Сайт о телевидении

Сайт о телевидении

» » Бобры бодры и добры использовать алгоритм хаффман. Код Хаффмана. Симаков Александр, СыктГУ, Кафедра Прикладной Математики

Бобры бодры и добры использовать алгоритм хаффман. Код Хаффмана. Симаков Александр, СыктГУ, Кафедра Прикладной Математики

Сегодня мало кого из пользователей интересует вопрос, связанный с механизмом сжатия файлов. Процесс работы с персональным компьютером по сравнению с прошлым стал осуществляться намного проще.


Сегодня практически любой пользователь, который работает с файловой системой, пользуется архивами. Однако, мало кто из пользователей задумывался, как осуществляется сжатие файлов.

Коды Хаффмана стали первым вариантом. Они по-прежнему используются в различных архиваторах. Большинство пользователей даже не задумывается о том, как просто осуществляется сжатие файла по такой схеме. В данном обзоре мы рассмотрим, как осуществляется сжатие, какие особенности помогают ускорить и упростить процесс кодирования. Также мы попробуем разобраться с основными принципами построения дерева кодирования.

Алгоритм: история

Первым алгоритмом, предназначенным для проведения эффективного кодирования электронной информации, стал код, предложенный Хаффманом в 1952 году. Именно этот код на сегодняшний день можно считать базовым элементом большинства программ, разработанных для сжатия информации. Одними из наиболее популярных источников, которые используют данный код, на сегодняшний день являются архивы RAR, ARJ, ZIP. Данный алгоритм также используется для сжатия изображений JPEG и графических объектов. Также во всех современных факсах используется алгоритм кодирования, который был изобретен еще в 1952 году. Несмотря на то, что со времени создания данного кода прошло достаточно много времени, его эффективно используют в оборудовании старого типа, а также в новом оборудовании и оболочках.

Принцип эффективного кодирования

В основе алгоритма Хаффмана используется схема, которая позволяет заменить самые вероятные и наиболее часто встречающиеся символы кодами двоичной системы. Те символы, которые встречаются реже, заменяют длинными кодами. Переход к длинным кодам Хаффмана осуществляется только после того, как система использует все минимальные значения. Данная методика дает возможность минимизировать длину кода на символ исходного сообщения. В данном случае особенность заключается в том, что вероятности появления букв в начале кодирования должны быть уже известны. Конечное сообщение будет составляться именно из них. Исходя из этой информации, осуществляется построение кодового дерева Хаффмана. На основе него и будет осуществляться процесс кодирования букв в архиве.

Код Хаффмана: пример

Для того чтобы проиллюстрировать алгоритм Хаффмана, рассмотрим графический вариант построения кодового дерева. Чтобы использование данного способа было более эффективным, необходимо уточнить определение некоторых значений, которые необходимы для понятия данного способа. Всю совокупность множества узлов и дуг, которые направлены от узла к узлу, называют графом. Дерево само по себе является графом с набором определенных свойств. В каждый узел должно входить не больше одной из всех дуг. Один из узлов должен являться корнем дерева. Это значит, что в него не должны вообще входить дуги. Если начать от корня перемещения по дугам, то данный процесс должен позволять попасть в любой узел.

В коды Хаффмана также входит такое понятие, как лист дерева. Он представляет собой узел, из которого не должна выходить ни одна дуга. Если два узла между собой соединены дугой, то один из них является родителем, а другой ребенком. Если два узла имеют общий родительский узел, то их называют братскими узлами. Если кроме листьев у узлов выходит по несколько дуг, то такое дерево называют двоичным. Именно таким и является дерево Хаффмана. Особенностью узлов данного строения является то, что вес каждого родителя равняется сумме веса узловых детей.

Дерево Хаффмана: алгоритм построения

Построение кода Хаффмана выполняется из букв входного алфавита. Образуется список узлов, свободных в будущем кодовом дереве. В этом списке вес каждого узла должен быть таким же, что и вероятность возникновения буквы сообщения, которая соответствует данному узлу. Среди нескольких свободных узлов при этом выбирается тот, который меньше всего весит. Если при этом в нескольких узлах наблюдаются минимальные показатели, то можно свободно выбрать любую пару. После этого осуществляется создание родительского узла. Он должен весить столько же, сколько весит сумма данной пары узлов. Родителя после этого отправляют в список со свободными узлами. Детей удаляют. Дуги при этом получают соответствующие показатели, нули и единицы. Данный процесс повторяется столько раз, сколько требуется для того, чтобы остался только один узел. После этого по направлению сверху вниз выписываются двоичные цифры.

Как повысить эффективность сжатия

Для повышения эффективности сжатия, во время построения дерева кода необходимо использовать все данные, касающиеся вероятности появления букв в конкретном файле, который прикреплен к дереву. Нельзя допускать того, чтобы они были раскиданы по большому числу текстовых документов. Если пройтись предварительно по данному файлу, то можно получить статистику того, как часто встречаются буквы из объекта, который подлежит сжиманию.

Как ускорить процесс сжатия

Для ускорения работы алгоритма, определение букв нужно осуществлять не по показателям появления тех или иных букв, а по частоте их встречаемости. Алгоритм благодаря этому становится проще, а работа с ним значительно ускоряется. Это также дает возможность избежать операций, связанных с делением и плавающими запятыми. Также при работе в таком режиме, алгоритм не подлежит изменению. В основном это связано с тем, что вероятности прямо пропорциональны частотам. Стоит также обратить внимание на тот факт, что конечный вес корневого узла будет равняться сумме количества букв в объекте, который подлежит обработке.

Вывод

Коды Хаффмана представляют собой простой и давно разработанный алгоритм, который по сей день используется во многих популярных программах. Простота и понятность данного кода позволяет добиться эффективного сжатия файлов любых объемов.

Кодирование Хаффмана

Один из первых алгоритмов эффективного кодирования информации был предложен Д. А. Хаффманом в 1952 году. Идея алгоритма состоит в следующем: зная вероятности символов в сообщении, можно описать процедуру построения кодов переменной длины, состоящих из целого количества битов. Символам с большей вероятностью ставятся в соответствие более короткие коды. Коды Хаффмана обладают свойством префиксности (т.е. ни одно кодовое слово не является префиксом другого), что позволяет однозначно их декодировать.

Классический алгоритм Хаффмана на входе получает таблицу частот встречаемости символов в сообщении. Далее на основании этой таблицы строится дерево кодирования Хаффмана (Н-дерево).

  1. Символы входного алфавита образуют список свободных узлов. Каждый лист имеет вес, который может быть равен либо вероятности, либо количеству вхождений символа в сжимаемое сообщение.
  2. Выбираются два свободных узла дерева с наименьшими весами.
  3. Создается их родитель с весом, равным их суммарному весу.
  4. Родитель добавляется в список свободных узлов, а два его потомка удаляются из этого списка.
  5. Одной дуге, выходящей из родителя, ставится в соответствие бит 1, другой - бит 0.
  6. Шаги, начиная со второго, повторяются до тех пор, пока в списке свободных узлов не останется только один свободный узел. Он и будет считаться корнем дерева.

