как наука родилась буквально в последние годы. Как относительно молодая наука она еще не имеет общепризнанной классификации и даже терминологии. Однако можно предложить следующую классификацию направлений, которые включает в себя стеганография:

1) встраивание информации с целью ее скрытой передачи;

2) встраивание цифровых водяных знаков (ЦВЗ) (watermarking);

3) встраивание идентификационных номеров (fingerprinting) – отпечатки пальцев;

4) встраивание заголовков (captioning).

ЦВЗ могут применяться, в основном, для защиты от копирования и несанкционированного использования.В связи с бурным развитием технологий мультимедиа остро встал вопрос защиты авторских прав и интеллектуальной собственности, представленной в цифровом виде. Примерами могут являться фотографии, аудио и видеозаписи и т.д. Преимущества, которые дают представление и передача сообщений в цифровом виде, могут оказаться перечеркнутыми легкостью, с которой возможно их воровство или модификация. Поэтому разрабатываются различные меры защиты информации, организационного и технического характера. Один из наиболее эффективных технических средств защиты мультимедийной информации и заключается во встраивании в защищаемый объект невидимых меток - ЦВЗ. Разработки в этой области ведут крупнейшие фирмы во всем мире. Так как методы ЦВЗ начали разрабатываться совершенно недавно (первой статьей на эту тему была, видимо, работа 1989 г.), то здесь имеется много неясных проблем, требующих своего разрешения. Название эти методы получили от всем известного способа защиты ценных бумаг, в том числе и денег, от подделки. В отличие от обычных водяных знаков, ЦВЗ могут быть не только видимыми, но и (как правило) невидимыми. Невидимые ЦВЗ анализируются специальным декодером, который выносит решение об их корректности. ЦВЗ могут содержать некоторый аутентичный код, информацию о собственнике, либо какую-нибудь управляющую информацию. Наиболее подходящими объектами защиты при помощи ЦВЗ являются неподвижные изображения, файлы аудио и видеоданных.

Технология встраивания идентификационных номеров производителей имеет много общего с технологией ЦВЗ. Отличие заключается в том, что в первом случае каждая защищенная копия имеет свой уникальный встраиваемый номер (отсюда и название – дословно «отпечатки пальцев»). Этот идентификационный номер позволяет производителю отслеживать дальнейшую судьбу своего детища: не занялся ли кто-нибудь из покупателей незаконным тиражированием. Если да, то «отпечатки пальцев» быстро укажут на виновного.

Встраивание заголовков (невидимое) может применяться, например, для подписи медицинских снимков, нанесения легенды на карту и т.д. Целью является хранение разнородно представленной информации в едином целом. Это, пожалуй, единственное приложение стеганографии, где в явном виде отсутствует потенциальный нарушитель.

Два главных требования к стеганографическому преобразованию:

1) незаметность – надежность восприятия

2) устойчивость к различного рода искажениям.

Последние годы стеганография являлась причиной многих дискуссий, в частности предполагалось, что террористы могли использовать ее в терактах 11 сентября. Но так как доказательств этому не нашлось, интерес к стеганографии как к эффективному средству сокрытия данных продолжает расти. Конечно же, наряду с шифрованием, стеганография является одним из основных методов сохранения конфиденциальной информации. Эта статья является кратким введением в стеганографию и отвечает на вопросы: что такое стеганография, как ее можно использовать, и ее значение для безопасности информации.

F5 была разработана Андреасом Вестфилдом (Andreas Westfield) и работает как DOS-клиент. Также была разработана «парочка» GUI: первая утилита - "Frontend", созданная Кристианом Воном (Christian Wohne), и вторая - "Stegano", чьим автором является Томас Бьель (Thomas Biel). Мы испытывали F5, beta version 12. Оказалось, очень легко закодировать сообщение в формате JPEG, даже когда релиз немецкий. Пользователь очень легко может это сделать, следуя инструкциям мастера, указывая путь к картинке(мы использовали простой текстовый файл, созданный в блокноте), вводя ключевое слово. Как вы можете сами убедиться, сложно сказать по двум следующим картинкам, содержат ли они вложенное сообщение, или нет.

Рис.1 Без сообщения

Рис.2 с вложенным файлом

Конечно же, вложенный файл был очень маленьким(состоял всего из одной строки "This is a test. This is only a test."), так что не слишком много пикселей пришлось заменить, что бы спрятать сообщение. А что будет, если мы попытаемся спрятать больший документ? F5 работает только с текстовыми файлами. При попытке спрятать более объемный «вордовский» файл, то хоть программа и восприняла его, но восстановить не сумела. Тем не менее, большие файлы похоже тоже можно, как и маленькие, вкладывать в изображения.

