Сайт о телевидении

Сайт о телевидении

» » CISC и RISC архитектуры

CISC и RISC архитектуры

Уровень архитектуры команд включает набор машинных команд, которые выполняются микропрограммой-интерпретатором или аппаратным обеспечением.

Двумя основными архитектурами набора команд, используемыми компьютерной промышленностью на современном этапе развития вычислительной техники, являются архитектуры CISC и RISC.

– Complete Instruction Set Computer (CISC-архитектура, компьютер на микропроцессоре с полным набором команд)

– Reduced Instruction Set Computer (RISC-архитектура, компьютер с сокращенным набором команд)

CISC RISC
Основоположник, модель IBM, IBM/360 CDC6600 (Крэй)
Лидер, сегодня x86 Alpha, PowerPC, SPARC
Рынок Персональные ЭВМ (благодаря совместимости с программным обеспечением младших моделей, общая стоимость которого - в начале 90-х годов - составила несколько миллиардов долларов США) Высокопроизводительные компьютеры (стоимость ПО не настолько существенна)
Реализация Микропрограммная (интерпретация) Аппаратная
Число регистров общего назначения небольшое большое
Формат команд большое количество форматов команд различной разрядности команды фиксированной длины и фиксированного формата
Адресация большое количество методов адресации, преобладание двухадресного формата команд простые методы адресации, трехадресный формат команд

Основоположник, модель

Организация первых моделей процессоров - i8086/8088 - была направлена, в частности, на сокращение объёма программ, критичного для систем того времени, отличавшихся малой оперативной памятью. Расширение спектра операций, реализуемых системой команд, позволило уменьшить размер программ, а также трудоёмкость их написания и отладки. Однако увеличение числа команд повысило трудоёмкость разработки их топологических и микропрограммных реализаций. Последнее проявилось в удлинении сроков разработки CISC-процессоров, а также в проявлении различных ошибок в их работе.

Эти недостатки обусловили необходимость разработки альтернативной архитектуры - RISC, нацеленной, прежде всего, на снижение нерегулярности потока команд уменьшением их общего количества.

Лидер, сегодня

Процессоры Intel, начиная с 486-го, содержат ядро RISC, которое выполняет самые простые (и обычно самые распространенные) команды за один цикл тракта данных, а по обычной технологии CISC интерпретируются более сложные команды. В результате обычные команды выполняются быстро, а более сложные и редкие - медленно. Хотя при таком «гибридном» подходе работа происходит не так быстро, как у RISC, данная архитектура имеет ряд преимуществ, поскольку позволяет использовать старое программное обеспечение без изменений.

Первая модель процессора Intel, которая вплотную приблизилась к архитектуре RISC – PentiumPRO (Precision RISC Organization - Полноценная RISC-архитектура).

Реализация

Устранение уровня интерпретации обеспечивает высокую скорость выполнения большинства команд. В компьютерах типа CISC более сложные команды могут разбиваться на несколько частей, которые затем выполняются как последовательность микрокоманд. Эта дополнительная операция снижает скорость работы машины, но она может быть применима для редко встречающихся команд.

Число регистров

Развитие архитектуры RISC в значительной степени определялось прогрессом в области создания оптимизирующих компиляторов. Именно современная техника компиляции позволяет эффективно использовать преимущества большего числа регистров, конвейерной организации и большей скорости выполнения команд.

Большое число регистров позволяет большему объему данных храниться в регистрах на процессорном кристалле большее время и упрощает работу компилятора по распределению регистров под переменные.

Формат команд

Команды должны легко декодироваться. Предел количества вызываемых команд в секунду зависит от процесса декодирования отдельных команд. Декодирование команд осуществляется для того, чтобы определить, какие ресурсы им необходимы и какие действия нужно выполнить. Полезны любые средства, которые способствуют упрощению этого процесса. Например, используются регулярные команды с фиксированной длиной и с небольшим количеством полей. Чем меньше разных форматов команд, тем лучше.

Адресация

Простые методы адресации позволяют резко упростить декодирование команд. Организация регистровой структуры – основное достоинство и основная проблема RISC. Практически любая реализация RISC-архитектуры использует трехместные операции обработки, в которых результат и два операнда имеют самостоятельную адресацию – R1:= R2, R3. Это позволяет без существенных затрат времени выбрать операнды из адресуемых оперативных регистров и записать в регистр результат операции. Кроме того, трехместные операции дают компилятору большую гибкость по сравнению с типовыми двухместными операциями формата «регистр – память» архитектуры CISC. В сочетании с быстродействующей арифметикой RISC-операции типа «регистр – регистр» становятся очень мощным средством повышения производительности процессора.

Не можешь заставить других - работай сам. Когда-то давно попросил я Константина Афанасьева рассказать читателям о тех процессорах, которые не Pentium. "Сделаем," - ответил Афанасьев. Вот и делаем.

Как известно, сердцем любой современной персоналки является микропроцессор. У многих это слово однозначно ассоциируется с фирмой Intel, которая некогда выпустила получивший широкое распространение процессор 8086 и с тех пор почивает на лаврах, создавая все более мощные его версии. Однако на этом семействе свет клином не сошелся, и процессор Pentium II - отнюдь не венец эволюции, промежуточной ступенью перед которым якобы является человек.

Недолгое, но бурное развитие микрокомпьютеров привело к появлению двух доминирующих ветвей эволюции - Intel X86 и RISC. Первые появились раньше и успели занять значительную долю рынка, но разработанные в середине 80-х RISC-компьютеры оказались гораздо мощнее и оттяпали нишу высокопроизводительных систем.

Процессоры, не принадлежащие к классу RISC (Reduced Instruction Set Computing, вычисления с сокращенным набором команд), принято называть CISC (Complex ISC, вычисления со сложным набром команд). Так получилось, что из них пережило конкурентную борьбу только семейство X86 с его багажом накопленных программ, да и то современные представители семейства X86 (Pentium Pro, Pentium II, K5, K6) используют внутри себя все ту же архитектуру RISC. А потому RISC можно назвать новым, или, за давностью лет, очередным этапом развития процессоров.

А дело было так. В 80-е годы на пути роста производительности микропроцессоров стало сложное устройство центрального управления, связанное с доставшимся в наследство от традиционных ЭВМ большим набором команд. Теоретические исследования показали, что сведение набора команд до минимума наболее часто используемых позволит за счет незначительного увеличения объема программы добиться значительного упрощения процессора.