Допустим, у нас есть следующая таблица частот:

15 7 6 6 5
А Б В Г Д

Этот процесс можно представить как построение дерева , корень которого - символ с суммой вероятностей объединенных символов, получившийся при объединении символов из последнего шага, его n 0 потомков - символы из предыдущего шага и т. д.

Чтобы определить код для каждого из символов, входящих в сообщение, мы должны пройти путь от листа дерева, соответствующего текущему символу, до его корня, накапливая биты при перемещении по ветвям дерева (первая ветвь в пути соответствует младшему биту). Полученная таким образом последовательность битов является кодом данного символа, записанным в обратном порядке.

Для данной таблицы символов коды Хаффмана будут выглядеть следующим образом.

А Б В Г Д
0 100 101 110 111

Поскольку ни один из полученных кодов не является префиксом другого, они могут быть однозначно декодированы при чтении их из потока. Кроме того, наиболее частый символ сообщения А закодирован наименьшим количеством бит, а наиболее редкий символ Д - наибольшим.

При этом общая длина сообщения, состоящего из приведённых в таблице символов, составит 87 бит (в среднем 2,2308 бита на символ). При использовании равномерного кодирования общая длина сообщения составила бы 117 бит (ровно 3 бита на символ). Заметим, что энтропия источника, независимым образом порождающего символы с указанными частотами составляет ~2,1858 бита на символ, т.е. избыточность построенного для такого источника кода Хаффмана, понимаемая, как отличие среднего числа бит на символ от энтропии, составляет менее 0,05 бит на символ.

Классический алгоритм Хаффмана имеет ряд существенных недостатков. Во-первых, для восстановления содержимого сжатого сообщения декодер должен знать таблицу частот, которой пользовался кодер. Следовательно, длина сжатого сообщения увеличивается на длину таблицы частот, которая должна посылаться впереди данных, что может свести на нет все усилия по сжатию сообщения. Кроме того, необходимость наличия полной частотной статистики перед началом собственно кодирования требует двух проходов по сообщению: одного для построения модели сообщения (таблицы частот и Н-дерева), другого для собственно кодирования. Во-вторых, избыточность кодирования обращается в ноль лишь в тех случаях, когда вероятности кодируемых символов являются обратными степенями числа 2. В-третьих, для источника с энтропией, не превышающей 1 (например, для двоичного источника), непосредственное применение кода Хаффмана бессмысленно.

Адаптивное сжатие

Адаптивное сжатие позволяет не передавать модель сообщения вместе с ним самим и ограничиться одним проходом по сообщению как при кодировании, так и при декодировании.

В создании алгоритма адаптивного кодирования Хаффмана наибольшие сложности возникают при разработке процедуры обновления модели очередным символом. Теоретически можно было бы просто вставить внутрь этой процедуры полное построение дерева кодирования Хаффмана, однако, такой алгоритм сжатия имел бы неприемлемо низкое быстродействие, так как построение Н-дерева - это слишком большая работа и производить её при обработке каждого символа неразумно. К счастью, существует способ модифицировать уже существующее Н-дерево так, чтобы отобразить обработку нового символа.

Обновление дерева при считывании очередного символа сообщения состоит из двух операций.

Первая - увеличение веса узлов дерева. Вначале увеличиваем вес листа, соответствующего считанному символу, на единицу. Затем увеличиваем вес родителя, чтобы привести его в соответствие с новыми значениями веса потомков. Этот процесс продолжается до тех пор, пока мы не доберемся до корня дерева. Среднее число операций увеличения веса равно среднему количеству битов, необходимых для того, чтобы закодировать символ.

Вторая операция - перестановка узлов дерева - требуется тогда, когда увеличение веса узла приводит к нарушению свойства упорядоченности, то есть тогда, когда увеличенный вес узла стал больше, чем вес следующего по порядку узла. Если и дальше продолжать обрабатывать увеличение веса, двигаясь к корню дерева, то дерево перестанет быть деревом Хаффмана.

Чтобы сохранить упорядоченность дерева кодирования, алгоритм работает следующим образом. Пусть новый увеличенный вес узла равен W+1. Тогда начинаем двигаться по списку в сторону увеличения веса, пока не найдем последний узел с весом W. Переставим текущий и найденный узлы между собой в списке, восстанавливая таким образом порядок в дереве (при этом родители каждого из узлов тоже изменятся). На этом операция перестановки заканчивается.

После перестановки операция увеличения веса узлов продолжается дальше. Следующий узел, вес которого будет увеличен алгоритмом, - это новый родитель узла, увеличение веса которого вызвало перестановку.

Переполнение

В процессе работы алгоритма сжатия вес узлов в дереве кодирования Хаффмана неуклонно растет. Первая проблема возникает тогда, когда вес корня дерева начинает превосходить вместимость ячейки, в которой он хранится. Как правило, это 16-битовое значение и, следовательно, не может быть больше, чем 65535. Вторая проблема, заслуживающая ещё большего внимания, может возникнуть значительно раньше, когда размер самого длинного кода Хаффмана превосходит вместимость ячейки, которая используется для того, чтобы передать его в выходной поток. Декодеру все равно, какой длины код он декодирует, поскольку он движется сверху вниз по дереву кодирования, выбирая из входного потока по одному биту. Кодер же должен начинать от листа дерева и двигаться вверх к корню, собирая биты, которые нужно передать. Обычно это происходит с переменной типа «целое», и, когда длина кода Хаффмана превосходит размер типа «целое» в битах, наступает переполнение.

Можно доказать, что максимальную длину код Хаффмана для сообщений с одним и тем же входным алфавитом будет иметь, если частоты символов образует последовательность Фибоначчи. Сообщение с частотами символов, равными числам Фибоначчи до Fib (18), - это отличный способ протестировать работу программы сжатия по Хаффману.

Масштабирование весов узлов дерева Хаффмана

Принимая во внимание сказанное выше, алгоритм обновления дерева Хаффмана должен быть изменен следующим образом: при увеличении веса нужно проверять его на достижение допустимого максимума. Если мы достигли максимума, то необходимо «масштабировать» вес, обычно разделив вес листьев на целое число, например, 2, а потом пересчитав вес всех остальных узлов.

Однако при делении веса пополам возникает проблема, связанная с тем, что после выполнения этой операции дерево может изменить свою форму. Объясняется это тем, что мы делим целые числа и при делении отбрасываем дробную часть.

Правильно организованное дерево Хаффмана после масштабирования может иметь форму, значительно отличающуюся от исходной. Это происходит потому, что масштабирование приводит к потере точности нашей статистики. Но со сбором новой статистики последствия этих «ошибок» практически сходят на нет. Масштабирование веса - довольно дорогостоящая операция, так как она приводит к необходимости заново строить все дерево кодирования. Но, так как необходимость в ней возникает относительно редко, то с этим можно смириться.