SecurEngine не выглядит, как профессиональная утилита, которая способна спрятать текст в изображении. Когда мы спрятали свое маленькое сообщение в большем текстовом файле, то обнаружили лишний символ («я»)в конце зашифрованного файла. Такого символа не было в оригинале. SecurEngine позволяет пользователям лишь спрятать изображение и (или) зашифровать. Пробное предложение было закодировано и декодировано без всяких проблем. SecurEngine также включает в себя инструменты для более надежного уничтожения файлов.

Утилита MP3Stego, которая позволяет прятать данные в файлах формата MP3, сработала очень хорошо. Процесс шифрования происходит таким образом: вы шифруете файл(текстовый, например), как.WAV файл, который затем преобразовывается в формат MP3. Единственная проблемка, которая возникла – чтобы зашифровать данные большого размера, необходимо иметь пропорциональный к количеству данных файл. Например, маленькое сообщение, которое мы использовали в предыдущих опытах оказалось слишком большим для WAV-файла(размер WAV-файла составлял 121КВ, а текстового файла – 36 байт). Для завершения опыта пришлось сократить текстовый файл до 5 байт – только слово «test». Мы нашли соответствующий файл размером 627 КВ. Конечный MP3 файл занял 57КВ.

Steganos Suite – это коммерческий пакет, объединивший множество утилит. В дополнение к изящной деструктивной функции трассировки (для Интернета) и утилиты для уничтожения файлов, программа так же обладает так называемым файловым менеджером, что позволяет пользователям шифровать и скрывать файлы на своем винчестере. Пользователь выделяет папку или файл, которые следует сокрыть и файл – «носильщик» информации - обязательно графический или музыкальный. Программа также позволяет самим пользователям создавать файлы при помощи микрофона или сканера. Если у вас нет подходящего файла, встроенный файловый менеджер умеет искать нужный файл на вашем винчестере. Эта утилита, в отличие от тех, которые мы тестировали, способна работать с разными файловыми форматами(dll, dib). Так что, если вам необходим качественный продукт для шифрования информации, то вам придется выложить деньги за коммерческий пакет.

Стеганография и безопасность

Как ранее упоминалось, стеганография является эффективным методом сокрытия данных и защиты их от несанкционированного или не желаемого просмотра. Но все же это лишь один из способов защиты информации. Возможно, лучше было бы использовать стеганографию совместно с другими методами сокрытия данных, что сделало бы возможным многоуровневую безопасность. Далее приведены некоторые из альтернативных методов сокрытия данных.

    Шифрование -– процесс преобразования информации посредством ряда математический операций. Результатом шифрования является зашифрованный текст. Зашифрованные данные могут быть прочитаны лишь при условии наличия необходимого ключа. Шифрование не прячет данные, но усложняет их чтения.

    Скрытые директории (Windows) - Windows предлагает возможность скрытия файлов. Использовать эту возможность очень легко: просто в свойствах папки или файла проставить атрибут «скрытый» и надеяться, что никто не отобразит все типы файлов в эксплорере.

    Скрытые директории (Unix) – на платформах Unix в существующих директория, содержащих множество файлов, как, на пример, /dev или создав свою директорию, в названии которой использовав три точки,(обычно используют оду или две).

    Скрытые каналы – Некоторые утилиты используются для передачи ценных данных, которые внешне выглядят как обыкновенный сетевой трафик. Одна из таких утилит – Loki – способна скрывать данные в ICMP трафике.

Защита от стеганографии

К сожалению, все методы, о которых ми говорили, могут так же использоваться с целью незаконных, несанкционированных или не желательных действий. Возможность определения или предупреждения утечки информации не является тривиальной задачей. Если кто-то решил для сокрытия данных использовать стеганографию, то единственным способом обнаружения является активное наблюдения за специальными файлами и удача. Иногда активные меры безопасности могут дать ответ на поставленные вопрос – жесткие политики на установку несанкционированного программного обеспечения.

Использование уже имеющихся утилит для контроля над сетевым трафиком так же может оказаться полезным. Системы обнаружения вторжения могут помочь администратору в определении нормального трафика и, таким образом, увидеть аномалии, например, при передаче больших картинок по сети. Если администратор подготовлен к такому виду аномальной активности, это может помочь в дальнейшем расследовании. Находящиеся на каждой машине системы обнаружения вторжения так же могут помочь в обнаружении аномального скопления изображений и(или) видеофайлов.

В исследовании, проведенным Стефаном Хетцлем на его сайте, идет речь о двух методах стеганографии, которые, в свою очередь, являются средствами обнаружения ее. Это – визуальная и статистическая атака. «Идея статистической атаки – сравнение частоты распределения цветов для возможного носителя скрытой информации и теоретически ожидаемая частота распределения цветов для файла–носителя скрытой информации». Это возможно не самый быстрый метод защиты, но если возникаю подозрения на счет такого рода деятельности, то этот метод может быть самым эффективным. Специально для JPEG-файлов существует утилита , которая способна определять следы стеганографии в этих файлах. Родственная утилита к , с называнием Stegbreak способна расшифровывать и находить возможную информацию в подозрительном файле.

