Сайт о телевидении

Сайт о телевидении

» » Задача коммивояжёра. Метод ветвей и границ. Пример решения задачи коммивояжера методом ветвей и границ

Задача коммивояжёра. Метод ветвей и границ. Пример решения задачи коммивояжера методом ветвей и границ

1. Общее описание
Задача коммивояжера (в дальнейшем сокращённо - ЗК) является одной из знаменитых задач теории комбинаторики. Она была поставлена в 1934 году, и об неё, как об Великую теорему Ферма обламывали зубы лучшие математики. В своей области (оптимизации дискретных задач) ЗК служит своеобразным
полигоном, на котором испытываются всё новые методы.

Постановка задачи следующая. Коммивояжер (бродячий торговец) должен выйти из первого города, посетить по разу в неизвестном порядке города 2,1,3..n и вернуться в первый город. Расстояния между городами известны. В каком порядке следует обходить города, чтобы замкнутый путь (тур) коммивояжера был кратчайшим?

Чтобы привести задачу к научному виду, введём некоторые термины. Итак, города перенумерованы числами j(Т=(1,2,3..n). Тур коммивояжера может быть описан циклической перестановкой t=(j1,j2,..,jn,j1), причём все j1..jn – разные номера; повторяющийся в начале и в конце j1, показывает, что перестановка зациклена. Расстояния между парами вершин Сij образуют матрицу С. Задача состоит в том, чтобы найти такой тур t, чтобы минимизировать функционал

Относительно математизированной формулировки ЗК уместно сделать два замечания.
Во-первых, в постановке Сij означали расстояния, поэтому они должны быть неотрицательными, т.е. для всех j(Т:
|Сij(0; Cjj=? |(2)|

(последнее равенство означает запрет на петли в туре), симметричными, т.е. для всех i,j: |Сij= Сji. |(3)|

И удовлетворять неравенству треугольника, т.е. для всех:
|Сij+ Сjk(Cik |(4)|

В математической постановке говорится о произвольной матрице. Сделано это потому, что имеется много прикладных задач, которые описываются основной моделью, но всем условиям (2)-(4) не удовлетворяют. Особенно часто
нарушается условие (3) (например, если Сij – не расстояние, а плата за проезд: часто туда билет стоит одну цену, а обратно – другую). Поэтому мы будем различать два варианта ЗК: симметричную задачу, когда условие (3)
выполнено, и несимметричную - в противном случае. Условия (2)-(4) по умолчанию мы будем считать выполненными.
Второе замечание касается числа всех возможных туров. В несимметричной ЗК все туры t=(j1,j2,..,jn,j1) и t’=(j1,jn,..,j2,j1) имеют разную длину и должны учитываться оба. Разных туров очевидно (n-1)!.
Зафиксируем на первом и последнем месте в циклической перестановке номер j1, а оставшиеся n-1 номеров переставим всеми (n-1)! возможными способами.
В результате получим все несимметричные туры. Симметричных туров имеется в два раз меньше, т.к. каждый засчитан два раза: как t и как t’.
Можно представить, что С состоит только из единиц и нулей. Тогда С можно интерпретировать, как граф, где ребро (i,j) проведено, если Сij=0 и не проведено, если Сij=1. Тогда, если существует тур длины 0, то он пройдёт по циклу, который включает все вершины по одному разу. Такой цикл называется гамильтоновым циклом. Незамкнутый гамильтонов цикл называется гамильтоновой цепью (гамильтоновым путём).
В терминах теории графов симметричную ЗК можно сформулировать так:
Дана полная сеть с n вершинами, длина ребра (i,j)= Сij. Найти гамильтонов цикл минимальной длины.
В несимметричной ЗК вместо «цикл» надо говорить «контур», а вместо «ребра» - «дуги» или «стрелки».
Некоторые прикладные задачи формулируются как ЗК, но в них нужно минимизировать длину не гамильтонова цикла, а гамильтоновой цепи. Такие задачи называются незамкнутыми. Некоторые модели сводятся к задаче о нескольких коммивояжерах, но мы здесь их рассматривать не будем.

1.2. Методы решения ЗК


1.2.1. Жадный алгоритм

Жадный алгоритм – алгоритм нахождения наикратчайшего расстояния путём выбора самого короткого, ещё не выбранного ребра, при условии, что оно не образует цикла с уже выбранными рёбрами. «Жадным» этот алгоритм назван
потому, что на последних шагах приходится жестоко расплачиваться за жадность.
Посмотрим, как поведет себя при решении ЗК жадный алгоритм. Здесь он превратится в стратегию «иди в ближайший (в который еще не входил) город».
Жадный алгоритм, очевидно, бессилен в этой задаче.

Рассмотрим для примера сеть на рис. 2, представляющую узкий ромб. Пусть коммивояжер стартует из города 1. Алгоритм «иди вы ближайший город» выведет его в город 2, затем 3, затем 4; на последнем шаге придется платить за жадность, возвращаясь по длинной диагонали ромба. В результате получится не кратчайший, а длиннейший тур.
В пользу процедуры «иди в ближайший» можно сказать лишь то, что при старте из одного города она не уступит стратегии «иди в дальнейший».
Как видим, жадный алгоритм ошибается. Можно ли доказать, что он ошибается умеренно, что полученный им тур хуже минимального, положим, в 1000 раз? Мы докажем, что этого доказать нельзя, причем не только для жадного логарифма, а для алгоритмов гораздо более мощных. Но сначала нужно договориться, как оценивать погрешность неточных алгоритмов, для определенности, в задаче минимизации. Пусть fB - настоящий минимум, а fA - тот квазиминимум, который получен по алгоритму. Ясно, что fA/ fB?1, но это – тривиальное утверждение, что может быть погрешность. Чтобы оценить её, нужно зажать отношение оценкой сверху: |fA/fB ?1+ n?, |(5)|

Где, как обычно в высшей математике, ??0, но, против обычая, может быть очень большим. Величина? и будет служить мерой погрешности. Если алгоритм минимизации будет удовлетворять неравенству (5), мы будем говорить, что он имеет погрешность?

Предположим теперь, что имеется алгоритм А решения ЗК, погрешность которого нужно оценить. Возьмем произвольный граф G (V,E) и по нему составим входную матрицу ЗК:

|С={ |1,если ребро (i,j) принадлежит Е | | |1+n? в противном случае |

Если в графе G есть гамильтонов цикл, то минимальный тур проходит по этому циклу и fB = n. Если алгоритм А тоже всегда будет находить этот путь, то по результатам алгоритма можно судить, есть ли гамильтонов цикл в произвольном графе. Однако, непереборного алгоритма, который мог бы ответить, есть ли гамильтонов цикл в произвольном графе, до сих пор никому не известно. Таким образом, наш алгоритм А должен иногда ошибаться и включать в тур хотя бы одно ребро длины 1+n?. Но тогда fA((n-1)+(1+n?) так что fA/fB=1+n? т.е. превосходит погрешность? на заданную неравенством (5). О величине? в нашем рассуждении мы не договаривались, так что? может быть произвольно велик.