Выигрыш от масштабирования

Масштабирование веса узлов дерева через определенные интервалы дает неожиданный результат. Несмотря на то, что при масштабировании происходит потеря точности статистики, тесты показывают, что оно приводит к лучшим показателям сжатия, чем если бы масштабирование откладывалось. Это можно объяснить тем, что текущие символы сжимаемого потока больше «похожи» на своих близких предшественников, чем на тех, которые встречались намного раньше. Масштабирование приводит к уменьшению влияния «давних» символов на статистику и к увеличению влияния на неё «недавних» символов. Это очень сложно измерить количественно, но, в принципе, масштабирование оказывает положительное влияние на степень сжатия информации. Эксперименты с масштабированием в различных точках процесса сжатия показывают, что степень сжатия сильно зависит от момента масштабирования веса, но не существует правила выбора оптимального момента масштабирования для программы, ориентированной на сжатие любых типов информации.

Применение

Сжатие данных по Хаффману применяется при сжатии фото- и видеоизображений (JPEG , стандарты сжатия MPEG), в архиваторах (PKZIP , LZH и др.), в протоколах передачи данных MNP5 и MNP7.

Примечания

Литература

  • Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн. Алгоритмы: построение и анализ = Introduction to Algorithms. - 2-е изд. - М .: Вильямс, 2006. - 1296 с. - ISBN 0-07-013151-1
  • Д. Сэломон. Сжатие данных, изображения и звука. - М .: Техносфера, 2004. - 368 с. - 3000 экз. - ISBN 5-94836-027-X
  • Ананий В. Левитин. Глава 9. Жадные методы: Алгоритм Хаффмана // Алгоритмы: введение в разработку и анализ = Introduction to The Design and Analysis of Aigorithms. - М .: Вильямс, 2006. - С. 392-398. - ISBN 0-201-74395-7

Ссылки

  • Код Хаффмана (WebArchive)
  • Сжатие по алгоритму Хаффмана на algolist.manual.ru

Один из первых алгоритмов эффективного кодирования информации был предложен Хаффманом в 1952 г. Этот алгоритм стал базой для большого количества программ сжатия информации. Например, кодирование по Хаффману используется в программах сжатия ARJ, ZIP, RAR, в алгоритме сжатия графических изображений с потерями JPEG, а также встроено в современные факс-аппараты.

Эффективное кодирование по Хаффману состоит в представлении наиболее вероятных (часто встречающихся) букв двоичными кодами наименьшей длины, а менее вероятных - кодами большей длины (если все кодовые слова меньшей длины уже исчерпаны). Это делается таким образом, чтобы средняя длина кода на букву исходного сообщения была минимальной.

До начала кодирования должны быть известны вероятности появления каждой буквы, из которых будет состоять сообщение. На основании этой таблицы вероятностей строится кодовое дерево Хаффмана, с помощью которого производится кодирование букв.

Построение кодового дерева Хаффмана

Для иллюстрации алгоритма Хаффмана рассмотрим графический способ построения дерева кодирования. Перед этим введем некоторые определения, принятые для описания алгоритма Хаффмана с использованием этого способа.

Граф - совокупность множества узлов и множества дуг, направленных от одного узла к другому.

Дерево - граф, обладающий следующими свойствами:

  • ни в один из узлов не входит более одной дуги;
  • только в один узел нс входит ни одной дуги (этот узел называется корнем дерева);
  • перемещаясь по дугам от корня, можно попасть в любой узел.

Лист дерева - узел, из которого нс выходит ни одной дуги. В парс

узлов дерева, соединенных между собой дугой, тог, из которого она выходит, называется родителем, другой - ребенком.

Два узла называются братьями, если имеют одного и того же родителя.

Двоичное дерево - дерево, у которого из всех узлов, кроме листьев, выходит ровно по две дуги.

Дерево кодирования Хаффмана - двоичное дерево, у которого каждый узел имеет вес, и при этом вес родителя равен суммарному весу его детей. Алгоритм построения дерева кодирования Хаффмана таков:

  • 1. Буквы входного алфавита образуют список свободных узлов будущего дерева кодирования. Каждый узел в этом списке имеет вес, равный вероятности появления соответствующей буквы в сообщении.
  • 2. Выбираются два свободных узла дерева с наименьшими весами. Если имеется более двух свободных узлов с наименьшими весами, то можно брать любую пару.
  • 3. Создается их родитель с весом, равным их суммарному весу.
  • 4. Родитель добавляется в список свободных узлов, а двое его детей удаляются из этого списка.
  • 5. Одной дуге, выходящей из узла-родителя, ставится в соответствие бит 1, другой - 0.
  • 6. Пункты 2, 3, 4, 5 повторяются до тех пор, пока в списке свободных узлов не останется только один узел. Этот узел будет являться корнем дерева. Его вес получается равным единице - суммарной вероятности всех букв сообщения.

Теперь, двигаясь по кодовому дереву сверху вниз и последовательно выписывая двоичные цифры, соответствующие дугам, можно получить коды букв входного алфавита.

Для примера рассмотрим построение дерева кодирования Хаффмана для приведенного в табл. 10.1 алфавита из восьми букв.

Таблица 10.1

Вероятность

Построение дерева начинаем со списка листьев (рис. 10.2) и выполняем по шагам.

Рис. 10.2.

На первом шаге из листьев дерева выбираются два с наименьшим весом - z 7 и zg. Они присоединяются к узлу-родителю, вес которого устанавливается в 0,04 + 0,02 = 0,06. Затем узлы z 7 и z 8 удаляются из списка свободных. Узел z 7 соответствует ветви 0 родителя, узел z 8 - ветви 1. Дерево кодирования после первого шага приведено на рис. 10.3.

Рис. 10.3.

На втором шаге «наилегчайшей» парой оказывается лист Zb и свободный узел (г 7 + z 8). Для них создастся родитель с весом 0,16. Узел Zb соответствует ветви 0 родителя, узел (г 7 + zg) - ветви 1. На данном шаге дерево кодирования приведено на рис. 10.4.


Рис. 10.4.

На третьем шаге наименьшие вероятности имеют zs, z* , Zj и свободный узел (zb + Zi+ z.g ). Таким образом, на данном шаге можно создать родителя для z$ и (Zb + г 7 + г 8) с весом 0,26, получив при этом дерево кодирования, представленное на рис. 10.5. Обратите внимание, что в данной ситуации возможны несколько вариантов соединения узлов с наименьшими весами. При этом все такие варианты будут правильными, хотя и могут привести к различным наборам кодов, которые, впрочем, будут обладать одинаковой эффективностью для заданного распределения вероятностей.


Рис. 10.5.

На четвертом шаге «наилегчайшей» парой оказываются листья ц и 24- Дерево кодирования Хаффмана приведено на рис. 10.6.


Рис. 10.6.