Тогда были сформулированы основные принципы RISC:

  1. Каждая команда независимо от ее типа выполняется за один такт.
  2. Все команды должны иметь одинаковую длину и использовать минимум адресных форматов.
  3. Вся обработка данных осуществляется в регистрах процессора, обращение к памяти происходит только при выполнении операций записи и чтения.
  4. Система команд должна обеспечивать поддержку языков высокого уровня.

Освободившаяся в результате площадь кристалла была пущена на увеличение разрядности и производительности процессоров. Например, выпущенный в 1985 году 32-разрядный процессор ARM (Advanced RISC Machine) при значительно большем быстродействии по степени интеграции был сопоставим с 8-разрядным Intel 8080 (25 тыс. транзисторов). И теперь 64 разряда для RISC-процессоров норма, а для X86 - далекое будущее.

То же сэкономленное место на кристалле было пущено на всевозможные ухищрения, позволяющие увеличить скорость обработки данных. За полвека существования компьютеров было разработано множество таких наворотов, которые разместить в CISC-процессоре было просто негде.

Преимущество RISC не только в экономии места. Активное использование регистров уменьшает число обращений к памяти до минимума. Загрузка регистров, то есть обмен между регистрами и памятью, осуществляется двумя различными способами - аппаратным и программным.

Аппаратный, применяющийся в процессорах SPARC, подразумевает реализацию 138 регистров, десять из которых видны всегда, а оставшиеся 128 разбиваются на восемь перекрывающихся окон, которые сменяют друг друга при вызове подпрограмм. Такая схема называется MORS (Multiple Overlapping Register Sets) или Rolodex.

В этом случае вызов процедуры происходит без обращения к памяти, передача параметров осуществляется через общие регистры двух окон, но для вызова девятой процедуры приходится прибегать к сложным техническим решениям, а сохранение 138 регистров в памяти при контекстном переключении процессов в многозадачной системе и вовсе вызывает непредсказуемую задержку.

Поэтому в большинстве RISC-процессоров применяется программное управление обращениями к памяти. Число регистров невелико (обычно 32), вызов процедур использует обычный стековый механизм. Предполагается, что обращения к памяти все равно поглощаются кэшем. Задача рационального использования регистров возлагается на компилятор.

Для архитектуры RISC вообще характерно возложение всех и всяческих задач на компилятор. Скорость работы одной и той же программы на RISC-процессоре может различаться в несколько раз в зависимости от компилятора, а ручная оптимизация позволяет сократить время работы фрагмента программы еще вдвое.

Еще один недостаток RISC - увеличение размера кода приблизительно в полтора раза из-за сокращенного набора команд и их фиксированной длины. Впрочем, в наше время немеренных мегабайтов это не слишком критично-развитие мультимедии привело к тому, что объем обрабатыаемых данных стал заведомо больше размера кода, а быстродействия не хватает по определению (см. эпиграф).

Дмитрий БОРОДАЕНКО,
[email protected]

Кому нужны 64-битные вычисления

Не успели мы освоиться с Windows 95 и 32-разрядными вычислениями, как оказалось, что и этого недостаточно. Гонка за числом разрядов продолжается, и дело тут не только и не столько в доступном адресном пространстве. Просто еще во времена больших машин было доказано, что для целочисленных вычислений оптимально 32-битовое представление, а для чисел с плавающей запятой необходимо и достаточно 64 бита.

Поэтому 32-разрядный процессор с действительными числами полной точности может управиться только в два захода, что для RISC-архитектуры с ее требованием минимизации форматов по крайней мере неудобно. Увеличение разрядности обрабатываемых данных вдвое требует увеличения либо разрядности процессора вдвое, либо тактовой частоты - вчетверо. Отчасти поэтому 32-разрядный PowerPC так отстает в вычислениях с плавающей запятой от полноценных 64-разрядных собратьев.

· Введение

RISC (Reduced Instruction Set Computer) – компьютер с сокращённым набором команд. RISC характеризуется следующими свойствами:

· Фиксированная длина машинных инструкций (например, 32 бита) и простой формат команды.

· Специализированные команды для операций с памятью - чтения или записи. Операции вида «прочитать-изменить-записать» отсутствуют. Любые операции «изменить» выполняются только над содержимым регистров (архитектура load-and-store).

· Большое количество регистров общего назначения (32 и более).

· Отсутствие поддержки операций вида «изменить» над укороченными типами данных - байт, 16-битное слово. Так, например, система команд DEC Alpha содержала только операции над 64-битными словами, и требовала разработки и последующего вызова процедур для выполнения операций над байтами, 16- и 32-битными словами.

· Отсутствие микропрограмм внутри самого процессора. То, что в CISC процессоре исполняется микропрограммами, в RISC процессоре исполняется как обыкновенный (хотя и помещённый в специальное хранилище) машинный код, не отличающийся принципиально от кода ядра ОС и приложений.

Типичные для RISC решения:

· Спекулятивное исполнение . При встрече с командой условного перехода процессор исполняет (или, по крайней мере, читает в кэш инструкций) сразу обе ветви до тех пор, пока не окончится вычисление управляющего выражения перехода. Позволяет отказаться от простоев конвейера при условных переходах.

· Переименование регистров . Каждый регистр процессора на самом деле представляет собой несколько параллельных регистров, хранящих несколько версий значения. Используется для реализации спекулятивного исполнения.

RISC процессор имеет повышенное быстродействие за счёт упрощения инструкций, чтобы их декодирование было более простым, а время выполнения - короче. Первые RISC процессоры даже не имели инструкций умножения и деления. Это также облегчает повышение тактовой частоты и делает более эффективной суперскалярность (распараллеливание инструкций между несколькими исполнительными блоками).

В первых архитектурах, причисляемых к RISC, большинство инструкций для упрощения декодирования имеют одинаковую длину и похожую структуру, арифметические операции работают только с регистрами, а работа с памятью идёт через отдельные инструкции загрузки (load) и сохранения (store). Эти свойства и позволили лучше сбалансировать этапы конвейеризации, сделав конвейеры в RISC значительно более эффективными и позволив поднять тактовую частоту.