Таким образом доказана следующая теорема. Либо алгоритм А определяет, существует ли в произвольном графе гамильтонов цикл, либо погрешность А при решении ЗК может быть произвольно велика.
Это соображение было впервые опубликовано Сани и Гонзалесом в 1980 г. Теорема Сани-Гонзалеса основана на том, что нет никаких ограничений на длину ребер. Теорема не проходит, если расстояния подчиняются неравенству треугольника (4).

Если оно соблюдается, можно предложить несколько алгоритмов с погрешностью 12. Прежде, чем описать такой алгоритм, следует вспомнить старинную головоломку. Можно ли начертить одной линией открытый конверт?
Рис.2 показывает, что можно (цифры на отрезках показывают порядок их проведения). Закрытый конверт (рис.3.) одной линией нарисовать нельзя и вот почему. Будем называть линии ребрами, а их перекрестья – вершинами.
Когда через точку проводится линия, то используется два ребра – одно для входа в вершину, одно – для выхода. Если степень вершины нечетна – то в ней линия должна начаться или кончиться. На рис. 3 вершин нечетной степени
две: в одной линия начинается, в другой – кончается. Однако на рис. 4 имеется четыре вершины степени три, но у одной линии не может быть четыре конца. Если же нужно прочертить фигуру одной замкнутой линией, то все ее вершины должны иметь четную степень. Верно и обратное утверждение: если все вершины имеют четную степень, то фигуру можно нарисовать одной незамкнутой линией. Действительно, процесс проведения линии может кончиться, только если линия придет в вершину,
откуда уже выхода нет: все ребра, присоединенные к этой вершине (обычно говорят: инцидентные этой вершине), уже прочерчены. Если при этом нарисована вся фигура, то нужное утверждение доказано; если нет, удалим уже
нарисованную часть G’. После этого от графа останется одна или несколько связных компонент; пусть G’ – одна из таких компонент. В силу связности исходного графа G, G’ и G’’ имеют хоть одну общую вершину, скажем, v. Если
в G’’ удалены какие-то ребра, то по четному числу от каждой вершины.

Поэтому G’’ – связный и все его вершины имеют четную степень. Построим цикл в G’’ (может быть, не нарисовав всего G’’) и через v добавим прорисованную часть G’’ к G’. Увеличивая таким образом прорисованную часть G’, мы добьемся того, что G’ охватит весь G.

Эту задачу когда-то решил Эйлер, и замкнутую линию, которая покрывает все ребра графа, теперь называю эйлеровым циклом. По существу была доказана следующая теорема.

Эйлеров цикл в графе существует тогда и только тогда, когда (1) граф связный и (2) все его вершины имеют четные степени.

1.2.2. Деревянный алгоритм

Теперь можно обсудить алгоритм решения ЗК через построение кратчайшего остовного дерева. Для краткости будет называть этот алгоритм деревянным. Вначале обсудим свойство спрямления. Рассмотрим какую-нибудь цепь, например, на рис.5. Если справедливо неравенство треугольника, то d(d+d и d(d+d
Сложив эти два неравенства, получим d+d(d+d+d+d. По неравенству треугольника получим. d(d+d. Окончательно d(d+d+d+d

Итак, если справедливо неравенство треугольника, то для каждой цепи верно, что расстояние от начала до конца цепи меньше (или равно) суммарной длины всех ребер цепи. Это обобщение расхожего убеждения, что прямая короче кривой.

Вернемся к ЗК и опишем решающий ее деревянный алгоритм.
1. Построим на входной сети ЗК кратчайшее остовное дерево и удвоим все его ребра. Получим граф G – связный и с вершинами, имеющими только четные степени.
2. Построим эйлеров цикл G, начиная с вершины 1, цикл задается перечнем вершин.
3. Просмотрим перечень вершин, начиная с 1, и будем зачеркивать каждую
вершину, которая повторяет уже встреченную в последовательности.
Останется тур, который и является результатом алгоритма.

Пример 1. Дана полная сеть, показанная на рис.5. Найти тур жадным и
деревянным алгоритмами.
|- |1 |2 |3 |4 |5 |6 |
|1 |- |6 |4 |8 |7 |14|
|2 |6 |- |7 |11|7 |10|
|3 |4 |7 |- |4 |3 |10|

Решение. Жадный алгоритм (иди в ближайший город из города 1) дает тур 1–(4)–3-(3)–5(5)–4–(11)–6–(10)–2–(6)–1, где без скобок показаны номера вершин, а в скобках – длины ребер. Длина тура равна 39, тур показана на рис. 5.

2. Деревянный алгоритм вначале строит остовное дерево, показанное на рис. 6 штриховой линией, затем эйлеров цикл 1-2-1-3-4-3-5-6-5-3-1, затем тур 1-2-3-4-5-6-1 длиной 43, который показан сплошной линией на рис. 6.

Теорема. Погрешность деревянного алгоритма равна 1.
Доказательство. Возьмем минимальный тур длины fB и удалим из него максимальное ребро. Длина получившейся гамильтоновой цепи LHC меньше fB. Но эту же цепь можно рассматривать как остовное дерево, т. к. эта цепь достигает все вершины и не имеет циклов. Длина кратчайшего остовного дерева LMT меньше или равна LHC. Имеем цепочку неравенств
|fB>LHC(LMT |(6)|

Но удвоенное дерево – оно же эйлеров граф – мы свели к туру посредством спрямлений, следовательно, длина полученного по алгоритму тура удовлетворяет неравенству |2LMT>fA |(7)|

Умножая (6) на два и соединяя с (7), получаем цепочку неравенств |2fB>2LHC(2LMT(fA |(8)|

Т.е. 2fB>fA, т.е. fA/fB>1+(; (=1.
Теорема доказана.
Таким образом, мы доказали, что деревянный алгоритм ошибается менее, чем в два раза. Такие алгоритмы уже называют приблизительными, а не просто эвристическими.
Известно еще несколько простых алгоритмов, гарантирующих в худшем случае (=1. Для того, чтобы найти среди них алгоритм поточнее, зайдем с другого конца и для начала опишем «brute-force enumeration» - «перебор животной силой», как его называют в англоязычной литературе. Понятно, что полный перебор практически применим только в задачах малого размера.
Напомним, что ЗК с n городами требует при полном переборе рассмотрения (n- 1)!/2 туров в симметричной задаче и (n-1)! Туров в несимметричной, а факториал, как показано в следующей таблице, растет удручающе быстро:
|1 |- |0 |0 |3 |3 |6 |
|2 |0 |- |1 |4 |1 |0 |
|3 |1 |2 |- |0 |0 |3 |
|табл. 4 |

Изложим алгоритм Литтла на примере 1 предыдущего раздела.. Повторно запишем матрицу:
|-|1 |2 |3 |4 |5|6 |
|1|- |6 |4 |8 |7|14|