Рис. 10. 7.


Рис. 10.8.

На пятом шаге выбираем узлы с наименьшими весами 0,22 и 0,20. Дерево кодирования Хаффмана после пятого шага приведено на рис. 10.7.

На шестом шаге остается три свободных узла с весами 0,42, 0,32 и 0,26. Выбираем наименьшие веса 0,32 и 0,26. Дерево кодирования Хаффмана после шестого шага приведено на рис. 10.8.

На седьмом шаге остается объединить две оставшиеся свободные вершины, после чего получаем окончательное дерево кодирования Хаффмана, приведенное на рис. 10.9.


Рис. 10.9.

На основании построенного дерева буквы представляются кодами, отражающими путь от корневого узла до листа, соответствующего нужной букве. В рассмотренном примере буквы входного алфавита кодируются так, как показано в табл. 10.2.

Таблица 10.2


Рис. 10.10.

Видно, что наиболее вероятные буквы закодированы самыми короткими кодами, а наиболее редкие - кодами большей длины, причем коды построены таким образом, что ни одна кодовая комбинация нс совпадает с началом более длинной комбинации. Это позволяет однозначно декодировать сообщения без использования разделительных символов.

Для заданных в табл. 10.1 вероятностей можно построить и другие правильные варианты кодового дерева Хаффмана. Одно из допустимых деревьев приведено на рис. 10.10. Коды букв входного алфавита для данного кодового дерева приведены в табл. 10.3.

Из табл. 10.3 видно, что коды также получились префиксными, и наиболее вероятным буквам соответствуют наиболее короткие коды.

Таблица 10.3

  1. code = следующий бит из потока, length = 1
  2. Пока code < base
    code = code << 1
    code = code + следующий бит из потока
    length = length + 1
  3. symbol = symb + code - base]

Другими словами, будем вдвигать слева в переменную code бит за битом из входного потока, до тех пор, пока code < base. При этом на каждой итерации будем увеличивать переменную length на 1 (т.е. продвигаться вниз по дереву). Цикл в (2) остановится когда мы определим длину кода (уровень в дереве, на котором находится искомый символ). Остается лишь определить какой именно символ на этом уровне нам нужен.

Предположим, что цикл в (2), после нескольких итераций, остановился. В этом случае выражение (code - base) суть порядковый номер искомого узла (символа) на уровне length. Первый узел (символ), находящийся на уровне length в дереве, расположен в массиве symb по индексу offs. Но нас интересует не первый символ, а символ под номером (code - base). Поэтому индекс искомого символа в массиве symb равен (offs + (code - base)). Иначе говоря, искомый символ symbol=symb + code - base].

Приведем конкретный пример. Пользуясь изложенным алгоритмом декодируем сообщение Z / .

Z / ="0001 1 00001 00000 1 010 011 1 011 1 010 011 0001 1 0010 010 011 011 1 1 1 010 1 1 1 0010 011 0011 1 0011 0011 011 1 010 1 1"

  1. code = 0, length = 1
  2. code = 0 < base = 1
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 1 + 1 = 2
    code = 0 < base = 2
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 2 + 1 = 3
    code = 0 < base = 2
    code = 0 << 1 = 0
    code = 0 + 1 = 1
    length = 3 + 1 = 4
    code = 1 = base = 1
  3. symbol = symb = 2 + code = 1 - base = 1] = symb = A
  1. code = 1, length = 1
  2. code = 1 = base = 1
  3. symbol = symb = 7 + code = 1 - base = 1] = symb = H
  1. code = 0, length = 1
  2. code = 0 < base = 1
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 1 + 1 = 2
    code = 0 < base = 2
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 2 + 1 = 3
    code = 0 < base = 2
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 3 + 1 = 4
    code = 0 < base = 1
    code = 0 << 1 = 0
    code = 0 + 1 = 1
    length = 4 + 1 = 5
    code = 1 > base = 0
  3. symbol = symb = 0 + code = 1 - base = 0] = symb = F

Итак, мы декодировали 3 первых символа: A , H , F . Ясно, что следуя этому алгоритму мы получим в точности сообщение S.

Вычисление длин кодов

Для того чтобы закодировать сообщение нам необходимо знать коды символов и их длины. Как уже было отмечено в предыдущем разделе, канонические коды вполне определяются своими длинами. Таким образом, наша главная задача заключается в вычислении длин кодов.

Оказывается, что эта задача, в подавляющем большинстве случаев, не требует построения дерева Хаффмана в явном виде. Более того, алгоритмы использующие внутреннее (не явное) представление дерева Хаффмана оказываются гораздо эффективнее в отношении скорости работы и затрат памяти.

На сегодняшний день существует множество эффективных алгоритмов вычисления длин кодов ( , ). Мы ограничимся рассмотрением лишь одного из них. Этот алгоритм достаточно прост, но несмотря на это очень популярен. Он используется в таких программах как zip, gzip, pkzip, bzip2 и многих других.

Вернемся к алгоритму построения дерева Хаффмана. На каждой итерации мы производили линейный поиск двух узлов с наименьшим весом. Ясно, что для этой цели больше подходит очередь приоритетов, такая как пирамида (минимальная). Узел с наименьшим весом при этом будет иметь наивысший приоритет и находиться на вершине пирамиды. Приведем этот алгоритм.

    Включим все кодируемые символы в пирамиду.

    Последовательно извлечем из пирамиды 2 узла (это будут два узла с наименьшим весом).

    Сформируем новый узел и присоединим к нему, в качестве дочерних, два узла взятых из пирамиды. При этом вес сформированного узла положим равным сумме весов дочерних узлов.

    Включим сформированный узел в пирамиду.

    Если в пирамиде больше одного узла, то повторить 2-5.

Будем считать, что для каждого узла сохранен указатель на его родителя. У корня дерева этот указатель положим равным NULL. Выберем теперь листовой узел (символ) и следуя сохраненным указателям будем подниматься вверх по дереву до тех пор, пока очередной указатель не станет равен NULL. Последнее условие означает, что мы добрались до корня дерева. Ясно, что число переходов с уровня на уровень равно глубине листового узла (символа), а следовательно и длине его кода. Обойдя таким образом все узлы (символы), мы получим длины их кодов.

Максимальная длина кода

Как правило, при кодировании используется так называемая кодовая книга (CodeBook) , простая структура данных, по сути два массива: один с длинами, другой с кодами. Другими словами, код (как битовая строка) хранится в ячейке памяти или регистре фиксированного размера (чаще 16, 32 или 64). Для того чтобы не произошло переполнение, мы должны быть уверены в том, что код поместится в регистр.

Оказывается, что на N-символьном алфавите максимальный размер кода может достигать (N-1) бит в длину. Иначе говоря, при N=256 (распространенный вариант) мы можем получить код в 255 бит длиной (правда для этого файл должен быть очень велик: 2.292654130570773*10^53~=2^177.259)! Ясно, что такой код в регистр не поместится и с ним нужно что-то делать.