Заключение

Стеганография – один из самых увлекательных и эффективных методов сокрытия данных, которые использовались за всю историю человечества. Методы, способны разоблачить хитрые тактики злоумышленников несовершенны, но радует то, что такие методы существуют. Есть очень много причин, по которым следует использовать стеганографию (подписи, пароли, ключи), но главная – это легкость в обращении и сложность при обнаружении. Чем больше вы знаете о методах стеганографии, тем больше у вас шансов не попасть впросак.

УДК 004.056.5

Стеганографический способ скрытия информации на основе последовательностей особенных точек изображения

научный руководитель канд. физ.-мат. наук

Стерлитамакская государственная педагогическая академия им. Зайнаб Биишевой

В настоящее время, наряду с широким использованием цифровых форматов мультимедиа и существующими проблемами управления цифровыми ресурсами, становятся все более актуальными исследования в области стеганографии . Решение задачи сокрытия информации также является важной проблематикой в условиях развитой инфраструктуры сетевого общения пользователей глобальных компьютерных сетей, с развитием которых стало возможным быстро и экономически выгодно передавать электронные документы в различные уголки планеты. При этом значительные объемы передаваемых материалов часто сопровождаются незаконным копированием и распространением. Как следствие, это заставляет искать способы сокрытия авторской информации в различных текстовых, графических, аудио, видео, и других типах файлов.

На сегодняшний день существует довольно много программных продуктов, применяемых для целей стеганографии и реализующих методы внедрения конфиденциальных данных в различные типы файлов.

Классическая задача стеганографии состоит в организации передачи секретного сообщения таким образом, чтобы как содержание сообщения, так и сам факт его передачи были скрыты ото всех, кроме заинтересованных лиц. Для решения такой задачи используется некоторое сообщение, называемое контейнером (стего-контейнером), в которое встраивается требуемое для передачи секретное сообщение. При этом разработчики стеганографических методов должны организовать прозрачность передаваемых конфиденциальных данных: изменение определенного числа информационных бит в контейнере не должно привести к особым потерям его качества (должны отсутствовать артефакты визуализации встраивания). В качестве контейнеров наиболее часто выступают файлы, содержащие цифровые фотографии, текст, музыку, видео. Так, например, при использовании в качестве контейнера графических файлов для сторонних наблюдателей процесс передачи сообщений будет восприниматься как обычный обмен цифровыми графическими файлами. Следует при этом помнить о важности соблюдения одного условия: никто не должен иметь доступ одновременно к исходному файлу, выбранному в качестве контейнера, и к файлу, содержащему скрытое сообщение, т. к. в таком случае простое сравнение файлов сразу же выявит наличие сообщения.

Как было отмечено выше, в компьютерной стеганографии в качестве контейнера может выступать практически любой файловый формат, однако наиболее распространенным типом носителя являются файлы изображения формата BMP. Это объясняется тем, что для целей стеганографии наиболее предпочтительны файлы форматов, в которых используются методы сжатия без потерь (такие виды сжатия типичны для изображений формата BMP, TIFF, PNG, TGA, и др.). Также положительной стороной в пользу выбора формата BMP выступает высокое качество изображения и простота формата.

Стоит отметить, что при работе с форматами файлов, использующих сжатие с потерями, таким как JPEG, обычно все равно выполняют преобразование потока данных JPEG в поток данных BMP . С позиции стеганографии файлы данного формата позволяют скрывать сравнительно большие объемы информации.

В данной работе в качестве контейнера рассматривается 24-битовое растровое изображение в системе цветности RGB. Каждая цветовая комбинация тона (пикселя) представляет собой комбинацию значений яркости трех составляющих цветов – красного (R), зеленого (G) и синего (B), которые занимают каждый по 1 байту (итого по 3 байта на точку). Таким образом, яркость каждой составляющей записывается 8-битным числом и может изменяться в диапазоне от 0 до 255 (комбинация (0, 0, 0) соответствует черному цвету, комбинация (255, 255, 255) – белому). Использование BMP-файлов в настоящей работе обусловлено только лишь простотой их программной обработки , – все полученные результаты с легкостью могут быть перенесены на случай изображений в файлах других форматов.

Самым распространенным на сегодня методом стеганографического скрытия является метод замены наименее значимых бит (LSB). Идея метода заключается в замене от одного до четырех младших битов в байтах цветового представления точек исходного изображения битами скрываемого сообщения. Также известен ряд работ, посвященных вопросам синтеза систем стеганографии, позволяющих увеличить объем скрываемой информации в несколько раз по сравнению с методом LSB.