Нам будет удобнее трактовать Сij как стоимость проезда из города i в город j. Допустим, что добрый мэр города j издал указ выплачивать каждому въехавшему в город коммивояжеру 5 долларов. Это означает, что любой тур подешевеет на 5 долларов, поскольку в любом туре нужно въехать в город j. Но поскольку все туры равномерно подешевели, то прежний минимальный тур будет и теперь стоить меньше всех. Добрый же поступок мэра можно представить как уменьшение всех чисел j-го столбца матрицы С на 5. Если бы мэр хотел спровадить коммивояжеров из j-го города и установил награду за выезд в размере 10 долларов, это можно было бы выразить вычитанием 10 из всех элементов j-й той строки. Это снова бы изменило стоимость каждого тура, но минимальный тур остался бы минимальным. Итак, доказана следующая лемма.
Вычитая любую константу из всех элементов любой строки или столбца матрицы С, мы оставляем минимальный тур минимальным.
Для алгоритма нам будет удобно получить побольше нулей в матрице С, не получая там, однако, отрицательных чисел. Для этого мы вычтем из каждой строки ее минимальный элемент (это называется приведением по строкам, см. табл. 3), а затем вычтем из каждого столбца матрицы, приведенной по строкам, его минимальный элемент, получив матрицу, приведенную по столбцам, см. табл. 4). Прочерки по диагонали означают, что из города i в город i ходить нельзя. Заметим, что сумма констант приведения по строкам равна 27, сумма по столбцам 7, сумма сумм равна 34. Тур можно задать системой из шести подчеркнутых (выделенных другим цветом) элементов матрицы С, например, такой, как показано на табл. 2.
Подчеркивание элемента означает, что в туре из i-го элемента идут именно в j-тый. Для тура из шести городов подчеркнутых элементов должно быть шесть, так как в туре из шести городов есть шесть ребер. Каждый столбец должен содержать ровно один подчеркнутый элемент (в каждый город коммивояжер въехал один раз), в каждой строке должен быть ровно один
подчеркнутый элемент (из каждого города коммивояжер выехал один раз); кроме того, подчеркнутые элементы должны описывать один тур, а не несколько меньших циклов. Сумма чисел подчеркнутых элементов есть стоимость тура. На
табл. 2 стоимость равна 36, это тот минимальный тур, который получен лексикографическим перебором.
Теперь будем рассуждать от приведенной матрицы на табл. 2. Если в ней удастся построить правильную систему подчеркнутых элементов, т.е. систему, удовлетворяющую трем вышеописанным требованиям, и этими подчеркнутыми
элементами будут только нули, то ясно, что для этой матрицы мы получим минимальный тур. Но он же будет минимальным и для исходной матрицы С, только для того, чтобы получить правильную стоимость тура, нужно будет
обратно прибавить все константы приведения, и стоимость тура изменится с 0 до 34. Таким образом, минимальный тур не может быть меньше 34. Мы получили оценку снизу для всех туров. Теперь приступим к ветвлению. Для этого проделаем шаг оценки нулей. Рассмотрим нуль в клетке (1,2) приведенной матрицы. Он означает, что цена
перехода из города 1 в город 2 равна 0. А если мы не пойдем из города 1 в город 2? Тогда все равно нужно въехать в город 2 за цены, указанные во втором столбце; дешевле всего за 1 (из города 6). Далее, все равно надо будет выехать из города 1 за цену, указанную в первой строке; дешевле всего в город 3 за 0. Суммируя эти два минимума, имеем 1+0=1: если не ехать «по
нулю» из города 1 в город 2, то надо заплатить не меньше 1. Это и есть оценка нуля. Оценки всех нулей поставлены на табл. 5 правее и выше нуля (оценки нуля, равные нулю, не ставились). Выберем максимальную из этих оценок (в примере есть несколько оценок, равных единице, выберем первую из них, в клетке (1,2)).
Итак, выбрано нулевое ребро (1,2). Разобьем все туры на два класса – включающие ребро (1,2) и не включающие ребро (1,2). Про второй класс можно сказать, что придется приплатить еще 1, так что туры этого класса стоят 35 или больше.
Что касается первого класса, то в нем надо рассмотреть матрицу на табл. 6 с вычеркнутой первой строкой и вторым столбцом.
| |1|2|3|4|5|6|
|1|-|0|0|3|3|6|
| | |1| | | | |
|2|0|-|1|4|1|0|
| |1| | | | | |
|3|1|2|-|0|0|3|
| | | | |1| | |
| |1|3|4|5|6|
|2|0|1|4|1|0|
| |1| | | | |
|3|1|-|0|0|3|
| | | |1| | |
|4|4|0|-|1|3|
| | |1| | | |
|5|4|0|1|-|0|
|6|7|3|3|0|-|
| | | | |1| |
|табл. 6 |
| |1|3|4|5|6|
|2|0|1|4|1|0|
| |1| | | | |
|3|0|-|0|0|3|
| |3| |1| | |
|4|3|0|-|1|3|
| | |1| | | |
|5|3|0|1|-|0|
|6|6|3|3|0|-|
| | | | |1| |
|табл. 7 |
| |3|4|5|6|
|2|1|4|1|0|
|4|0|-|1|3|
| |1| | | |
|5|0|1|-|0|
|6|3|3|0|-|
| | | |1| |
|табл. 8 |

Дополнительно в уменьшенной матрице поставлен запрет в клетке (2,1), т. к. выбрано ребро (1,2) и замыкать преждевременно тур ребром (2,1) нельзя. Уменьшенную матрицу можно привести на 1 по первому столбцу, так что каждый тур, ей отвечающий, стоит не меньше 35. Результат наших ветвлений и получения оценок показан на рис.6. Кружки представляют классы: верхний кружок – класс всех туров; нижний левый – класс всех туров, включающих ребро (1,2); нижний правый – класс всех
туров, не включающих ребро (1,2). Числа над кружками – оценки снизу. Продолжим ветвление в положительную сторону: влево - вниз. Для этого оценим нули в уменьшенной матрице C на табл. 7. Максимальная оценка в клетке (3,1) равна 3. Таким образом, оценка для правой нижней вершины на рис. 7 есть 35+3=38. Для оценки левой нижней вершины на рис. 7 нужно вычеркнуть из матрицы C еще строку 3 и столбец 1, получив матрицу C[(1,2),(3,1)] на табл. 8. В эту матрицу нужно поставить запрет в клетку (2,3), так как уже построен фрагмент тура из ребер (1,2) и (3,1), т.е. , и нужно запретить преждевременное замыкание (2,3). Эта матрица приводится по столбцу на 1 (табл. 9), таким образом, каждый тур
соответствующего класса (т.е. тур, содержащий ребра (1,2) и (3,1)) стоит 36 и более.
| |3 |4 |5 |6 |
|2 |1 |3 |1 |0 |
|4 |01|- |1 |3 |
|5 |0 |02|- |0 |
|6 |3 |2 |03|- |
|табл. 9 |
| |3|4|6|
|2|1|3|0|
| | | |3|
|4|0|-|3|
| |3| | |
|5|0|0|0|
| | |3| |
|табл. 10 |
| |3 |4 |
|4 |0 |- |
|5 |0 |0 |
|табл. 11 |