Фокусирование на простых инструкциях и ведёт к архитектуре RISC, цель которой - сделать инструкции настолько простыми, чтобы они легко конвейеризировались и тратили не более одного такта на каждом шаге конвейера на высоких частотах.


Позднее было отмечено, что наиболее значимая характеристика RISC в разделении инструкций для обработки данных и обращения к памяти - обращение к памяти идёт только через инструкции load и store, а все прочие инструкции ограничены внутренними регистрами. Это упростило архитектуру процессоров: позволило инструкциям иметь фиксированную длину, упростило конвейеры и изолировало логику, имеющую дело с задержками при доступе к памяти, только в двух инструкциях. В результате RISC-архитектуры стали называть также архитектурами load/store.

«Сокращённый набор команд» неверно понимается как минимизация количества инструкций в системе команд. В действительности, инструкций у многих RISC процессоров больше, чем у CISC процессоров. На самом деле сокращён объём (и время) работы для каждой отдельной инструкции - как максимум один цикл доступа к памяти. Сложные инструкции CISC-процессоров могут требовать сотен циклов доступа к памяти для своего выполнения.

Первая система, которая может быть названа RISC системой, это суперкомпьютер CDC 6600, который был создан в 1964 Сеймуром Крем. Позднее появилась шутка, что термин RISC на самом деле расшифровывается как «Really invented by Seymour Cray» («На самом деле придуман Сеймуром Крэем»).

Первая попытка создать RISC процессор на чипе была предпринята в IBM в 1975. Эта работа привела к созданию семейства процессоров IBM 801, которые был выпущен в форме чипа под именем ROMP в 1981. ROMP расшифровывается как Research OPD (Office Product Division) Micro Processor, то есть «Исследовательский МП». Затем последовало несколько исследовательских проектов, в результате одного из которых появилась система POWER.

После того, как процессоры архитектуры x86 были переведены на суперскалярную RISC архитектуру, можно сказать, что подавляющее большинство существующих ныне процессоров основаны на архитектуре RISC.

При проектировании суперминикомпьютеров на базе последних достижений СБИС-технологии оказалось невозможным полностью перенести в нее архитектуру удачного компьютера, выполненного на другой элементной базе. Такой перенос был бы очень неэффективен из-за технических ограничений на ресурсы кристалла: площадь, количество транзисторов, мощность рассеивания и т. д.

Для снятия указанных ограничений в Беркли (США, Калифорния) была разработана RISC(Restricted (reduced) instruction set computer)-архитектура (регистро-ориентированная архитектура). Компьютеры с такой архитектурой иногда называют компьютерами с сокращенным набором команд. Суть ее состоит в выделении наиболее употребительных операций и создании архитектуры, приспособленной для их быстрой реализации. Это позволило в условиях ограниченных ресурсов разработать компьютеры с высокой пропускной способностью.

2.1. Основные принципы RISC-архитектуры

В компьютерной индустрии наблюдается настоящий бум систем с RISC-архитектурой. Рабочие станции и серверы, созданные на базе концепции RISC, завоевали лидирующие позиции благодаря своим исключительным характеристикам и уникальным свойствам операционных систем типа UNIX, используемых на этих платформах.

В самом начале 80-х годов почти одновременно завершились теоретические исследования в области RISC-архитектуры, проводившиеся в Калифорнийском, Стэнфордском университетах, а также в лабораториях фирмы IBM. Особую значимость имеет проект RISC-1, который возглавили профессора Давид Паттерсон и Карло Секуин. Именно они ввели в употребление термин RISC и сформулировали четыре основных принципа RISC-архитектуры:

* каждая команда независимо от ее типа выполняется за один машинный цикл, длительность которого должна быть максимально короткой;

* все команды должны иметь одинаковую длину и использовать минимум адресных форматов, что резко упрощает логику центрального управления процессором;

* обращение к памяти происходит только при выполнении операций записи и чтения, вся обработка данных осуществляется исключительно в регистровой структуре процессора;

* система команд должна обеспечивать поддержку языка высокого уровня. (Имеется в виду подбор системы команд, наиболее эффективной для различных языков программирования.)

Со временем трактовка некоторых из этих принципов претерпела изменения. В частности, возросшие возможности технологии позволили существенно смягчить ограничение состава команд: вместо полусотни инструкций, использовавшихся в архитектурах первого поколения, современные RISC-процессоры реализуют около 150 инструкций. Однако основной закон RISC был и остается незыблемым: обработка данных должна вестись только в рамках регистровой структуры и только в формате команд "регистр – регистр –регистр".

В RISC-микропроцессорах значительную часть площади кристалла занимает тракт обработки данных, а секции управления и дешифратору отводится очень небольшая его часть.

Аппаратная поддержка выбранных операций, безусловно, сокращает время их выполнения, однако критерием такой реализации является повышение общей производительности компьютера в целом и его стоимость. Поэтому при разработке архитектуры необходимо проанализировать результаты компромиссов между различными подходами, различными наборами операций и на их основе выбрать оптимальное решение.

Развитие RISC-архитектуры в значительной степени определяется успехами в области проектирования оптимизирующих компиляторов. Только современная технология компиляции позволяет эффективно использовать преимущества большого регистрового файла, конвейерной организации и высокой скорости выполнения команд. Есть и другие свойства процесса оптимизации в технологии компиляции, обычно используемые в RISC-процессорах: реализация задержанных переходов и суперскалярная обработка, позволяющие в один и тот же момент времени посылать на выполнение несколько команд.

2.2. Отличительные черты RISC - и CISC - архитектур

Двумя основными архитектурами набора команд, используемыми компьютерной промышленностью на современном этапе развития вычислительной техники, являются архитектуры CISC и RISC. Основоположником CISC-архитектуры – архитектуры с полным набором команд (CISC – Complete Instruction Set Computer) можно считать фирму IBM с ее базовой архитектурой IBM/360, ядро которой используется с 1964 г. и дошло до наших дней, например, в таких современных мейнфреймах, как IBM ES/9000.

Лидером в разработке микропроцессоров с полным набором команд считается компания Intel с микропроцессорами X86 и Pentium. Это практически стандарт для рынка микропроцессоров.