Для начала выясним при каких условиях возникает переполнение. Пусть частота i-го символа равна i-му числу Фибоначчи. Например: A -1, B -1, C -2, D -3, E -5, F -8, G -13, H -21. Построим соответствующее дерево Хаффмана.

ROOT /\ / \ / \ /\ H / \ / \ /\ G / \ / \ /\ F / \ / \ /\ E / \ / \ /\ D / \ / \ /\ C / \ / \ A B

Такое дерево называется вырожденным . Для того чтобы его получить частоты символов должны расти как минимум как числа Фибоначчи или еще быстрее. Хотя на практике, на реальных данных, такое дерево получить практически невозможно, его очень легко сгенерировать искусственно. В любом случае эту опасность нужно учитывать.

Эту проблему можно решить двумя приемлемыми способами. Первый из них опирается на одно из свойств канонических кодов. Дело в том, что в каноническом коде (битовой строке) не более младших бит могут быть ненулями. Другими словами, все остальные биты можно вообще не сохранять, т.к. они всегда равны нулю. В случае N=256 нам достаточно от каждого кода сохранять лишь младшие 8 битов, подразумевая все остальные биты равными нулю. Это решает проблему, но лишь отчасти. Это значительно усложнит и замедлит как кодирование, так и декодирование. Поэтому этот способ редко применяется на практике.

Второй способ заключается в искусственном ограничении длин кодов (либо во время построения, либо после). Этот способ является общепринятым, поэтому мы остановимся на нем более подробно.

Существует два типа алгоритмов ограничивающих длины кодов. Эвристические (приблизительные) и оптимальные. Алгоритмы второго типа достаточно сложны в реализации и как правило требуют больших затрат времени и памяти, чем первые. Эффективность эвристически-ограниченного кода определяется его отклонением от оптимально-ограниченного. Чем меньше эта разница, тем лучше. Стоит отметить, что для некоторых эвристических алгоритмов эта разница очень мала ( , , ), к тому же они очень часто генерируют оптимальный код (хотя и не гарантируют, что так будет всегда). Более того, т.к. на практике переполнение случается крайне редко (если только не поставлено очень жесткое ограничение на максимальную длину кода), при небольшом размере алфавита целесообразнее применять простые и быстрые эвристические методы.

Мы рассмотрим один достаточно простой и очень популярный эвристический алгоритм. Он нашел свое применение в таких программах как zip, gzip, pkzip, bzip2 и многих других.

Задача ограничения максимальной длины кода эквивалентна задаче ограничения высоты дерева Хаффмана. Заметим, что по построению любой нелистовой узел дерева Хаффмана имеет ровно два потомка. На каждой итерации нашего алгоритма будем уменьшать высоту дерева на 1. Итак, пусть L - максимальная длина кода (высота дерева) и требуется ограничить ее до L / < L. Пусть далее RN i самый правый листовой узел на уровне i, а LN i - самый левый.

Начнем работу с уровня L. Переместим узел RN L на место своего родителя. Т.к. узлы идут парами нам необходимо найти место и для соседного с RN L узла. Для этого найдем ближайший к L уровень j, содержащий листовые узлы, такой, что j < (L-1). На месте LN j сформируем нелистовой узел и присоединим к нему в качестве дочерних узел LN j и оставшийся без пары узел с уровня L. Ко всем оставшимся парам узлов на уровне L применим такую же операцию. Ясно, что перераспределив таким образом узлы, мы уменьшили высоту нашего дерева на 1. Теперь она равна (L-1). Если теперь L / < (L-1), то проделаем то же самое с уровнем (L-1) и т.д. до тех пор, пока требуемое ограничение не будет достигнуто.

Вернемся к нашему примеру, где L=5. Ограничим максимальную длину кода до L / =4.

ROOT /\ / \ / \ /\ H C E / \ / \ / \ / \ /\ A D G / \ / \ B F

Видно, что в нашем случае RN L =F , j=3, LN j =C . Сначала переместим узел RN L =F на место своего родителя.

ROOT /\ / \ / \ /\ H / \ / \ / \ / \ / \ / \ /\ /\ / \ / \ / \ / \ / \ / \ / \ / \ /\ /\ C E / \ / \ / \ / \ F A D G B (непарный узел)

Теперь на месте LN j =C сформируем нелистовой узел.

ROOT /\ / \ / \ /\ H E / \ / \ / \ / \ / \ / \ F A D G ? ? B (непарный узел) C (непарный узел)

Присоединим к сформированному узлу два непарных: B и C .

ROOT /\ / \ / \ /\ H / \ / \ / \ / \ / \ / \ / \ / \ / \ /\ /\ / \ / \ / \ / \ / \ / \ / \ / \ /\ /\ /\ E / \ / \ / \ / \ / \ / \ F A D G B C

Таким образом, мы ограничили максимальную длину кода до 4. Ясно, что изменив длины кодов, мы немного потеряли в эффективности. Так сообщение S, закодированное при помощи такого кода, будет иметь размер 92 бита, т.е. на 3 бита больше по сравнению с минимально-избыточным кодом.

Ясно, что чем сильнее мы ограничим максимальную длину кода, тем менее эффективен будет код. Выясним насколько можно ограничивать максимальную длину кода. Очевидно что не короче бит.

Вычисление канонических кодов

Как мы уже неоднократно отмечали, длин кодов достаточно для того чтобы сгенерировать сами коды. Покажем как это можно сделать. Предположим, что мы уже вычислили длины кодов и подсчитали сколько кодов каждой длины у нас есть. Пусть L - максимальная длина кода, а T i - количество кодов длины i.

Вычислим S i - начальное значение кода длины i, для всех i из

S L = 0 (всегда)
S L-1 = (S L + T L) >> 1
S L-2 = (S L-1 + T L-1) >> 1
...
S 1 = 1 (всегда)

Для нашего примера L = 5, T 1 .. 5 = {1, 0, 2 ,3, 2}.

S 5 = 00000 bin = 0 dec
S 4 = (S 5 =0 + T 5 =2) >> 1 = (00010 bin >> 1) = 0001 bin = 1 dec
S 3 = (S 4 =1 + T 4 =3) >> 1 = (0100 bin >> 1) = 010 bin = 2 dec
S 2 = (S 3 =2 + T 3 =2) >> 1 = (100 bin >> 1) = 10 bin = 2 dec
S 1 = (S 2 =2 + T 2 =0) >> 1 = (10 bin >> 1) = 1 bin = 1 dec

Видно, что S 5 , S 4 , S 3 , S 1 - в точности коды символов B , A , C , H . Эти символы объединяет то, что все они стоят на первом месте, каждый на своем уровне. Другими словами, мы нашли начальное значение кода для каждой длины (или уровня).

Теперь присвоим коды остальным символам. Код первого символа на уровне i равен S i , второго S i + 1, третьего S i + 2 и т.д.