Оцениваем теперь нули в приведенной матрице C[(1,2),(3,1)] нуль с максимальной оценкой 3 находится в клетке (6,5). Отрицательный вариант имеет оценку 38+3=41. Для получения оценки положительного варианта убираем строчку 6 и столбец 5, ставим запрет в клетку (5,6), см. табл. 10. Эта матрица неприводима. Следовательно, оценка положительного варианта не
увеличивается (рис.8). Оценивая нули в матрице на табл. 10, получаем ветвление по выбору ребра (2,6), отрицательный вариант получает оценку 36+3=39, а для получения оценки положительного варианта вычеркиваем вторую строку и шестой столбец,
получая матрицу на табл. 11. В матрицу надо добавить запрет в клетку (5,3), ибо уже построен фрагмент тура и надо запретить преждевременный возврат (5,3). Теперь, когда осталась матрица 2х2 с запретами по диагонали, достраиваем
тур ребрами (4,3) и (5,4). Мы не зря ветвились, по положительным вариантам. Сейчас получен тур: 1>2>6>5>4>3>1 стоимостью в 36. При достижении низа по дереву перебора класс туров сузился до одного тура, а оценка снизу
превратилась в точную стоимость. Итак, все классы, имеющие оценку 36 и выше, лучшего тура не содержат.
Поэтому соответствующие вершины вычеркиваются. Вычеркиваются также вершины, оба потомка которой вычеркнуты. Мы колоссально сократили полный перебор. Осталось проверить, не содержит ли лучшего тура класс, соответствующий
матрице С, т.е. приведенной матрице С с запретом в клетке 1,2, приведенной на 1 по столбцу (что дало оценку 34+1=35). Оценка нулей дает 3 для нуля в клетке (1,3), так что оценка отрицательного варианта 35+3
превосходит стоимость уже полученного тура 36 и отрицательный вариант отсекается.
Для получения оценки положительного варианта исключаем из матрицы первую строку и третий столбец, ставим запрет (3,1) и получаем матрицу. Эта матрица приводится по четвертой строке на 1, оценка класса достигает 36 и
кружок зачеркивается. Поскольку у вершины «все» убиты оба потомка, она убивается тоже. Вершин не осталось, перебор окончен. Мы получили тот же минимальный тур, который показан подчеркиванием на табл. 2.
Удовлетворительных теоретических оценок быстродействия алгоритма Литтла и родственных алгоритмов нет, но практика показывает, что на современных ЭВМ они часто позволяют решить ЗК с n = 100. Это огромный прогресс по сравнению с полным перебором. Кроме того, алгоритмы типа ветвей и границ являются, если нет возможности доводить их до конца, эффективными эвристическими процедурами.

1.2.4. Алгоритм Дейкстры

Одним из вариантов решения ЗК является вариант нахождения кратчайшей цепи, содержащей все города. Затем полученная цепь дополняется начальным городом – получается искомый тур. Можно предложить много процедур решения этой задачи, например, физическое моделирование. На плоской доске рисуется карта местности, в города, лежащие на развилке дорог, вбиваются гвозди, на каждый гвоздь надевается кольцо, дороги укладываются верёвками, которые привязываются к
соответствующим кольцам. Чтобы найти кратчайшее расстояние между i и k, нужно взять I в одну руку и k в другую и растянуть. Те верёвки, которые натянутся и не дадут разводить руки шире и образуют кратчайший путь между i
и k. Однако математическая процедура, которая промоделирует эту физическую, выглядит очень сложно. Известны алгоритмы попроще. Один из них – алгоритм Дейкстры, предложенный Дейкстрой ещё в 1959г. Этот алгоритм решает общую
задачу:
В ориентированной, неориентированной или смешанной (т. е. такой, где часть дорог имеет одностороннее движение) сети найти кратчайший путь между двумя заданными вершинами. Алгоритм использует три массива из n (= числу вершин сети) чисел каждый. Первый массив a содержит метки с двумя значениями: 0 (вершина ещё не рассмотрена) и 1 (вершина уже рассмотрена); второй массив b содержит расстояния – текущие кратчайшие расстояния от vi до соответствующей
вершины; третий массив c содержит номера вершин – k-й элемент ck есть номер предпоследней вершины на текущем кратчайшем пути из vi в vk. Матрица расстояний Dik задаёт длины дуг dik; если такой дуги нет, то dik присваивается большое число Б, равное «машинной бесконечности».

Теперь можно описать: Алгоритм Дейкстры 1(инициализация).

В цикле от одного до n заполнить нулями массив а; заполнить числом i массив с: перенести i-тую строку матрицы D в массив b;
a[i]:=1; c[i]:=0; {i-номер стартовой вершины} 2(общий шаг). Найти минимум среди неотмеченных (т. е. тех k, для которых a[k]=0); пусть минимум достигается на индексе j, т. е. bj(bk; a[j]:=1; если bk>bj+djk то (bk:=bj+djk; ck:=j) {Условие означает, что путь vi..vk длиннее, чем путь vi..vj,vk . Если все a[k] отмечены, то длина пути vi..vk равна b[k]. Теперь надо перечислить вершины, входящие в кратчайший путь}

3(выдача ответа).
{Путь vi..vk выдаётся в обратном порядке следующей процедурой:}
3.1. z:=c[k];
3.2. Выдать z;
3.3. z:=c[z]; Если z = 0, то конец, иначе перейти к 3.2.
Для выполнения алгоритма нужно n раз просмотреть массив b из n элементов, т. е. алгоритм Дейкстры имеет квадратичную сложность. Проиллюстрируем работу алгоритма Дейкстры численным примером (для большей сложности, считаем, что некоторые города (вершины) i,j не соединены между собой, т. е. D=?). Пусть, например, i=3. Требуется найти кратчайшие
пути из вершины 3. Содержимое массивов a,b,c после выполнения первого пункта показано на табл. 12:

Очевидно, содержимое таблицы меняется по мере выполнения общего шага. Это видно из следующей таблицы:
Одним из возможных недостатков такого алгоритма является необходимость знать не матрицу расстояний, а координаты каждого города на плоскости. Если нам известна матрица расстояний между городами, но неизвестны их координаты, то для их нахождения нужно будет решить n систем квадратных уравнений с n неизвестными для каждой координаты. Уже для 6 городов это сделать очень сложно. Если же, наоборот, имеются координаты всех городов, но нет матрицы расстояний между ними, то создать эту матрицу несложно. Это можно легко сделать в уме для 5-6 городов. Для большего количества городов
можно воспользоваться возможностями компьютера, в то время как промоделировать решение системы квадратных уравнений на компьютере довольно сложно.
На основе вышеизложенного можно сделать вывод, что мой алгоритм, наряду с деревянным алгоритмом и алгоритмом Дейкстры, можно отнести к приближённым (хотя за этим алгоритмом ни разу не было замечено выдачи неправильного варианта).

1.2.6. Анализ методов решения задачи коммивояжера

Для подведения итогов в изучении методов решения ЗК протестируем наиболее оптимальные алгоритмы на компьютере по следующим показателям: количество городов, время обработки, вероятность неправильного ответа.