Традиционно LSB-методы реализуются по следующей схеме: передаваемое сообщение шифруется с использованием секретного ключа, после чего биты зашифрованного сообщения записываются на место младших бит цветовых составляющих изображения. В простейшем случае запись осуществляется последовательно в каждую составляющую цвета точки, но может также производиться и в некотором другом порядке, задаваемом на основе того же секретного ключа. Визуально, в таком изображении не будет заметно никаких искажений (глаз человека, скорее всего, не заметит отличий даже в случае, если имеется исходный файл для сравнения). Однако компьютерные методы стегоанализа смогут определить наличие встроенного сообщения (например, метод стегоанализа, предложенный и относящийся к классу универсальных методов ). Поэтому в ряде работ предлагаются варианты LSB-методов, более устойчивых к стегоанализу. Таковым является, например, метод, учитывающий статистику младших бит изображения .

В данной работе предлагается метод, использующий распределение в изображении некоторых особенных точек (отсутствующих в исходном изображении оттенков).

На первом этапе необходимо подготовить контейнер к приему скрытого сообщения – в исходном файле изображения, составляющие (оттенки) трех цветов, имеющие значения 255, изменяются на 254. На этом же этапе скрываемое сообщение переводится в двоичную последовательность.

На втором этапе проводится анализ файла-контейнера на наличие точек, удовлетворяющих следующему условию: во всем изображении два оттенка цвета точек (например, синий (B) и зеленый (G)) совпадают, а третий оттенок (в данном случае красный (R) – обозначим его числовое значение через X) таков, что во всем изображении нет точек, для которых значение этого оттенка равно X+1, X-1, или X-2. Среди всех найденных таким образом точек выбирается последовательность точек, имеющая максимальную длину. Такая последовательность и используется для хранения скрытого сообщения: к значению X третьего оттенка прибавляется соответствующее значение из двоичного представления сообщения. При этом первые три байта сообщения содержат информацию о длине сообщения. Первая точка из найденной последовательности должна быть оставлена без изменений.

Очевидно, что для каждого потенциального файла-контейнера распределение точек, удовлетворяющих отмеченному выше требованию по оттенкам, вполне случайно. В связи с этим данный метод не вносит существенных отклонений в статистику распределения младших бит изображения, и должен быть вполне устойчив к методам стегоанализа.

После добавления сообщения в файл-контейнер исходный пустой контейнер уже не требуется и может быть удален. Таким образом, данный метод позволяет использовать для передачи (и последующего восстановления) скрытого сообщения только один файл. Восстановление сообщения основывается на поиске во всем изображении точек, два оттенка цвета которых совпадают, а третий оттенок таков, что во всем изображении нет точек, для которых значение этого оттенка равно X-1 или X-2.

При таком способе сокрытия информации максимальный ее объем, который может быть размещен в файле-контейнере, целиком зависит от файла изображения: какое-то изображение позволит сохранить больше информации – какое-то меньше (или вообще не позволит). Кроме того, само расположение скрытого сообщения в файле-контейнере будет также зависеть от конкретного изображения.

Очевидно, что, если известен метод, использовавшийся для помещения информации в контейнер, то на его основе легко получить скрытое сообщение. Это является недостатком не только описанного здесь метода, но и любого другого. Именно поэтому нужно предусмотреть такое изменение метода, чтобы, даже зная алгоритм его реализации, невозможно было извлечь скрытое сообщение (извлечь сообщение должен только тот, кому оно адресовано). Для этого перед встраиванием в контейнер, в целях повышения безопасности и компактности, секретное сообщение обычно сжимается и шифруется. Для сжатия могут быть использованы различные алгоритмы, например алгоритмы семейства LZ или BWT. Кроме этого, при встраивании сообщения в контейнер можно использовать дополнительный секретный ключ, который будет определять порядок внедрения сообщения.

Описанный метод, конечно же, допускает всевозможные его модификации. Например, для увеличения емкости контейнера можно использовать не только последовательность точек максимальной длины, но и все другие последовательности точек, удовлетворяющие указанному выше условию. Наряду с использованием секретного ключа это позволит повысить стойкость алгоритма к стегоанализу.

Список литературы

1. , Основы стегоанализа.// Защита информации. Конфидент. – СПб.: 2000, № 3. – С. 38-41.

2. , Цифровая стеганография. – М.: Солон-Пресс, 2002. – 272 с.

3. , Фионов стегосистемы на базе растровых изображений с учетом статистики младших бит // Вестник СибГУТИ. – 2009. № 1. – С. 67-84.

4. , Компьютерная стеганография. Теория и практика. – К.: МК-Пресс, 2006. – 288 с.

5. Жилкин графических данных на основе методов сжатия // Вестник СибГУТИ. – 2008. № 2. – С. 62–66.