Выпишем оставшиеся коды для нашего примера:

B = S 5 = 00000 bin A = S 4 = 0001 bin C = S 3 = 010 bin H = S 1 = 1 bin
F = S 5 + 1 = 00001 bin D = S 4 + 1 = 0010 bin E = S 3 + 1 = 011 bin
G = S 4 + 2 = 0011 bin

Видно, что мы получили точно такие же коды, как если бы мы явно построили каноническое дерево Хаффмана.

Передача кодового дерева

Для того чтобы закодированное сообщение удалось декодировать, декодеру необходимо иметь такое же кодовое дерево (в той или иной форме), какое использовалось при кодировании. Поэтому вместе с закодированными данными мы вынуждены сохранять соответствующее кодовое дерево. Ясно, что чем компактнее оно будет, тем лучше.

Решить эту задачу можно несколькими способами. Самое очевидное решение - сохранить дерево в явном виде (т.е. как упорядоченное множество узлов и указателей того или иного вида). Это пожалуй самый расточительный и неэффективный способ. На практике он не используется.

Можно сохранить список частот символов (т.е. частотный словарь). С его помощью декодер без труда сможет реконструировать кодовое дерево. Хотя этот способ и менее расточителен чем предыдущий, он не является наилучшим.

Наконец, можно использовать одно из свойств канонических кодов. Как уже было отмечено ранее, канонические коды вполне определяются своими длинами. Другими словами, все что необходимо декодеру - это список длин кодов символов. Учитывая, что в среднем длину одного кода для N-символьного алфавита можно закодировать [(log 2 (log 2 N))] битами, получим очень эффективный алгоритм. На нем мы остановимся подробнее.

Предположим, что размер алфавита N=256, и мы сжимаем обыкновенный текстовый файл (ASCII). Скорее всего мы не встретим все N символов нашего алфавита в таком файле. Положим тогда длину кода отсутвующих символов равной нулю. В этом случае сохраняемый список длин кодов будет содержать достаточно большое число нулей (длин кодов отсутствующих символов) сгруппированных вместе. Каждую такую группу можно сжать при помощи так называемого группового кодирования - RLE (Run - Length - Encoding). Этот алгоритм чрезвычайно прост. Вместо последовательности из M одинаковых элементов идущих подряд, будем сохранять первый элемент этой последовательности и число его повторений, т.е. (M-1). Пример: RLE("AAAABBBCDDDDDDD")=A3 B2 C0 D6.

Более того, этот метод можно несколько расширить. Мы можем применить алгоритм RLE не только к группам нулевых длин, но и ко всем остальным. Такой способ передачи кодового дерева является общепринятым и применяется в большинстве современных реализаций.

Реализация: SHCODEC

Приложение: биография Д. Хаффмана

Дэвид Хаффман родился в 1925 году в штате Огайо (Ohio), США. Хаффман получил степень бакалавра электротехники в государственном университете Огайо (Ohio State University) в возрасте 18 лет. Затем он служил в армии офицером поддержки радара на эсминце, который помогал обезвреживать мины в японских и китайских водах после Второй Мировой Войны. В последствии он получил степень магистра в университете Огайо и степень доктора в Массачусетском Институте Технологий (Massachusetts Institute of Technology - MIT). Хотя Хаффман больше известен за разработку метода построения минимально-избыточных кодов, он так же сделал важный вклад во множество других областей (по большей части в электронике). Он долгое время возглавлял кафедру Компьютерных Наук в MIT. В 1974, будучи уже заслуженным профессором, он подал в отставку. Хаффман получил ряд ценных наград. В 1999 - Медаль Ричарда Хамминга (Richard W. Hamming Medal) от Института Инженеров Электричества и Электроники (Institute of Electrical and Electronics Engineers - IEEE) за исключительный вклад в Теорию Информации, Медаль Louis E. Levy от Франклинского Института (Franklin Institute) за его докторскую диссертацию о последовательно переключающихся схемах, Награду W. Wallace McDowell, Награду от Компьютерного Сообщества IEEE, Золотую юбилейную награду за технологические новшества от IEEE в 1998. В октябре 1999 года, в возрасте 74 лет Дэвид Хаффман скончался от рака.

  1. code = следующий бит из потока, length = 1
  2. Пока code < base
    code = code << 1
    code = code + следующий бит из потока
    length = length + 1
  3. symbol = symb + code - base]

Другими словами, будем вдвигать слева в переменную code бит за битом из входного потока, до тех пор, пока code < base. При этом на каждой итерации будем увеличивать переменную length на 1 (т.е. продвигаться вниз по дереву). Цикл в (2) остановится когда мы определим длину кода (уровень в дереве, на котором находится искомый символ). Остается лишь определить какой именно символ на этом уровне нам нужен.

Предположим, что цикл в (2), после нескольких итераций, остановился. В этом случае выражение (code - base) суть порядковый номер искомого узла (символа) на уровне length. Первый узел (символ), находящийся на уровне length в дереве, расположен в массиве symb по индексу offs. Но нас интересует не первый символ, а символ под номером (code - base). Поэтому индекс искомого символа в массиве symb равен (offs + (code - base)). Иначе говоря, искомый символ symbol=symb + code - base].

Приведем конкретный пример. Пользуясь изложенным алгоритмом декодируем сообщение Z / .

Z / ="0001 1 00001 00000 1 010 011 1 011 1 010 011 0001 1 0010 010 011 011 1 1 1 010 1 1 1 0010 011 0011 1 0011 0011 011 1 010 1 1"

  1. code = 0, length = 1
  2. code = 0 < base = 1
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 1 + 1 = 2
    code = 0 < base = 2
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 2 + 1 = 3
    code = 0 < base = 2
    code = 0 << 1 = 0
    code = 0 + 1 = 1
    length = 3 + 1 = 4
    code = 1 = base = 1
  3. symbol = symb = 2 + code = 1 - base = 1] = symb = A
  1. code = 1, length = 1
  2. code = 1 = base = 1
  3. symbol = symb = 7 + code = 1 - base = 1] = symb = H
  1. code = 0, length = 1
  2. code = 0 < base = 1
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 1 + 1 = 2
    code = 0 < base = 2
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 2 + 1 = 3
    code = 0 < base = 2
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 3 + 1 = 4
    code = 0 < base = 1
    code = 0 << 1 = 0
    code = 0 + 1 = 1
    length = 4 + 1 = 5
    code = 1 > base = 0
  3. symbol = symb = 0 + code = 1 - base = 0] = symb = F

Итак, мы декодировали 3 первых символа: A , H , F . Ясно, что следуя этому алгоритму мы получим в точности сообщение S.

Вычисление длин кодов

Для того чтобы закодировать сообщение нам необходимо знать коды символов и их длины. Как уже было отмечено в предыдущем разделе, канонические коды вполне определяются своими длинами. Таким образом, наша главная задача заключается в вычислении длин кодов.