Данные занесём в таблицу.
|Алгоритм лексического перебора |
|Кол-во |Время обработки,|Вероятность неправильного |Тип |
|городов |c |ответа, % |алгоритма |
|10 |41 |0 |точный |
|12 |12000=3ч.20мин |0 | |
|32 |-* |0 | |
|100 |-* |0 | |
|Метод ветвей и границ |
|10 |~0 |0 |точный |
|32 |~0.0001 |0 | |
|100 |1.2 |0 | |
|Мой алгоритм решения ЗК |
|10 |0.001 |0 |приближенный|
|32 |2.5 |0 | |
|100 |6 |0 | |

*- ЗК с таким количеством городов методом лексического перебора
современный компьютер не смог бы решить даже за всё время существования
Вселенной.
Как видим по результатам этой таблицы, алгоритм лексического перебора
можно применять лишь в случае с количеством городов 5..12. Метод ветвей и
границ, наряду с моим методом, можно применять всегда. Хотя мой метод я
отнёс к приближённым алгоритмам, он фактически является точным, так как
доказать обратное ещё не удалось.

1.3 Практическое применение задачи коммивояжера

Кроме очевидного применения ЗК на практике, существует ещё ряд задач, сводимых к решению ЗК.
Задача о производстве красок. Имеется производственная линия для производства n красок разного цвета; обозначим эти краски номерами 1,2… n. Всю производственную линию будем считать одним процессором.. Будем считать
также, что единовременно процессор производит только одну краску, поэтому краски нужно производить в некотором порядке Поскольку производство циклическое, то краски надо производить в циклическом порядке (=(j1,j2,..,jn,j1). После окончания производства краски i и перед началом производства краски j надо отмыть оборудование от краски i. Для этого
требуется время C. Очевидно, что C зависит как от i, так и от j, и что, вообще говоря,C?C. При некотором выбранном порядке придется на цикл производства красок потратить время
Где tk - чистое время производства k-ой краски (не считая переналадок). Однако вторая сумма в правой части постоянна, поэтому полное время на цикл производства минимизируется вместе с общим временем на переналадку.
Таким образом, ЗК и задача о минимизации времени переналадки – это просто одна задача, только варианты ее описаны разными словами. Задача о дыропробивном прессе. Дыропробивной пресс производит большое число одинаковых панелей – металлических листов, в которых последовательно по одному пробиваются отверстия разной формы и величины. Схематически пресс можно представить в виде стола, двигающегося независимо по координатам x, y, и вращающегося над столом диска, по периметру которого расположены дыропробивные инструменты разной формы и величины. Каждый инструмент присутствует в одном экземпляре. Диск может вращаться одинаково в двух направлениях (координата вращения z). Имеется собственно пресс, который надавливает на подвешенный под него инструмент тогда, когда под инструмент
подведена нужная точка листа. Операция пробивки j-того отверстия характеризуется четверкой чисел (xj,yj,zj,tj), где xj,yj- координаты нужного положения стола, zj - координата нужного положения диска и tj - время пробивки j-того отверстия.
Производство панелей носит циклический характер: в начале и конце обработки каждого листа стол должен находиться в положениях (x0, y0) диск в положении z0 причем в этом положении отверстие не пробивается. Это начальное состояние системы можно считать пробивкой фиктивного нулевого отверстия. С параметрами (x0,y0,z0,0). Чтобы пробить j-тое отверстие непосредственно после i-того необходимо произвести следующие действия:
1. Переместить стол по оси x из положения xi в положение xj, затрачивая
при этом время t(x)(|xi-xj|)=ti,j(x)
2. Проделать то же самое по оси y, затратив время ti,j(y)
3. Повернуть головку по кратчайшей из двух дуг из положения zi в положение zj, затратив время ti,j(z) .
4. Пробить j-тое отверстие, затратив время tj. Конкретный вид функций t(x), t(y), t(z) зависит от механических
свойств пресса и достаточно громоздок. Явно выписывать эти функции нет необходимости. Действия 1-3 (переналадка с i-того отверстия j-тое) происходит одновременно, и пробивка происходит немедленно после завершения самого длительного из этих действий. Поэтому С = max(t(x), t(y), t(z)) Теперь, как и в предыдущем случае, задача составления оптимальной
программы для дыропробивного пресса сводится к ЗК (здесь - симметричной).

Выводы

1. Изучены эвристический, приближенный и точный алгоритмы решения ЗК.
Точные алгоритмы решения ЗК – это полный перебор или
усовершенствованный перебор. Оба они, особенно первый, не эффективны
при большом числе вершин графа.
2. Предложен собственный эффективный метод решения ЗК на основе
построения выпуклого многоугольника и включения в него центральных
вершин (городов).
3. Проведён анализ наиболее рациональных методов решения ЗК и определены
области их эффективного действия: для малого числа вершин можно
использовать точный метод лексического перебора; для большого числа
вершин рациональнее применять метод ветвей и границ или метод автора
работы (Анищенко Сергея Александровича).
4. Изучены практические применения ЗК и задачи с переналадками, сводимые
к ЗК.
5. Приведены тексты программ, позволяющие решить ЗК различными методами.

LMatrix: На нашем сайте Вы можете познакомиться с решением задачи коммивояжера (TSP) для различных стран мира.


Введение

1. Теоретическая часть 6

1.1 Основные понятия теории графов 6

1.2 Формулировка и некоторые свойства решений задачи коммивояжера. 8

1.3 Постановка задачи коммивояжера как задачи на графе 10

1.4 Условия существования Гамильтонова контура 10

1.5 Метод ветвей и границ…………………………………………………. 11

1.6 Практическое применение задачи коммивояжера…………………… 17

2. Практическая часть 20

Заключение

Список используемой литературы

Введение

Теория принятия решений - область исследования, вовлекающая понятия и методы математики, экономики, менеджмента и психологии. Изучает закономерности выбора людьми путей решения разного рода задач, а также исследует способы поиска наиболее выгодных из возможных решений.

В курсовой работе рассмотрены некоторые методы решения задачи коммивояжера, алгоритмы решения.

Многие задачи, с которыми приходится иметь дело в повседневной практике, являются многовариантными. Среди множества возможных вариантов в условиях рыночных отношений приходится отыскивать наилучшие решения при ограничениях, налагаемых на природные, экономические и технологические возможности. В связи с этим возникла необходимость применять для анализа и синтеза экономических ситуаций и систем математические методы и современную вычислительную технику.

Целью данной курсовой работы является рассмотрение задачи коммивояжера, способов её решения.

Рассмотрена задача коммивояжёра, а также приведён алгоритм метода ветвей и границ для решения задачи коммивояжёра.

    Теоретическая часть

1.1 Основные понятия теории графов

Многие задачи принятие решений можно решить с помощью теории графов.

Графические представления – наглядные отображения исследуемой системы процесса или явления на плоскость: рисунки, чертежи, схемы и блок-схемы, диаграммы, графы. На языке теории графов формируются и решаются многие технические задачи, задачи из области экономики, социологии, менеджмента и т.д. Графы используются для наглядного представления объектов и связи между ними.