6. Кувшинов и алгоритмы сокрытия больших объемов данных на основе стеганографии / Диссертация на соискание ученой степени кандидата технических наук. – Санкт-Петербург. 2010. – 116 с.

Стеганография

Классификация стеганографии

В конце 90-х годов выделилось несколько направлений стеганографии:

  • Классическая стеганография
  • Компьютерная стеганография
  • Цифровая стеганография

Классическая стеганография

Симпатические чернила

Одним из наиболее распространенных методов классической стеганографии является использование симпатических (невидимых) чернил . Текст, записанный такими чернилами , проявляется только при определенных условиях (нагрев, освещение, химический проявитель и т. д.) Изобретенные ещё в I веке н. э. Филоном Александрийским , они продолжали использоваться как в средневековье , так и в новейшее время , например, в письмах русских революционеров из тюрем. В советской школьной программе в курсе литературы изучался рассказ о том, как Владимир Ленин писал молоком на бумаге между строк, см. Рассказы о Ленине . Молоко проявлялось при нагреве над пламенем.

Существуют также чернила с химически нестабильным пигментом . Написанное этими чернилами выглядит как написанное обычной ручкой, но через определенное время нестабильный пигмент разлагается, и от текста не остается и следа. Хотя при использовании обычной шариковой ручки текст можно восстановить по деформации бумаги , этот недостаток можно устранить с помощью мягкого пишущего узла, наподобие фломастера .

Другие стеганографические методы

  • запись на боковой стороне колоды карт, расположенных в условленном порядке;
  • запись внутри варёного яйца;
  • «жаргонные шифры», где слова имеют другое обусловленное значение;
  • трафареты , которые, будучи положенными на текст, оставляют видимыми только значащие буквы;
  • узелки на нитках и т. д.

В настоящее время под стеганографией чаще всего понимают скрытие информации в текстовых, графических либо аудиофайлах путём использования специального программного обеспечения .

Стеганографические модели

Стеганографические модели - используются для общего описания стеганографических систем.

Основные понятия

В 1983 году Симмонс предложил т. н. «проблему заключенных». Её суть состоит в том, что есть человек на свободе (Алиса), в заключении (Боб) и охранник Вилли. Алиса хочет передавать сообщения Бобу без вмешательства охранника. В этой модели сделаны некоторые допущения: предполагается, что перед заключением Алиса и Боб договариваются о кодовом символе, который отделит одну часть текста письма от другой, в которой скрыто сообщение. Вилли же имеет право читать и изменять сообщения. В 1996 году на конференции Information Hiding: First Information Workshop была принята единая терминология:

  • Стеганографическая система (стегосистема) - объединение методов и средств используемых для создания скрытого канала для передачи информации . При построении такой системы условились о том, что: 1) враг представляет работу стеганографической системы. Неизвестным для противника является ключ с помощью которого можно узнать о факте существования и содержания тайного сообщения. 2) При обнаружении противником наличия скрытого сообщения он не должен смочь извлечь сообщение до тех пор пока он не будет владеть ключом . 3) Противник не имеет технических и прочих преимуществ.
  • Сообщение - это термин , используемый для общего названия передаваемой скрытой информации, будь то лист с надписями молоком, голова раба или цифровой файл.
  • Контейнер - так называется любая информация , используемая для сокрытия тайного сообщения. Пустой контейнер - контейнер, не содержащий секретного послания. Заполненный контейнер (стегоконтейнер) - контейнер, содержащий секретное послание.
  • Стеганографический канал (стегоканал) - канал передачи стегоконтейнера.
  • Ключ (стегоключ) - секретный ключ , нужный для сокрытия стегоконтейнера. Ключи в стегосистемах бывают двух типов: секретные и открытые. Если стегосистема использует секретный ключ, то он должен быть создан или до начала обмена сообщениями, или передан по защищённому каналу. Стегосистема, использующая открытый ключ , должна быть устроена таким образом, чтобы было невозможно получить из него закрытый ключ . В этом случае открытый ключ мы можем передавать по незащищённому каналу.

Компьютерная стеганография

Компьютерная стеганография - направление классической стеганографии, основанное на особенностях компьютерной платформы. Примеры - стеганографическая файловая система StegFS для Linux , скрытие данных в неиспользуемых областях форматов файлов , подмена символов в названиях файлов , текстовая стеганография и т. д. Приведём некоторые примеры:

  • Использование зарезервированных полей компьютерных форматов файлов - суть метода состоит в том, что часть поля расширений , не заполненная информацией о расширении, по умолчанию заполняется нулями. Соответственно мы можем использовать эту «нулевую» часть для записи своих данных. Недостатком этого метода является низкая степень скрытности и малый объём передаваемой информации.
  • Метод скрытия информации в неиспользуемых местах гибких дисков - при использовании этого метода информация записывается в неиспользуемые части диска , к примеру, на нулевую дорожку. Недостатки: маленькая производительность, передача небольших по объёму сообщений.
  • Метод использования особых свойств полей форматов, которые не отображаются на экране - этот метод основан на специальных «невидимых» полях для получения сносок, указателей. К примеру, написание чёрным шрифтом на чёрном фоне. Недостатки: маленькая производительность, небольшой объём передаваемой информации.
  • Использование особенностей файловых систем - при хранении на жестком диске файл всегда (не считая некоторых ФС, например, ReiserFS) занимает целое число кластеров (минимальных адресуемых объёмов информации). К примеру, в ранее широко используемой файловой системе FAT32 (использовалась в Windows98 / /) стандартный размер кластера - 4 Кб . Соответственно для хранения 1 Кб информации на диске выделяется 4 Кб информации, из которых 1Кб нужен для хранения сохраняемого файла, а остальные 3 ни на что не используются - соответственно их можно использовать для хранения информации. Недостаток данного метода: лёгкость обнаружения.

Цифровая стеганография

Изображение дерева со скрытым с помощью цифровой стеганографии в нём другим изображением. Изображение спрятано с помощью удаления всех, кроме двух младших битов с каждого цветового компонента и последующей нормализации.

Изображение кота, извлеченное из изображения дерева, расположенного выше

Цифровая стеганография - направление классической стеганографии, основанное на сокрытии или внедрении дополнительной информации в цифровые объекты, вызывая при этом некоторые искажения этих объектов. Но, как правило, данные объекты являются мультимедиа-объектами (изображения, видео, аудио, текстуры 3D-объектов) и внесение искажений, которые находятся ниже порога чувствительности среднестатистического человека, не приводит к заметным изменениям этих объектов. Кроме того, в оцифрованных объектах, изначально имеющих аналоговую природу, всегда присутствует шум квантования; далее, при воспроизведении этих объектов появляется дополнительный аналоговый шум и нелинейные искажения аппаратуры, все это способствует большей незаметности сокрытой информации.

Алгоритмы

Все алгоритмы встраивания скрытой информации можно разделить на несколько подгрупп:

  • Работающие с самим цифровым сигналом. Например, метод LSB.
  • «Впаивание» скрытой информации. В данном случае происходит наложение скрываемого изображения (звука, иногда текста) поверх оригинала. Часто используется для встраивания ЦВЗ.
  • Использование особенностей форматов файлов . Сюда можно отнести запись информации в метаданные или в различные другие не используемые зарезервированные поля файла.

По способу встраивания информации стегоалгоритмы можно разделить на линейные (аддитивные), нелинейные и другие. Алгоритмы аддитивного внедрения информации заключаются в линейной модификации исходного изображения, а её извлечение в декодере производится корелляционными методами. При этом ЦВЗ обычно складывается с изображением-контейнером, либо «вплавляется» (fusion) в него. В нелинейных методах встраивания информации используется скалярное либо векторное квантование. Среди других методов определенный интерес представляют методы, использующие идеи фрактального кодирования изображений. К аддитивным алгоритмам можно отнести:

  • А17 (Cox)
  • А18 (Barni)
  • L18D (Lange)
  • А21 (J. Kim).
  • А25 (С. Podilchuk).

Метод LSB

LSB (Least Significant Bit, наименьший значащий бит) - суть этого метода заключается в замене последних значащих битов в контейнере (изображения, аудио или видеозаписи) на биты скрываемого сообщения. Разница между пустым и заполненным контейнерами должна быть не ощутима для органов восприятия человека.

Суть метода заключается в следующем: Допустим, имеется 8-битное изображение в градациях серого. 00h (00000000b) обозначает чёрный цвет, FFh (11111111b) - белый. Всего имеется 256 градаций (). Также предположим, что сообщение состоит из 1 байта - например, 01101011b. При использовании 2 младших бит в описаниях пикселей, нам потребуется 4 пикселя. Допустим, они чёрного цвета. Тогда пиксели, содержащие скрытое сообщение, будут выглядеть следующим образом: 00000001 00000010 00000010 00000011 . Тогда цвет пикселей изменится: первого - на 1/255, второго и третьего - на 2/255 и четвёртого - на 3/255. Такие градации, мало того что незаметны для человека, могут вообще не отобразиться при использовании низкокачественных устройств вывода.

Методы LSB являются неустойчивыми ко всем видам атак и могут быть использованы только при отсутствии шума в канале передачи данных.

Обнаружение LSB-кодированного стего осуществляется по аномальным характеристикам распределения значений диапазона младших битов отсчётов цифрового сигнала.

Все методы LSB являются, как правило, аддитивными (A17, L18D).