Оказывается, что эта задача, в подавляющем большинстве случаев, не требует построения дерева Хаффмана в явном виде. Более того, алгоритмы использующие внутреннее (не явное) представление дерева Хаффмана оказываются гораздо эффективнее в отношении скорости работы и затрат памяти.

На сегодняшний день существует множество эффективных алгоритмов вычисления длин кодов ( , ). Мы ограничимся рассмотрением лишь одного из них. Этот алгоритм достаточно прост, но несмотря на это очень популярен. Он используется в таких программах как zip, gzip, pkzip, bzip2 и многих других.

Вернемся к алгоритму построения дерева Хаффмана. На каждой итерации мы производили линейный поиск двух узлов с наименьшим весом. Ясно, что для этой цели больше подходит очередь приоритетов, такая как пирамида (минимальная). Узел с наименьшим весом при этом будет иметь наивысший приоритет и находиться на вершине пирамиды. Приведем этот алгоритм.

    Включим все кодируемые символы в пирамиду.

    Последовательно извлечем из пирамиды 2 узла (это будут два узла с наименьшим весом).

    Сформируем новый узел и присоединим к нему, в качестве дочерних, два узла взятых из пирамиды. При этом вес сформированного узла положим равным сумме весов дочерних узлов.

    Включим сформированный узел в пирамиду.

    Если в пирамиде больше одного узла, то повторить 2-5.

Будем считать, что для каждого узла сохранен указатель на его родителя. У корня дерева этот указатель положим равным NULL. Выберем теперь листовой узел (символ) и следуя сохраненным указателям будем подниматься вверх по дереву до тех пор, пока очередной указатель не станет равен NULL. Последнее условие означает, что мы добрались до корня дерева. Ясно, что число переходов с уровня на уровень равно глубине листового узла (символа), а следовательно и длине его кода. Обойдя таким образом все узлы (символы), мы получим длины их кодов.

Максимальная длина кода

Как правило, при кодировании используется так называемая кодовая книга (CodeBook) , простая структура данных, по сути два массива: один с длинами, другой с кодами. Другими словами, код (как битовая строка) хранится в ячейке памяти или регистре фиксированного размера (чаще 16, 32 или 64). Для того чтобы не произошло переполнение, мы должны быть уверены в том, что код поместится в регистр.

Оказывается, что на N-символьном алфавите максимальный размер кода может достигать (N-1) бит в длину. Иначе говоря, при N=256 (распространенный вариант) мы можем получить код в 255 бит длиной (правда для этого файл должен быть очень велик: 2.292654130570773*10^53~=2^177.259)! Ясно, что такой код в регистр не поместится и с ним нужно что-то делать.

Для начала выясним при каких условиях возникает переполнение. Пусть частота i-го символа равна i-му числу Фибоначчи. Например: A -1, B -1, C -2, D -3, E -5, F -8, G -13, H -21. Построим соответствующее дерево Хаффмана.

ROOT /\ / \ / \ /\ H / \ / \ /\ G / \ / \ /\ F / \ / \ /\ E / \ / \ /\ D / \ / \ /\ C / \ / \ A B

Такое дерево называется вырожденным . Для того чтобы его получить частоты символов должны расти как минимум как числа Фибоначчи или еще быстрее. Хотя на практике, на реальных данных, такое дерево получить практически невозможно, его очень легко сгенерировать искусственно. В любом случае эту опасность нужно учитывать.

Эту проблему можно решить двумя приемлемыми способами. Первый из них опирается на одно из свойств канонических кодов. Дело в том, что в каноническом коде (битовой строке) не более младших бит могут быть ненулями. Другими словами, все остальные биты можно вообще не сохранять, т.к. они всегда равны нулю. В случае N=256 нам достаточно от каждого кода сохранять лишь младшие 8 битов, подразумевая все остальные биты равными нулю. Это решает проблему, но лишь отчасти. Это значительно усложнит и замедлит как кодирование, так и декодирование. Поэтому этот способ редко применяется на практике.

Второй способ заключается в искусственном ограничении длин кодов (либо во время построения, либо после). Этот способ является общепринятым, поэтому мы остановимся на нем более подробно.

Существует два типа алгоритмов ограничивающих длины кодов. Эвристические (приблизительные) и оптимальные. Алгоритмы второго типа достаточно сложны в реализации и как правило требуют больших затрат времени и памяти, чем первые. Эффективность эвристически-ограниченного кода определяется его отклонением от оптимально-ограниченного. Чем меньше эта разница, тем лучше. Стоит отметить, что для некоторых эвристических алгоритмов эта разница очень мала ( , , ), к тому же они очень часто генерируют оптимальный код (хотя и не гарантируют, что так будет всегда). Более того, т.к. на практике переполнение случается крайне редко (если только не поставлено очень жесткое ограничение на максимальную длину кода), при небольшом размере алфавита целесообразнее применять простые и быстрые эвристические методы.

Мы рассмотрим один достаточно простой и очень популярный эвристический алгоритм. Он нашел свое применение в таких программах как zip, gzip, pkzip, bzip2 и многих других.

Задача ограничения максимальной длины кода эквивалентна задаче ограничения высоты дерева Хаффмана. Заметим, что по построению любой нелистовой узел дерева Хаффмана имеет ровно два потомка. На каждой итерации нашего алгоритма будем уменьшать высоту дерева на 1. Итак, пусть L - максимальная длина кода (высота дерева) и требуется ограничить ее до L / < L. Пусть далее RN i самый правый листовой узел на уровне i, а LN i - самый левый.

Начнем работу с уровня L. Переместим узел RN L на место своего родителя. Т.к. узлы идут парами нам необходимо найти место и для соседного с RN L узла. Для этого найдем ближайший к L уровень j, содержащий листовые узлы, такой, что j < (L-1). На месте LN j сформируем нелистовой узел и присоединим к нему в качестве дочерних узел LN j и оставшийся без пары узел с уровня L. Ко всем оставшимся парам узлов на уровне L применим такую же операцию. Ясно, что перераспределив таким образом узлы, мы уменьшили высоту нашего дерева на 1. Теперь она равна (L-1). Если теперь L / < (L-1), то проделаем то же самое с уровнем (L-1) и т.д. до тех пор, пока требуемое ограничение не будет достигнуто.

Вернемся к нашему примеру, где L=5. Ограничим максимальную длину кода до L / =4.

ROOT /\ / \ / \ /\ H C E / \ / \ / \ / \ /\ A D G / \ / \ B F

Видно, что в нашем случае RN L =F , j=3, LN j =C . Сначала переместим узел RN L =F на место своего родителя.

ROOT /\ / \ / \ /\ H / \ / \ / \ / \ / \ / \ /\ /\ / \ / \ / \ / \ / \ / \ / \ / \ /\ /\ C E / \ / \ / \ / \ F A D G B (непарный узел)

Теперь на месте LN j =C сформируем нелистовой узел.