Простота архитектуры RISC-процессора обеспечивает его компактность, практическое отсутствие проблем с охлаждением кристалла, чего нет в процессорах фирмы Intel, упорно придерживающейся пути развития архитектуры CISC. Формирование стратегии CISC-архитектуры произошло за счет технологической возможности перенесения "центра тяжести" обработки данных с программного уровня системы на аппаратный, так как основной путь повышения эффективности для CISC-компьютера виделся, в первую очередь, в упрощении компиляторов и минимизации исполняемого модуля. На сегодняшний день CISC-процессоры почти монопольно занимают на компьютерном рынке сектор персональных компьютеров, однако RISC-процессорам нет равных в секторе высокопроизводительных серверов и рабочих станций.

Основные черты RISC-архитектуры с аналогичными по характеру чертами CISC-архитектуры отображаются следующим образом (табл. 2.1):

Таблица 2.1. Основные черты архитектуры

CISC‑архитектура

RISC-архитектура

Многобайтовые команды

Однобайтовые команды

Малое количество регистров

Большое количество регистров

Сложные команды

Простые команды

Одна или менее команд за один цикл процессора

Несколько команд за один цикл процессора

Традиционно одно исполнительное устройство

Несколько исполнительных

устройств

Одним из важных преимуществ RISC-архитектуры является высокая скорость арифметических вычислений. RISC-процессоры первыми достигли планки наиболее распространенного стандарта IEEE 754, устанавливающего 32-разрядный формат для представления чисел с фиксированной точкой и 64-разрядный формат "полной точности" для чисел с плавающей точкой. Высокая скорость выполнения арифметических операций в сочетании с высокой точностью вычислений обеспечивает RISC-процессорам безусловное лидерство по быстродействию в сравнении с CISC-процессорами.

Другой особенностью RISC-процессоров является комплекс средств, обеспечивающих безостановочную работу арифметических устройств: механизм динамического прогнозирования ветвлений, большое количество оперативных регистров, многоуровневая встроенная кэш-память.

Организация регистровой структуры – основное достоинство и основная проблема RISC. Практически любая реализация RISC-архитектуры использует трехместные операции обработки, в которых результат и два операнда имеют самостоятельную адресацию – R1: = R2, R3. Это позволяет без существенных затрат времени выбрать операнды из адресуемых оперативных регистров и записать в регистр результат операции. Кроме того, трехместные операции дают компилятору большую гибкость по сравнению с типовыми двухместными операциями формата "регистр – память" архитектуры CISC. В сочетании с быстродействующей арифметикой RISC-операции типа "регистр – регистр" становятся очень мощным средством повышения производительности процессора.

Вместе с тем опора на регистры является ахиллесовой пятой RISC-архитектуры. Проблема в том, что в процессе выполнения задачи RISC-система неоднократно вынуждена обновлять содержимое регистров процессора, причем за минимальное время, чтобы не вызывать длительных простоев арифметического устройства. Для CISC-систем подобной проблемы не существует, поскольку модификация регистров может происходить на фоне обработки команд формата "память – память".

Существуют два подхода к решению проблемы модификации регистров в RISC-архитектуре: аппаратный, предложенный в проектах RISC-1 и RISC-2, и программный, разработанный специалистами IВМ и Стэндфордского университета. Принципиальная разница между ними заключается в том, что аппаратное решение основано на стремлении уменьшить время вызова процедур за счет установки дополнительного оборудования процессора, тогда как программное решение базируется на возможностях компилятора и является более экономичным с точки зрения аппаратуры процессора.

2.3. Некоторые задачи реализации RISC-процессоров

Нас будет в основном интересовать выбор оптимального набора операций. При его решении мы можем по некоторой джентльменской смеси задач, для выполнения которой предназначен компьютер, выбрать пакет контрольных программ и построить для них профиль их выполнения либо использовать метод статических или динамических измерений параметров самих программ.

При профилировании программы определяется доля общего времени центрального процессора, затрачиваемого на выполнение каждого оператора (операции) программы. Анализ полученных результатов позволит выявить характерные особенности профилируемой программы.

При статических или динамических измерениях подсчитывается, сколько раз в программе встречается тот или иной оператор (операция) или как часто признаки принимают положительные или отрицательные значения в тексте программы (статика) либо в результате выполнения (динамика).

Сочетание результатов, полученных в ходе предложенных исследований, дает общую картину анализируемой программы. Вот результаты одного из таких измерений в статике, проведенные для программ-компиляторов: операторы присваивания – 48 %; условные операторы – 15; циклы – 16; операторы вызова-возврата – 18; прочие операторы – 3 %.

Измерение трехсот процедур, используемых в программах – операционных системах в динамике показали следующие измерения типов операндов: константы – 33 %; скаляры – 42; массивы (структуры) – 20 и прочие – 5 %.

При этом статистика среди команд управления потоком данных следующая. В разных тестовых пакетах программ команды условного перехода занимают от 66 до 78 %, команды безусловного перехода – от 12 до 18 %, частота переходов на выполнение составляет от 10 до 16 %.

Отсюда можно сделать вывод, что операторы присваивания занимают основную часть в программах-компиляторах, а операнды типа константа и локальные скаляры составляют основную часть операндов в процедурах, к которым происходит обращение в процессе выполнения программы.

Подобные количественные и качественные измерения образуют основу для оптимизации процессорной архитектуры.

Так, если операторы присваивания занимают 48 % всех операторов, то ясно, что операцию доступа к операндам следует реализовать аппаратно. Особенно это важно, если речь идет о нечисловых задачах, в которых операции вычислительного плана, как правило, просты. В условных операторах, операторах цикла и вызова-возврата производятся манипуляции над множеством операндов, что также подтверждает необходимость аппаратной реализации операции доступа к операндам.

При анализе типов операндов мы учитывали три категории:

* константы – не меняются во время выполнения программы и имеют, как правило, небольшие значения;

* скаляры – обращение к ним происходит, как правило, явно по их имени. Их обычно немного, и они описываются в процедурах как локальные;

* обращение к элементам массивов и структур происходит посредством индексов и указателей, т. е. через косвенную адресацию. Этих элементов, как правило, много.