Пусть G -неориентированный граф. Геометрически граф можно представить как набор вершин (точек), определенные пары которых соединены линиями. Например, сеть дорог, соединяющих города ,,,,, можно представить в виде графа следующим образом. Города обозначены точками (вершинами), а дороги – неориентированными линиями (рис 1.1).

рис 1.1 Сеть дорог между городами.

Неориентированные линии означают наличие двустороннего движения между соответствующей парой городов. Пересечения линий не считаются вершинами.

При изображении графа не имеет значение расположение вершин на плоскости, кривизна и длина ребер (рис 1.2).

рис 1.2 Изображение графов

Вершины графов обозначаются буквами или натуральными числами. Ребра графа – пары чисел.

Маршрутом в G называется такая конечная или бесконечная последовательность ребер, что каждые два соседних ребра имеют концевую точку. Причем, одно и то же ребро Е может встречаться в маршруте несколько раз.

Циклическим маршрутом называется такой маршрут, начальная и конечная точки которого совпадают.

Цепью называют маршрут, в котором каждое его ребро встречается не более одного раза; вершины в цепи могут повторяться не более одного раза. Любой участок цепи является цепью. Нециклическая цепь является простой цепью, если в ней никакая вершина не повторяется.

Граф называется сильно связным, если между каждой парой его вершин , , , существует путь () такой, что является начальной вершиной пути, а - конечной.

Граф называется связным, если между парой его вершин , , существует такая последовательность элементов (дуг или ребер, или же и дуг, и ребер), что любая соседних элементов в этой последовательности имеет общую вершину. Очевидно, что любой сильно связный граф является связным. Связный неориентированный граф называется деревом, если он не имеет циклов. В дереве любые две вершины связаны единственной цепью.

1.2 Формулировка и некоторые свойства решений задачи коммивояжера

Коммивояжер (бродячий торговец) должен выйти из первого города, посетить по разу в неизвестном порядке города 2,1,3.. n и вернуться в первый город. Расстояния между городами известны. В каком порядке следует обходить города, чтобы замкнутый путь (тур) коммивояжера был кратчайшим?

Чтобы привести задачу к научному виду, введём некоторые термины. Города перенумерованы числами j Т=(1,2,3.. n ) . Тур коммивояжера может быть описан циклической перестановкой t =(j 1 , j 2 ,.., j n , j 1 ) , причём все j 1 .. j n – разные номера; повторяющийся в начале и в конце j 1 , показывает, что перестановка зациклена. Расстояния между парами вершин С ij образуют матрицу С . Задача состоит в том, чтобы найти такой тур t :

(1)

Относительно математизированной формулировки задачи коммивояжера уместно сделать два замечания.

1) В постановке С ij означали расстояния, поэтому они должны быть неотрицательными, т.е. для всех j Т :

С ij 0; C jj = (2)

(последнее равенство означает запрет на петли в туре), симметричными, т.е. для всех i , j :

С ij = С ji (3)

и удовлетворять неравенству треугольника, т.е. для всех:

С ij + С jk C ik (4)

В математической постановке говорится о произвольной матрице. Сделано это потому, что имеется много прикладных задач, которые описываются основной моделью, но всем условиям (2)-(4) не удовлетворяют. Особенно часто нарушается условие (3) (например, если С ij – не расстояние, а плата за проезд: часто туда билет стоит одну цену, а обратно – другую). Поэтому мы будем различать два варианта задачи коммивояжера: симметричную задачу, когда условие (3) выполнено, и несимметричную - в противном случае. Условия (2)-(4) по умолчанию мы будем считать выполненными.

2) В несимметричной задаче коммивояжера все туры t =(j 1 , j 2 ,.., j n , j 1 ) и t ’=(j 1 , j n ,.., j 2 , j 1 ) имеют разную длину и должны учитываться оба. Разных туров очевидно (n -1)! .

Зафиксируем на первом и последнем месте в циклической перестановке номер j 1 , а оставшиеся n -1 номеров переставим всеми (n -1)! возможными способами. В результате получим все несимметричные туры. Симметричных туров имеется в

два раза меньше, т.к. каждый засчитан два раза: как t и как t . Можно представить, что С состоит только из единиц и нулей. Тогда С можно интерпретировать, как граф, где ребро (i , j ) проведено, если С ij =0 и не проведено, если С ij =1 . Тогда, если существует тур длины 0, то он пройдёт по циклу, который включает все вершины по одному разу. Такой цикл называется гамильтоновым циклом. Незамкнутый гамильтонов цикл называется гамильтоновой цепью (гамильтоновым путём).

В терминах теории графов симметричную задачу коммивояжера можно сформулировать так:

Дана полная сеть с n вершинами, длина ребра (i , j )= С ij . Найти гамильтонов цикл минимальной длины. В несимметричной задаче коммивояжера вместо «цикл» надо говорить «контур», а вместо «ребра» - «дуги» или «стрелки».

Некоторые прикладные задачи формулируются как задачи коммивояжера, но в них нужно минимизировать длину не гамильтонова цикла, а гамильтоновой цепи. Такие задачи называются незамкнутыми. Некоторые модели сводятся к задаче о нескольких коммивояжерах, но мы здесь их рассматривать не будем.

1.3 Постановка задачи коммивояжера как задачи на графе

Формулировка: Множество городов:
. Расстояние между городами i и j:
. П – множество перестановок элементов А, перестановка

Если городам поставить в соответствии вершины графа, а соединяющих их дорогам дуги, то в терминах теории графов задача заключается в определении гамильтонова контура минимальной длины. Гамильтоновым контуром называется путь, проходящий через все вершины графа, у которого начальная вершина совпадает с конечной. Здесь под длиной контура понимают не количество дуг, входящих в контур, а сумму их длин. Длина соответствующей дороги – вес ребра. Граф должен быть полным, т.е. в нем имеются все возможные ребра. Если же граф не является полным, то его можно дополнить недостающими ребрами с весом равным
.

1.4 Условия существования Гамильтонова контура

Последовательность (путь), который требуется найти – ориентированный остовный простой цикл минимального веса в орграфе; такие циклы также называют гамильтоновыми. Очевидно, что в полном орграфе циклы указанного выше типа есть. Заметим, что вопрос о наличии в орграфе гамильтонова цикла достаточно рассмотреть как частный случай задачи о коммивояжере для полных орграфов. Действительно, если данный орграф не является полным, то его можно дополнить до полного недостающими ребрами и каждому из добавленных ребер приписать вес - это «компьютерная бесконечность», т.е. максимальное из всех возможных в рассмотрениях чисел. Если во вновь построенном полном орграфе найти теперь легчайший гамильтонов цикл, то при наличии у него ребер с весом можно будет говорить, что в данном, исходном графе «цикла коммивояжера» нет. Если же в полном орграфе легчайший гамильтонов цикл окажется конечным по весу, то он и будет искомым циклом в исходном графе. Гамильтоновым контуром называется путь, проходящий через все вершины графа, у которого начальная вершина совпадает с конечной. Здесь под длиной контура понимают не количество дуг, входящих в контур, а сумму их длин.