Другие методы скрытия информации в графических файлах ориентированы на форматы файлов с потерей, к примеру, JPEG. В отличие от LSB они более устойчивы к геометрическим преобразованиям. Это получается за счёт варьирования в широком диапазоне качества изображения, что приводит к невозможности определения источника изображения.

Эхо-методы

Эхо-методы применяются в цифровой аудиостеганографии и используют неравномерные промежутки между эхо-сигналами для кодирования последовательности значений. При наложении ряда ограничений соблюдается условие незаметности для человеческого восприятия. Эхо характеризуется тремя параметрами: начальной амплитудой, степенью затухания, задержкой. При достижении некоего порога между сигналом и эхом они смешиваются. В этой точке человеческое ухо не может уже отличить эти два сигнала. Наличие этой точки сложно определить, и она зависит от качества исходной записи, слушателя. Чаще всего используется задержка около 1/1000, что вполне приемлемо для большинства записей и слушателей. Для обозначения логического нуля и единицы используется две различных задержки. Они обе должны быть меньше, чем порог чувствительности уха слушателя к получаемому эху.

Эхо-методы устойчивы к амплитудным и частотным атакам, но неустойчивы к атакам по времени.

Фазовое кодирование

Фазовое кодирование (phase coding, фазовое кодирование) - так же применяется в цифровой аудиостеганографии. Происходит замена исходного звукового элемента на относительную фазу , которая и является секретным сообщением. Фаза подряд идущих элементов должна быть добавлена таким образом, чтобы сохранить относительную фазу между исходными элементами. Фазовое кодирование является одним из самых эффективных методов скрытия информации.

Метод расширенного спектра

Метод встраивания сообщения заключается в том, что специальная случайная последовательность встраивается в контейнер, затем, используя согласованный фильтр, данная последовательность детектируется. Данный метод позволяет встраивать большое количество сообщений в контейнер, и они не будут создавать помехи друг другу. Метод заимствован из широкополосной связи.

Атаки на стегосистемы

Под атакой на стегосистему понимается попытка обнаружить, извлечь, изменить скрытое стеганографическое сообщение. Такие атаки называются стегоанализом по аналогии с криптоанализом для криптографии. Способность стеганографической системы противостоять атакам называется стеганографической стойкостью . Наиболее простая атака - субъективная. Внимательно рассматривается изображение, прослушивается звукозапись в попытках найти признаки существования в нём скрытого сообщения. Такая атака имеет успех лишь для совсем незащищенных стегосистем. Обычно это первый этап при вскрытии стегосистемы. Выделяются следующие типы атак.

  • Атака по известному заполненному контейнеру;
  • Атака по известному встроенному сообщению;
  • Атака на основе выбранного скрытого сообщения;
  • Адаптивная атака на основе выбранного скрытого сообщения;
  • Атака на основе выбранного заполненного контейнера;
  • Атака на основе известного пустого контейнера;
  • Атака на основе выбранного пустого контейнера;
  • Атака по известной математической модели контейнера.

Рассмотрим некоторые из них:

Атака по известному заполненному контейнеру - у взломщика имеется одно или несколько стего. В случае нескольких стего считается, что запись скрытой информации проводилось отправителем одинаковым способом. Задача взломщика заключается в обнаружении факта наличия стегоканала, а также доступа к нему или определения ключа. Имея ключ, можно раскрыть другие стегосообщения.

Атака по известной математической модели контейнера - взломщик определяет отличие подозрительного послания от известной ему модели. К примеру, пусть биты внутри отсчета изображения коррелированны . Тогда отсутствие корреляции может служить сигналом о наличии скрытого сообщения. При этом задача внедряющего сообщение состоит в том, чтобы не нарушить статистических закономерностей в контейнере.

Атака на основе известного пустого контейнера - если злоумышленнику известен пустой контейнер, то сравнивая его с предполагаемым стего можно установить наличие стегоканала . Несмотря на кажущуюся простоту метода, существует теоретическое обоснование эффективности этого метода. Особый интерес представляет случай, когда контейнер нам известен с некоторой погрешностью (такое возможно при добавлении к нему шума).

Стеганография и цифровые водяные знаки

Для повышения устойчивости к искажениям часто применяют помехоустойчивое кодирование или используют широкополосные сигналы. Начальную обработку скрытого сообщения делает прекодер . Важная предварительная обработка ЦВЗ - вычисление его обобщенного Фурье-преобразования . Это повышает помехоустойчивость. Первичную обработку часто производят с использованием ключа - для повышения секретности. Потом водяной знак «укладывается» в контейнер (например, путем изменения младших значащих бит). Здесь используются особенности восприятия изображений человеком. Широко известно, что изображения имеют огромную психовизуальную избыточность. Глаза человека подобны низкочастотному фильтру, который пропускает мелкие элементы изображения. Наименее заметны искажения в высокочастотной области изображений. Внедрение ЦВЗ также должно учитывать свойства восприятия человека.