Для осуществления доступа к операнду необходимо вначале определить физический адрес ячейки, где хранится операнд, а затем осуществить доступ к операнду. Если операнд – константа, ее можно указать в команде. Доступ к ней может быть осуществлен немедленно после обращения. В других случаях все зависит от типа памяти, где хранится операнд. Регистровые блоки и кэш-память мало отличаются по емкости, скорости доступа и стоимости, однако существенно отличаются по накладным расходам на адресацию. Обращение к кэш-памяти осуществляется при помощи адресов полной длины, которые требуют более высокой полосы пропускания каналов обмена. Как правило, этот адрес приходится формировать во время выполнения программы, что как минимум требует полноразрядного сложения или обращения к регистру либо и того, и другого. Регистровые блоки адресуются короткими номерами регистров, которые обычно указываются в команде, что упрощает их декодирование. Однако регистровая память может хранить только определенные типы данных, в то время как кэш-память может использоваться и как основная. В связи с этим распределение скалярных переменных по регистрам необычайно важно, ибо существенно влияет на скорость обработки.

Необходимо решить вопрос с размером регистровых окон, ибо в обычной архитектуре окна однорегистровые, что требует операции запоминания-восстановления при каждом вызове-возврате.

При вызовах процедур необходимо запоминать содержимое регистров, а при возвращении – восстанавливать их, на что тратится значительное время. Вызовы процедур в современных структурированных программах делаются довольно часто, при этом суммарные накладные расходы на выполнение команд вызова и возврата из процедур на стандартных процессорах доходит до 50 % всех обращений к памяти в программе. Чтобы уменьшить время передачи данных между процедурами-родителями и процедурами-дочерьми (в случае, когда глубина их вложенности больше единицы), можно создать блок регистров, предоставив и родителям, и дочерям доступ к некоторым из них. Другими словами, необходимо создать перекрывающиеся блоки регистров. Такая возможность реализуется через перекрывающиеся "окна", накладываемые на блок регистров. Этот механизм реализован в RISC-архитектуре. Многие измерения показывают, что около 97 % процедур имеют не более шести параметров, что требует, чтобы перекрытие соседних окон шло где-то на пять регистров.

Процессор всегда содержит указатель текущего окна с возможностью его модификации в рамках реализованной глубины вложения процедур. Если глубина переполняется, часть содержимого окон направляется в основную память, чтобы иметь место для новых процедур. Для простоты реализации в ОП направляется содержимое целого окна. Это говорит о целесообразности введения многооконного механизма с заданным размером окна. Размер окна определяется количеством передаваемых параметров, а количество окон – допустимой вложенностью процедур.

Среди достоинств применения больших регистровых блоков можно выделить высокую скорость доступа к блокам и увеличение частоты вызова процедур. Среди недостатков – высокая стоимость большого регистрового блока, организуемого в ущерб другим функциональным блокам на кристалле.

Аппаратная реализация механизма перекрытия окон должна вводиться, если получаемый выигрыш перекрывает затраты.

Так как значительная часть процедур требует от трех до шести параметров, то следует подумать об оптимизации использования окон. Во-первых, пересылать в ОП в случае переполнения регистрового блока можно не все окна, а только содержимое регистров, используемых для данной процедуры, и, во-вторых, применять механизм с окнами переменных размеров, определяемых во время выполнения.

Перспективной разновидностью RISC-архитектуры явилась архитектура SPARC (Scalable Processor Architecture).

Замечание. Scaling – масштабирование, т. е. способность представлять данные таким образом, чтобы и они, и результат проводимых с ними вычислений находились в диапазоне чисел, которые могут обрабатываться в рамках данного процесса или на данном оборудовании.

Новая серия SPARCSTATIONS фирмы Sun Microsystems базируется на SPARC-архитектуре. Первые модели этой фирмы были изготовлены уже в 1989 г. Операционной средой для всех станций фирмы Sun является SunOS – разновидность OS Unix, снабженная многооконным графическим интерфейсом Open Look.

Для повышения скорости обработки данных используются компьютеры с VLIW (Very Long Instruction Word)-архитектурой. Структура команды таких компьютеров наряду с кодом операции и адресами операндов включает теги и дескрипторы. Наряду с существенным ускорением обработки данных такая архитектура позволяет экономить память при достаточном количестве обращений к командам и сокращать общее количество команд в системе команд.

2.4. Методы адресации и типы команд

В машинах с регистрами общего назначения метод (или режим) адресации объектов, с которыми манипулирует команда, может задавать константу, регистр или ячейку памяти.

В табл. 2.2 представлены основные методы адресации операндов, которые реализованы в компьютерах, рассмотренных в настоящей книге.

Таблица 2.2. Методы адресации

Метод
адресации

Пример
команды

Смысл
команды

Использование команды

Регистровая

Для записи требуемого значения в регистр

Непосредственная или литерная

Для задания констант

Базовая со смещением

R4= R4+M(100+R1)

Для обращения к локальным переменным

Косвенная регистровая

Для обращения по указателю к вычисленному адресу

Индексная

R3 = R3+M(R1+R2)

Прямая или абсолютная

Полезна для обращения
к статическим данным

Косвенная

R1 = R1+M(M(R3))

Если R3 – адрес указателя р, то выбирается значение по этому указателю

Автоинкрементная

Полезна для прохода в цикле по массиву с шагом: R2 – начало массива. В каждом цикле R2 получает приращение d

Автодекрементная

Аналогична предыдущей. Обе могут использоваться для реализации стека

Базовая индексная со смещением и масштабированием

R1=R1+M(100)+R2+R3*d

Для индексации массивов

Адресация непосредственных данных и литерных констант обычно рассматривается как один из методов адресации памяти (хотя значения данных, к которым в этом случае производятся обращения, являются частью самой команды и обрабатываются в общем потоке команд).

В табл. 2.2 на примере команды сложения (Add) приведены наиболее употребительные названия методов адресации, хотя при описании архитектуры в документации производители компьютеров и ПО используют разные названия для этих методов. В табл. 2.2. знак "=" используется для обозначения оператора присваивания, а буква M обозначает память (Memory). Таким образом M(R1) обозначает содержимое ячейки памяти, адрес которой определяется содержимым регистра R1.

Использование сложных методов адресации позволяет существенно сократить количество команд в программе, но при этом значительно увеличивается сложность аппаратуры.

Команды традиционного машинного уровня можно разделить на несколько типов, которые показаны в табл. 2.3.

Таблица 2.3. Основные типы команд

Тип операции

Арифметические
и логические

Целочисленные арифметические и логические операции: сложение, вычитание, логическое сложение, логическое умножение и т. д.