ROOT /\ / \ / \ /\ H E / \ / \ / \ / \ / \ / \ F A D G ? ? B (непарный узел) C (непарный узел)

Присоединим к сформированному узлу два непарных: B и C .

ROOT /\ / \ / \ /\ H / \ / \ / \ / \ / \ / \ / \ / \ / \ /\ /\ / \ / \ / \ / \ / \ / \ / \ / \ /\ /\ /\ E / \ / \ / \ / \ / \ / \ F A D G B C

Таким образом, мы ограничили максимальную длину кода до 4. Ясно, что изменив длины кодов, мы немного потеряли в эффективности. Так сообщение S, закодированное при помощи такого кода, будет иметь размер 92 бита, т.е. на 3 бита больше по сравнению с минимально-избыточным кодом.

Ясно, что чем сильнее мы ограничим максимальную длину кода, тем менее эффективен будет код. Выясним насколько можно ограничивать максимальную длину кода. Очевидно что не короче бит.

Вычисление канонических кодов

Как мы уже неоднократно отмечали, длин кодов достаточно для того чтобы сгенерировать сами коды. Покажем как это можно сделать. Предположим, что мы уже вычислили длины кодов и подсчитали сколько кодов каждой длины у нас есть. Пусть L - максимальная длина кода, а T i - количество кодов длины i.

Вычислим S i - начальное значение кода длины i, для всех i из

S L = 0 (всегда)
S L-1 = (S L + T L) >> 1
S L-2 = (S L-1 + T L-1) >> 1
...
S 1 = 1 (всегда)

Для нашего примера L = 5, T 1 .. 5 = {1, 0, 2 ,3, 2}.

S 5 = 00000 bin = 0 dec
S 4 = (S 5 =0 + T 5 =2) >> 1 = (00010 bin >> 1) = 0001 bin = 1 dec
S 3 = (S 4 =1 + T 4 =3) >> 1 = (0100 bin >> 1) = 010 bin = 2 dec
S 2 = (S 3 =2 + T 3 =2) >> 1 = (100 bin >> 1) = 10 bin = 2 dec
S 1 = (S 2 =2 + T 2 =0) >> 1 = (10 bin >> 1) = 1 bin = 1 dec

Видно, что S 5 , S 4 , S 3 , S 1 - в точности коды символов B , A , C , H . Эти символы объединяет то, что все они стоят на первом месте, каждый на своем уровне. Другими словами, мы нашли начальное значение кода для каждой длины (или уровня).

Теперь присвоим коды остальным символам. Код первого символа на уровне i равен S i , второго S i + 1, третьего S i + 2 и т.д.

Выпишем оставшиеся коды для нашего примера:

B = S 5 = 00000 bin A = S 4 = 0001 bin C = S 3 = 010 bin H = S 1 = 1 bin
F = S 5 + 1 = 00001 bin D = S 4 + 1 = 0010 bin E = S 3 + 1 = 011 bin
G = S 4 + 2 = 0011 bin

Видно, что мы получили точно такие же коды, как если бы мы явно построили каноническое дерево Хаффмана.

Передача кодового дерева

Для того чтобы закодированное сообщение удалось декодировать, декодеру необходимо иметь такое же кодовое дерево (в той или иной форме), какое использовалось при кодировании. Поэтому вместе с закодированными данными мы вынуждены сохранять соответствующее кодовое дерево. Ясно, что чем компактнее оно будет, тем лучше.

Решить эту задачу можно несколькими способами. Самое очевидное решение - сохранить дерево в явном виде (т.е. как упорядоченное множество узлов и указателей того или иного вида). Это пожалуй самый расточительный и неэффективный способ. На практике он не используется.

Можно сохранить список частот символов (т.е. частотный словарь). С его помощью декодер без труда сможет реконструировать кодовое дерево. Хотя этот способ и менее расточителен чем предыдущий, он не является наилучшим.

Наконец, можно использовать одно из свойств канонических кодов. Как уже было отмечено ранее, канонические коды вполне определяются своими длинами. Другими словами, все что необходимо декодеру - это список длин кодов символов. Учитывая, что в среднем длину одного кода для N-символьного алфавита можно закодировать [(log 2 (log 2 N))] битами, получим очень эффективный алгоритм. На нем мы остановимся подробнее.

Предположим, что размер алфавита N=256, и мы сжимаем обыкновенный текстовый файл (ASCII). Скорее всего мы не встретим все N символов нашего алфавита в таком файле. Положим тогда длину кода отсутвующих символов равной нулю. В этом случае сохраняемый список длин кодов будет содержать достаточно большое число нулей (длин кодов отсутствующих символов) сгруппированных вместе. Каждую такую группу можно сжать при помощи так называемого группового кодирования - RLE (Run - Length - Encoding). Этот алгоритм чрезвычайно прост. Вместо последовательности из M одинаковых элементов идущих подряд, будем сохранять первый элемент этой последовательности и число его повторений, т.е. (M-1). Пример: RLE("AAAABBBCDDDDDDD")=A3 B2 C0 D6.

Более того, этот метод можно несколько расширить. Мы можем применить алгоритм RLE не только к группам нулевых длин, но и ко всем остальным. Такой способ передачи кодового дерева является общепринятым и применяется в большинстве современных реализаций.

Реализация: SHCODEC

Приложение: биография Д. Хаффмана

Дэвид Хаффман родился в 1925 году в штате Огайо (Ohio), США. Хаффман получил степень бакалавра электротехники в государственном университете Огайо (Ohio State University) в возрасте 18 лет. Затем он служил в армии офицером поддержки радара на эсминце, который помогал обезвреживать мины в японских и китайских водах после Второй Мировой Войны. В последствии он получил степень магистра в университете Огайо и степень доктора в Массачусетском Институте Технологий (Massachusetts Institute of Technology - MIT). Хотя Хаффман больше известен за разработку метода построения минимально-избыточных кодов, он так же сделал важный вклад во множество других областей (по большей части в электронике). Он долгое время возглавлял кафедру Компьютерных Наук в MIT. В 1974, будучи уже заслуженным профессором, он подал в отставку. Хаффман получил ряд ценных наград. В 1999 - Медаль Ричарда Хамминга (Richard W. Hamming Medal) от Института Инженеров Электричества и Электроники (Institute of Electrical and Electronics Engineers - IEEE) за исключительный вклад в Теорию Информации, Медаль Louis E. Levy от Франклинского Института (Franklin Institute) за его докторскую диссертацию о последовательно переключающихся схемах, Награду W. Wallace McDowell, Награду от Компьютерного Сообщества IEEE, Золотую юбилейную награду за технологические новшества от IEEE в 1998. В октябре 1999 года, в возрасте 74 лет Дэвид Хаффман скончался от рака.

R.L. Milidiu, A.A. Pessoa, E.S. Laber, "Efficient implementation of the warm-up algorithm for the construction of length-restricted prefix codes", Proc. of ALENEX (International Workshop on Algorithm Engineering and Experimentation), pp. 1-17, Springer, Jan. 1999.