Во многих стегосистемах для записи и считывания ЦВЗ используется ключ. Он может предназначаться для ограниченного круга пользователей или же быть секретным. Например, ключ нужен в DVD -плейерах для возможности прочтения ими содержащихся на дисках ЦВЗ. Как известно, не существует таких стегосистем, в которых бы при считывании водяного знака требовалась другая информация, нежели при его записи. В стегодетекторе происходит обнаружение ЦВЗ в защищённом им файле, который, возможно, мог быть изменён. Эти изменения могут быть связаны с воздействиями ошибок в канале связи, либо преднамеренными помехами. В большинстве моделей стегосистем сигнал-контейнер можно рассмотреть как аддитивный шум. При этом задача обнаружения и считывания стегосообщения уже не представляет сложности, но не учитывает двух факторов: неслучайности сигнала контейнера и запросов по сохранению его качества. Учет этих параметров позволит строить более качественные стегосистемы. Для обнаружения факта существования водяного знака и его считывания используются специальные устройства - стегодетекторы. Для вынесения решения о наличии или отсутствии водяного знака используют, к примеру, расстояние по Хэммингу , взаимокорреляцию между полученным сигналом и его оригиналом. В случае отсутствия исходного сигнала в дело вступают более изощренные статистические методы, которые основаны на построении моделей исследуемого класса сигналов.

Применение стеганографии

В современных принтерах

Стеганография используется в некоторых современных принтерах. При печати на каждую страницу добавляются маленькие точки, содержащие информацию о времени и дате печати, а также серийный номер принтера.

Применение цифровой стеганографии

Из рамок цифровой стеганографии вышло наиболее востребованное легальное направление - встраивание цифровых водяных знаков (ЦВЗ) (watermarking), являющееся основой для систем защиты авторских прав и DRM (Digital rights management) систем. Методы этого направления настроены на встраивание скрытых маркеров, устойчивых к различным преобразованиям контейнера (атакам).

Полухрупкие и хрупкие ЦВЗ используются в качестве аналоговой ЭЦП , обеспечивая хранение информации о передаваемой подписи и попытках нарушения целостности контейнера (канала передачи данных).

Например, разработки Digimarc в виде плагинов к редактору Adobe Photoshop позволяют встроить в само изображение информацию об авторе. Однако такая метка неустойчива, впрочем как и абсолютное их большинство. Программа Stirmark, разработчиком которой является ученый Fabien Petitcolas, с успехом атакует подобные системы, разрушая стеговложения.

Предполагаемое использование террористами

Пример, показывающий то, как террористы могут использовать аватары для передачи скрытых сообщений. Эта картинка содержит в себе сообщение «Босс сказал, что мы должны взорвать мост в полночь.», зашифрованное с помощью http://mozaiq.org/encrypt с использованием сочетания символов «växjö» в качестве пароля.

Слухи о использовании стеганографии террористами появились с момента публикации в газете USA Today 5 февраля 2001 года двух статей - «Террористы прячут инструкции онлайн» и «Террористические группы прячутся за веб-шифрованием». 10 июля 2002 года в той же газете появилась статья «Боевики окутывают веб с помощью ссылок на джихад». В этой статье была опубликована информация о том, что террористы использовали фотографии на сайте eBay для передачи скрытых сообщений. Многие средства массовой информации перепечатывали данные сообщения, особенно после терактов 11 сентября , хотя подтверждения данной информации получено не было. Статьи в USA Today написал иностранный корреспондент Джек Келли, который был уволен в 2004 году после того, как выяснилось, что данная информация была сфабрикована. 30 октября 2001 года газета The New York Times опубликовала статью «Замаскированные сообщения террористов могут скрываться в киберпространстве». В статье было высказано предположение о том, что Аль-Каида использовала стеганографию для скрытия сообщений в изображениях, а затем передавала их по электронной почте и Usenet в целях подготовки терактов 11 сентября . В пособии по обучению террориста «Технологичный муджахид, учебное пособие для джихада » присутствует глава, посвященная использованию стеганографии.

Предполагаемое использование спецслужбами

  • Скандально известный греческий миллионер Аристотель Онассис несколько раз использовал при подписании контрактов ручку с симпатическими чернилами.
  • В фильме «Гений » главный герой - персонаж Александра Абдулова - обманывает милицию , написав признание симпатическими чернилами.

Ссылки

Программные реализации

  • OpenPuff: Двойная стеганография, Bmp , Jpeg , Png , Tga , Pcx , Aiff , Mp3 , Next, Wav , 3gp , Mp4 , Mpeg I , MPEG II , Vob , Flv , Pdf , Swf

Статьи

  • Обзор программ для поиска скрытых стеганографией материалов

Прочее

  • Стеганография (рус.) Иоганна Тритемия