Пересылки данных

Операции загрузки/записи

Управление потоком команд

Безусловные и условные переходы, вызовы процедур и возвраты

Системные операции

Системные вызовы, команды управления виртуальной памятью и т. д.

Операции с плавающей точкой

Операции сложения, вычитания, умножения и деления над вещественными числами

Десятичные операции

Десятичное сложение, умножение, преобразование форматов и т. д.

Операции над строками

Пересылки, сравнения и поиск строк

Тип операнда может задаваться либо кодом операции в команде, либо с помощью тега, который хранится вместе с данными и интерпретируется аппаратурой во время обработки данных.

Обычно тип операнда (целый, вещественный, символ) определяет и его размер. Как правило, целые числа представляются в дополнительном коде. Для задания символов компания IBM использует код EBCDIC, другие компании применяют код ASCII. Для представления вещественных чисел с одинарной и двойной точностью придерживаются стандарта IEEE 754.

В ряде процессоров применяют двоично кодированные десятичные числа, которые представляют в упакованном и неупакованном форматах. Упакованный формат предполагает, что для кодирования цифр 0 – 9 используют 4 разряда и две десятичные цифры упаковываются в каждый байт. В неупакованном формате байт содержит одну десятичную цифру, которая обычно изображается в символьном коде ASCII.

2.5. Компьютеры со стековой архитектурой

При создании компьютера одновременно проектируют и систему команд (СК) для него. Существенное влияние на выбор операций для их включения в СК оказывают:

* элементная база и технологический уровень производства ком-пьютеров;

* класс решаемых задач, определяющий необходимый набор операций, воплощаемых в отдельные команды;

* системы команд для компьютеров аналогичного класса;

* требования к быстродействию обработки данных, что может породить создание команд с большой длиной слова (VLIW-команды).

Анализ задач показывает, что в смесях программ доминирующую роль играют команды пересылки и процессорные команды, использующие регистры и простые режимы адресации.

На сегодняшний день наибольшее распространение получили следующие структуры команд: одноадресные (1A), двухадресные (2A), трехадресные (3A), безадресные (БА), команды с большой длиной слова (VLIW – БДС) (рис. 2.1):

Дескрипторы

Рис. 2.1. Структуры команд

Причем операнд может указываться как адресом, так и непосредственно в структуре команды.

В случае БА-команд операнды выбираются и результаты помещаются в стек (магазин, гнездо). Типичными первыми представителями БА-компьютеров являются KDF-9 и МВК "Эльбрус". Их характерной особенностью является наличие стековой памяти.

Стек – это область оперативной памяти, которая используется для временного хранения данных и операций. Доступ к элементам стека осуществляется по принципу FILO (first in, last out) – первым вошел, последним вышел. Кроме того, доступ к элементам стека осуществляется только через его вершину, т. е. пользователю "виден" лишь тот элемент, который помещен в стек последним.

Рассмотрим функционирование процессора со стековой организацией памяти.

При выполнении различных вычислительных процедур процессор использует либо новые операнды, до сих пор не выбиравшиеся из памяти компьютера, либо операнды, употреблявшиеся в предыдущих операциях. В процессорах с классической структурой обращение к любому операнду (1A-ЭВМ) требует цикла памяти.

Рассмотрим пример.

Пусть процессор вычисляет значение выражения

DIV_ADBLOCK142">

Номер
команды

Комментарии

– рабочая ячейка

– рабочая ячейка

Замечание. Выполнение команды типа https://pandia.ru/text/78/406/images/image016_43.gif" width="28" height="28">

Как следует из приведенной программы, операнд a выбирается из памяти 2 раза (команды 4 и 5), b – 3 раза (команды 2, 7 и 8). Кроме того, потребовались дополнительные обращения к памяти для запоминания и вызова из памяти результатов промежуточных вычислений (команды 3, 6, 9, 10).

Если главным фактором, ограничивающим быстродействие компьютера, является время цикла памяти, то необходимость в дополнительных обращениях к памяти значительно снижает скорость его работы. Очевидно, что принципиально необходимы только обращения к памяти за данными в первый раз. В дальнейшем они могут храниться в триггерных регистрах или СОЗУ.

Указанные соображения получили свое воплощение в ряде логических структур процессора. Одна из них – процессор со стековой памятью. Принцип ее работы поясняет схема, представленная на рис. 2.2.

Стековая память представляет собой набор из n регистров, каждый из которых способен хранить одно машинное слово. Одноименные разряды регистров P1, P2, ..., Pn соединены между собой цепями сдвига. Поэтому весь набор регистров может рассматриваться как группа n‑разрядных сдвигающих регистров, составленных из одноименных разрядов регистров P1, P2, ..., Pn. Информация в стеке может продвигаться между регистрами вверх и вниз.

Движение вниз: (P1) ® P2, (P2) ® P3, ..., а P1 заполняется данными из главной памяти.

Движение вверх: (Pn) ® Pn‑1, (Pn‑1) ® Pn‑2, а Pn заполняется нулями.



Рис. 2.2. Стековая организация процессора

Регистры P1 и P2 связаны с АЛУ, образуя два операнда для выполнения операции. Результат операции записывается в P1. Следовательно, АЛУ выполняет операцию .

Одновременно с выполнением арифметической операции (АО) осуществляется продвижение операндов вверх, не затрагивая P1, т. е. (P3) ® P2, (P4) ® P3 и т. д.

Таким образом, АО используют подразумеваемые адреса, что уменьшает длину команды. В принципе, в команде достаточно иметь только поле, определяющее код операции. Поэтому компьютеры со стековой памятью называют безадресными. В то же время команды, осуществляющие вызов или запоминание информации из главной памяти, требуют указания адреса операнда. Поэтому в ЭВМ со стековой памятью используются команды переменной длины. Например, в KDF-9 команды АО – однослоговые, команды обращения к памяти и передач управления – трехслоговые, остальные – двуслоговые.

Команды располагаются в памяти в виде непрерывного массива слогов независимо от границ ячеек памяти. Это позволяет за один цикл обращения к памяти вызвать несколько команд.

Для эффективного использования возможностей такой памяти в ЭВМ вводятся спецкоманды:

· дублирование ~ (P1) ® P2, (P2) ® P3, ... и т. д., а (P1) остается при этом неизменным;

· реверсирование ~ (P1) ® P2, а (P2) ® P1, что удобно для выполнения некоторых операций.