Цикл Гамильтона.

Пусть G -граф. Циклом Гамильтона называется простой цикл, который содержит все вершины данного графа.

Теорема 1.

Для того, чтобы в графе существовал цикл Гамильтона, необходимо, чтобы этот граф был связным.

Теорема 2.

В полном графе , если n>=3, цикл Гамильтона есть в полном двудольном
при m>=1, цикл Гамильтона есть.

1.5 Метод ветвей и границ

Графом называется непустое конечное множество, состоящее из двух подмножеств и . Первое подмножество
(вершины) состоит из любого множества элементов. Второе подмножество (дуги) состоит из упорядоченных пар элементов первого подмножества
. Если вершины
и
такие, что
, то это вершины смежные.

Маршрутом в графе называется последовательность вершин
не обязательно попарно различных, где для любого
смежно с . Маршрут называется цепью, если все его ребра попарно различны. Если
то маршрут называется замкнутым. Замкнутая цепь называется циклом.

Постановка задачи

Коммивояжер должен объездить n городов. Для того чтобы сократить расходы, он хочет построить такой маршрут, чтобы объездить все города точно по одному разу и вернуться в исходный с минимумом затрат.

В терминах теории графов задачу можно сформулировать следующим образом. Задано n вершин и матрица {c ij }, где c ij ≥0 – длинна (или цена) дуги (i , j ),
. Под маршрутом коммивояжера z будем понимать цикл i 1 , i 2 ,…, i n , i 1 точек 1,2,…, n. Таким образом, маршрут является набором дуг. Если между городами i и j нет перехода, то в матрице ставится символ «бесконечность». Он обязательно ставится по диагонали, что означает запрет на возвращение в точку, через которую уже проходил маршрут коммивояжера , длина маршрута l (z ) равна сумме длин дуг, входящих в маршрут. Пусть Z – множество всех возможных маршрутов. Начальная вершина i 1 – фиксирована. Требуется найти маршрут z 0  Z , такой, что l (z 0)= min l (z ), z Z .

Решение задачи

Основная идея метода ветвей и границ состоит в том, что вначале строят нижнюю границу φ длин множества маршрутов Z. Затем множество маршрутов разбивается на два подмножества таким образом, чтобы первое подмножество состояло из маршрутов, содержащих некоторую дугу (i, j), а другое подмножество не содержало этой дуги. Для каждого из подмножеств определяются нижние границы по тому же правилу, что и для первоначального множества маршрутов. Полученные нижние границы подмножеств и оказываются не меньше нижней границы множества всех маршрутов, т.е. φ(Z)≤ φ (), φ(Z) ≤ φ ().

Сравнивая нижние границы φ () и φ (), можно выделить то, подмножество маршрутов, которое с большей вероятностью содержит маршрут минимальной длины.

Затем одно из подмножеств или по аналогичному правилу разбивается на два новых и . Для них снова отыскиваются нижние границы φ (), и φ () и т.д. Процесс ветвления продолжается до тех пор, пока не отыщется единственный маршрут. Его называют первым рекордом. Затем просматривают оборванные ветви. Если их нижние границы больше длины первого рекорда, то задача решена. Если же есть такие, для которых нижние границы меньше, чем длина первого рекорда, то подмножество с наименьшей нижней границей подвергается дальнейшему ветвлению, пока не убеждаются, что оно не содержит лучшего маршрута .

Если же такой найдется, то анализ оборванных ветвей продолжается относительно нового значения длины маршрута. Его называют вторым рекордом. Процесс решения заканчивается, когда будут проанализированы все подмножества.

Для практической реализации метода ветвей и границ применительно к задаче коммивояжера укажем прием определения нижних границ подмножеств и разбиения множества маршрутов на подмножества (ветвление).

Для того чтобы найти нижнюю границу воспользуемся следующим соображением: если к элементам любого ряда матрицы задачи коммивояжера (строке или столбцу) прибавить или вычесть из них некоторое число, то от этого оптимальность плана не изменится. Длина же любого маршрутом коммивояжера изменится на данную величину.

Вычтем из каждой строки число, равное минимальному элементу этой строки. Вычтем из каждого столбца число, равное минимальному элементу этого столбца. Полученная матрица называется приведенной по строкам и столбцам. Сумма всех вычтенных чисел называется константой приведения.

Константу приведения следует выбирать в качестве нижней границы длины маршрутов.

Разбиение множества маршрутов на подмножества

Для выделения претендентов на включение во множество дуг, по которым производится ветвление, рассмотрим в приведенной матрице все элементы, равные нулю. Найдем степени Θ ij нулевых элементов этой матрицы. Степень нулевого элемента Θ ij равна сумме минимального элемента в строке i и минимального элемента в столбце j (при выборе этих минимумов c ij – не учитывается). С наибольшей вероятностью искомому маршруту принадлежат дуги с максимальной степенью нуля.

Для получения платежной матрицы маршрутов, включающей дугу (i , j ) вычеркиваем в матрице строку i и столбец j , а чтобы не допустить образования цикла в маршруте, заменяем элемент, замыкающий текущую цепочку на бесконечность.

Множество маршрутов, не включающих дугу (i , j ) получаем путем замены элемента c ij на бесконечность.

Пример решения задачи коммивояжера методом ветвей и границ

Коммивояжер должен объездить 6 городов. Для того чтобы сократить расходы, он хочет построить такой маршрут, чтобы объездить все города точно по одному разу и вернуться в исходный с минимумом затрат. Исходный город A. Затраты на перемещение между городами заданы следующей матрицей:

Решение задачи

Для удобства изложения везде ниже в платежной матрице заменим имена городов (A, B, …, F) номерами соответствующих строк и столбцов (1, 2, …, 6).

Найдем нижнюю границу длин множества всех маршрутов. Вычтем из каждой строки число, равное минимальному элементу этой строки, далее вычтем из каждого столбца число, равное минимальному элементу этого столбца, и таким образом приведем матрицу по строкам и столбцам. Минимумы по строкам: r 1 =15, r 2 =1, r 3 =0, r 4 =16, r 5 =5, r 6 =5.

После их вычитания по строкам получим:

Минимумы по столбцам: h 1 =5, h 2 =h 3 =h 4 =h 5 =h 6 .

После их вычитания по столбцам получим приведенную матрицу:

Найдем нижнюю границу φ (Z ) = 15+1+0+16+5+5+5 = 47.

Для выделения претендентов на включение во множество дуг, по которым производится ветвление, найдем степени Θ ij нулевых элементов этой матрицы (суммы минимумов по строке и столбцу). Θ 14 = 10 + 0,
Θ 24 = 1 + 0, Θ 36 = 5+0, Θ 41 = 0 + 1, Θ 42 = 0 + 0, Θ 56 = 2 + 0, Θ 62 = 0 + 0,
Θ 63 = 0 + 9, Θ 65 = 0 + 2. Наибольшая степень Θ 14 = 10. Ветвление проводим по дуге (1, 4).