Рассмотрим тот же пример для новой ситуации (табл. 2.5):

0 " style="border-collapse:collapse;border:none">

Вызов b

Дублирование

Вызов c

Сложение

Реверсирование

Дублирование

Умножение

Вызов a

Дублирование

Умножение

Сложение

Как следует из табл. 2.5, понадобились лишь три обращения к памяти для вызова операндов (команды 1, 3, 8). Меньше обращений принципиально невозможно. Операнды и промежуточные результаты поступают для операций в АУ из стековой памяти; 9 команд из 12 являются безадресными.

Вся программа размещается в трех 48-разрядных ячейках памяти.

Главное преимущество использования магазинной памяти состоит в том, что при переходе к подпрограммам (ПП) или в случае прерывания нет необходимости в специальных действиях по сохранению содержимого арифметических регистров в памяти. Новая программа может немедленно начать работу. При введении в стековую память новой информации данные, соответствующие предыдущей программе, автоматически продвигаются вниз. Они возвращаются обратно, когда новая программа закончит вычисления.

Наряду с указанными преимуществами стековой памяти отметим также:

* уменьшение количества обращений к памяти;

* упрощение способа обращения к ПП и обработки прерываний.

Недостатки стековой организации памяти:

· большое число регистров с быстрым доступом;

· необходимость в дополнительном оборудовании, чтобы следить за переполнением стековой памяти, ибо число регистров памяти конечно;

· приспособленность главным образом для решения научных задач и в меньшей степени для систем обработки данных или управления технологическими процессами.

2.6. Оптимизация системы команд

Важным вопросом построения любой системы команд является оптимальное кодирование команд. Оно определяется количеством регистров и применяемых методов адресации, а также сложностью аппаратуры, необходимой для декодирования. Именно поэтому в современных RISC-архитектурах используются достаточно простые методы адресации, позволяющие резко упростить декодирование команд. Более сложные и редко встречающиеся в реальных программах методы адресации реализуются с помощью дополнительных команд, что, вообще говоря, приводит к увеличению размера программного кода. Однако такое увеличение программы с лихвой окупается возможностью простого увеличения частоты RISC-процессоров. Этот процесс мы можем наблюдать сегодня, когда максимальные тактовые частоты практически всех RISC-процессоров (Alpha, R4400, HyperSPARC и Power2) превышают тактовую частоту, достигнутую процессором Pentium.

Общую технологию проектирования системы команд для новой ЭВМ можно обозначить так: зная класс решаемых задач, выбираем некоторую типовую СК для широко распространенного компьютера и исследуем ее на предмет присутствия всего разнообразия операций в заданном классе задач. Вовсе не встречающиеся или редко встречающиеся операции не покрываем командами. Все частоты встреч операций для задания их в СК всякий раз можно определить из соотношений "стоимость затрат – сложность реализации – получаемый выигрыш".

Второй путь проектирования СК состоит в расширении имеющейся системы команд. Один из способов такого расширения – создание макрокоманд, второй – используя имеющийся синтаксис языка СК, дополнить его новыми командами с последующим переассемблированием, через расширение функций ассемблера. Оба эти способа принципиально одинаковы, но отличаются в тактике реализации аппарата расширения.

Так, система команд для ПК IBM покрывает следующие группы операций: передачи данных, арифметические операции, операции ветвления и циклов, логические операции и операции обработки строк.

Разработанную СК следует оптимизировать. Один из способов оптимизации состоит в выявлении частоты повторений сочетаний двух или более команд, следующих друг за другом в некоторых типовых задачах для данного компьютера, с последующей заменой их одной командой, выполняющей те же функции. Это приводит к сокращению времени выполнения программы и уменьшению требуемого объема памяти.

Мы можем исследовать и часто генерируемые компилятором некоторые последовательности команд, убирая из них избыточные коды.

Оптимизацию можно проводить и в пределах отдельной команды, исследуя ее информационную емкость. Для этого можно применить аппарат теории информации, в частности для оценки количества переданной информации – энтропию источника. Тракт "процессор – память" можно считать каналом связи.

Замечание. Энтропия – это мера вероятности пребывания системы в данном состоянии (в статистической физике).

2.7. Процессоры с микропрограммным управлением

Известны два подхода к построению логики формирования функциональных импульсов. Один из них: каждой операции процессора соответствует набор логических схем, выполненных на диодах, транзисторах и т. д. и определяющих, какой функциональный импульс (ФИ) и в каком такте должен быть возбужден. Пусть некоторый ФИ должен появиться в такте j операции m при условии наличия переполнения сумматора или в такте i операции n. Требуемое действие будет выполнено, если подать сигналы, соответствующие указанным кодам операции, тактам и условиям на входы схем И, а выходы последних через схему ИЛИ соединить с формирователем ФИ (рис. 2.3).



Такой принцип управления операциями получил название "жесткой" или "запаянной" логики и широко применяется во многих компьютерах.

Рис. 2.3. Формирование функционального импульса

Другой принцип организации управления : каждой микрооперации (МИО) ставится в соответствие слово (или часть слова), называемое микрокомандой и хранимое в памяти подобно тому, как хранятся в памяти команды обычного компьютера. Здесь команде соответствует микропрограмма, т. е. набор микрокоманд (МИК), указывающих, какие ФИ и в какой последовательности необходимо возбуждать для выполнения данной операции. Такой подход получил название микропрограммирования или "хранимой логики". Это подчеркивает тот факт, что в микропрограммном компьютере логика управления реализуется не в виде электронной схемы , а в виде закодированной информации, находящейся в каком-то регистре.

Идея микропрограммирования, высказанная в 1951 г. Уилксом, до недавнего времени не находила широкого применения, ибо:

· не было надежных и быстродействующих ЗУ для хранения микропрограммы;

· неправильно понимались задачи и выгоды микропрограммирования.

Поясним второй аргумент. Считалось, ценность микропрограммирования в том, что каждый потребитель может сконструировать себе из МИК нужный ему набор операций в данной конкретной задаче. Замена наборов команд достигалась бы заменой информации в ЗУ без каких-либо переделок в аппаратуре. Однако в этом случае программисту необходимо было бы знать все тонкости работы инженера-разработчика компьютера. А основная тенденция развития ЭВМ в связи с автоматизацией программирования состоит в том, чтобы освободить программиста от детального изучения устройств компьютера и в максимальной степени приблизить язык компьютера к языку человека. Поэтому микропрограммные компьютеры считали трудными для пользователя.

В последнее время интерес к микропрограммному принципу возродился, так как:

· созданы односторонние (читающие) быстродействующие ЗУ с малым циклом памяти;

· микропрограммирование рассматривается не как средство повышения гибкости программирования, а как метод построения системы управления процессором, удобный для инженера-разработчика компьютера.

Программист в своей работе может и не подозревать о микропро-граммной структуре компьютера и использовать все средства ПО и языки программирования самого высокого уровня. Использование микропрограммного принципа позволяет облегчить разработку и изменение логики процессора.

С появлением программного доступа к состоянию процессора после выполнения каждой МИК обеспечивается возможность создания экономичной системы автоматической диагностики неисправностей и появляется способность к эмуляции, т. е. к выполнению на данной ЭВМ программы, составленной в кодах команд другого компьютера. Это достигается введением дополнительного набора МИК, соответствующих командам эмулируемого компьютера.

Эти возможности способствуют распространению методов микропрограммирования при построении УУ в современных компьютерах.

2.7.1. Горизонтальное микропрограммирование



Существуют два вида микропрограммного управления: горизонтальное и вертикальное. При горизонтальном – каждому разряду МИК соответствует определенная МИО, выполняемая независимо от содержания других разрядов. Микропрограмма может быть представлена в виде матрицы n ´ m, где n – число ФИ, m – количество МИК, т. е. строка соответствует одной МИК, а столбец – одной МИО (рис. 2.4).

Рис.2.4. Микропрограмма при горизонтальном
микропрограммировании

Примерные значения разрядов МИК приведены на рис. 2.5.

Рис.2.5. Значение разрядов МИК (МИО):

1 – гашение сумматора; 2 – гашение указателя переполнения; 3 – обратный код сумматора; 4 – гашение регистра множителя частного; 5 – инвертирование знака; 6 – сдвиг содержимого сумматора влево; 7 – сдвиг содержимого сумматора вправо; 8 – увеличение содержимого сумматора на 1; 9

чтение из ЗУ в сумматор; …

Наличие "1" в пересечении какой-либо строки и столбца означает посылку ФИ в данную МИК, а наличие "0" – его отсутствие.

Размещение "1" в нескольких разрядах МИК означает выполнение нескольких МИО одновременно. Конечно, возбуждаемые МИО должны быть совместимы.

Пусть, например, разряды 9-разрядной МИК принимают следующие значения: . Тогда, если заданные разряды соответствуют семантике, указанной на рис. 2.5, то МИО, определяемые разрядами 9, 7 и 6, несовместимы.

Для расширения возможностей МИК иногда используют многотактный принцип исполнения МИК. При этом каждому разряду присваивается номер такта, в котором выполняется соответствующая ему МИО, т. е. здесь все совместимые МИО имеют один номер такта. Все остальные такты нумеруются в порядке их естественного выполнения. Однако универсальную нумерацию МИО в МИК указать затруднительно.

Достоинства горизонтального микропрограммирования:

· возможность одновременного выполнения нескольких МИО;

· простота формирования ФИ (без схем дешифрации).

Недостатки:

· большая длина МИК, так как число ФИ в современных компьютерах достигает нескольких сот, и соответственно большой объем ЗУ для
хранения МИК;

· из-за ограничений совместимости операций, а также из-за последовательного характера выполнения алгоритмов операций лишь небольшая часть разрядов МИК будет содержать "1". В основном матрица будет состоять из нулей. Неэффективное использование ЗУ привело к малому распространению горизонтального микропрограммирования.

2.7.2. Вертикальное микропрограммирование

При вертикальном микропрограммировании каждая МИО определяется не состоянием одного разряда, а двоичным кодом, содержащимся в определенном поле МИК. Микрокоманда несколько напоминает формат обычных команд. Отличие состоит в том, что:

· выполняется более элементарное действие – МИО вместо операции;

· адресная часть (в большинстве случаев) определяет не ячейку памяти, а операционный регистр процессора.



Формат МИК при вертикальном микропрограммировании приведен на рис. 2.6.

Рис. 2.6. Формат вертикальной МИК

Поля Р1 и Р2 в адресной части МИК указывают двоичные номера операционных регистров, содержимое которых участвует в одной операции. Одно из полей является одновременно и адресом результата. Таким образом, реализация арифметической или логической МИО, указанной в данной МИК,

может быть выражена формулой

(P1) Ä (P2) ® P1, или (P2) ®P1,

где Ä – символ МИО.

Для МИК обращения к памяти поле P1 указывает регистр, куда принимается информация, а P2 – регистр, содержимое которого является адресом обращения к ЗУ. Указанный формат МИК не единственный.

Каждая МИК выполняет следующие функции:

· указывает выполняемую МИО;

· указывает следующую МИО через задание "следующего адреса";

· задает продолжительность МИК;

· указывает дополнительные действия – контроль и т. д.

Обычно в слове МИК имеются четыре зоны, соответствующие указанным функциям. Вообще говоря, некоторые из зон могут указываться неявно, например выбор очередной МИК может осуществляться из следующей ячейки, продолжительность МИК может быть определена одинаковой для всех МИК и т. д.

Первыми компьютерами с микропрограммным управлением среди отечественных ЭВМ были МИР, НАИРИ, среди зарубежных – IBM/360,
Spectra 70.

Упражнения

1. Проанализируйте особенности RISC‑ и CISC‑архитектур компьютеров.

2. Приведите конкретные примеры воплощения RISC‑архитектур в реальных компьютерах.

3. Промоделируйте работу RISC‑программы на CISC-компьютере.

4. Проанализируйте и сравните по различным параметрам (быстродействию, памяти, сложности программирования) программы для одно‑, двух‑, трех‑ и безадресных компьютеров.

5. Проведите оптимизацию системы команд, если задан конкретный набор решаемых задач.

6. Разработайте микропрограммы выполнения заданных операций для реального компьютера. Проанализируйте целесообразность микропрограм-мной поддержки операций.

7. Разработайте систему команд для компьютера с VLIW‑архитектурой.