Нижняя граница для множества
остается равной 47. Для всех маршрутов множества из города A мы не перемещаемся в город D. В матрице это обозначается выставлением в ячейку (1, 4) знака ∞. В этом случае выход из города A добавляет к оценке нижней границы по крайней мере наименьший элемент первой строки. φ () = 47 + 10.

В матрице, соответствующей полагаем c 14 = ∞.

После проведения процедуры приведения с r 1 =10 получим новую нижнюю границу 57 + 10 = 67.

В матрице, соответствующей , вычеркиваем первую строку и четвертый столбец и положим c 41 = ∞, чтобы предотвратить появления цикла 1→ 4 → 1. Получим новую платежную матрицу {c 1 ij }:

Для приведения надо вычесть минимум по первому столбцу: h 1 =1. При этом нижняя граница станет равной 47+1 = 48. Сравнивая нижние границы
φ () = 67 и φ () = 48 < 67 выделяем подмножество маршрутов , которое с большей вероятностью содержит маршрут минимальной длины.

Рис. 1.4 Ветвление на первом шаге

Далее продолжаем процесс ветвления. Найдем степени Θ ij нулевых элементов этой матрицы Θ 21 =16, Θ 36 = 5, Θ 42 = 2, Θ 56 = 2, Θ 62 = 0, Θ 63 =9, Θ 65 = 2. Наибольшая степень Θ 21 . Затем множество разбивается дуге (2, 1) на два новых
и .

В матрице для вычеркиваем строку 2 и столбец 1. дуги (1, 4) и (2, 1) образуют связный путь (2, 1, 4), положим c 42 = ∞, чтобы предотвратить появления цикла 2→1→ 4 → 2.

Для приведения надо вычесть минимум по строке 4: r 4 =2. При этом нижняя граница станет равной 48+2 = 50.

Нижняя граница для , полученная как на предыдущем шаге ветвления, равна 48 + 16 = 64. Сравнивая нижние границы φ () = 64 и φ () = 50 < 64 выбираем для дальнейшего разбиения подмножество маршрутов .

Рис. 1.5 Ветвление на втором шаге

Приведенная платежная матрица для

Степени Θ ij нулевых элементов этой матрицы Θ 36 = 5, Θ 45 = 0, Θ 56 = 22, Θ 62 = 13, Θ 63 =7, Θ 65 = 0. Наибольшая степень Θ 56. Затем множество разбивается дуге (2, 1) на два новых и .

Нижняя граница для равна 50 + 22 = 72. В матрице для вычеркиваем строку 5 и столбец 6 и полагаем c 65 = ∞. Получим матрицу:

Для приведения надо вычесть минимум по строке 3: r 3 =5. При этом нижняя граница станет равной 50+5 = 55. Выбираем для дальнейшего разбиения подмножество маршрутов.

Рис. 1.6 Ветвление на третьем шаге

Приведенная платежная матрица для

Для приведения надо вычесть минимум по строке 4: r4=7. При этом нижняя граница станет равной 55+7 = 62. После приведения получим

Из матрицы 22 получаем два перехода с нулевой длинной: (4, 3) и (6, 2).

Рис. 1.7 Ветвление на четвертом шаге

Рис. 1.8 Дерево ветвления с оценками

Полученный маршрутом коммивояжера z 0 = (1, 4, 3, 5, 6, 2, 1) или (A-D-C-E-F-B-A).

1.6 Практическое применение задачи коммивояжера

Кроме очевидного применения задачи коммивояжера на практике, существует ещё ряд задач, сводимых к решению задачи коммивояжера.

Задача о производстве красок .

Имеется производственная линия для производства n красок разного цвета; обозначим эти краски номерами 1,2… n. Всю производственную линию будем считать одним процессором.. Будем считать также, что единовременно процессор производит только одну краску, поэтому краски нужно производить в некотором порядке Поскольку производство циклическое, то краски надо производить в циклическом порядке =(j 1 ,j 2 ,..,j n ,j 1). После окончания производства краски i и перед началом производства краски j надо отмыть оборудование от краски i. Для этого требуется время C. Очевидно, что C зависит как от i, так и от j, и что, вообще говоря,C≠C. При некотором выбранном порядке придется на цикл производства красок потратить время:

Где t k - чистое время производства k-ой краски (не считая переналадок). Однако вторая сумма в правой части постоянна, поэтому полное время на цикл производства минимизируется вместе с общим временем на переналадку.

Таким образом, задача коммивояжера и задача о минимизации времени переналадки – это просто одна задача, только варианты ее описаны разными словами.

Задача о дыропробивном прессе .

Дыропробивной пресс производит большое число одинаковых панелей – металлических листов, в которых последовательно по одному пробиваются отверстия разной формы и величины. Схематически пресс можно представить в виде стола, двигающегося независимо по координатам x, y, и вращающегося над столом диска, по периметру которого расположены дыропробивные инструменты разной формы и величины. Каждый инструмент присутствует в одном экземпляре. Диск может вращаться одинаково в двух направлениях (координата вращения z). Имеется собственно пресс, который надавливает на подвешенный под него инструмент тогда, когда под инструмент подведена нужная точка листа.

Операция пробивки j-того отверстия характеризуется четверкой чисел (x j ,y j ,z j ,t j), где x j ,y j - координаты нужного положения стола, z j - координата нужного положения диска и t j - время пробивки j-того отверстия.

Производство панелей носит циклический характер: в начале и конце обработки каждого листа стол должен находиться в положениях (x 0 , y 0) диск в положении z 0 причем в этом положении отверстие не пробивается. Это начальное состояние системы можно считать пробивкой фиктивного нулевого отверстия. С параметрами (x 0 ,y 0 ,z 0 ,0).

Чтобы пробить j-е отверстие непосредственно после i-того необходимо произвести следующие действия:

    Переместить стол по оси x из положения x i в положение x j , затрачивая при этом время t (x) (|x i -x j |)=t i , j (x) .

    Проделать то же самое по оси y, затратив время t i , j (y) .

    Повернуть головку по кратчайшей из двух дуг из положения z i в положение z j , затратив время t i , j (z) .

    Пробить j-тое отверстие, затратив время t j .

Конкретный вид функций t (x) , t (y) , t (z) зависит от механических свойств пресса и достаточно громоздок. Явно выписывать эти функции нет необходимости

Действия 1-3 (переналадка с i-того отверстия j-тое) происходит одновременно, и пробивка происходит немедленно после завершения самого длительного из этих действий. Поэтому

С = max(t (x) , t (y) , t (z))

Теперь, как и в предыдущем случае, задача составления оптимальной программы для дыропробивного пресса сводится к задаче коммивояжера (здесь - симметричной).

    Практическая часть

Инвестор, располагающий суммой в 300 тысяч денежных единиц, может вложить свой капитал в акции автомобильного концерна А и строительного предприятия В. Чтобы уменьшить риск, акций А должно быть приобретено по крайней мере в два раза больше, чем акций В, причём последних можно купить не более чем на 100 тысяч денежных единиц. Дивиденды по акциям А составляют 8% в год, по акциям В – 10%. Какую максимальную прибыль можно получить в первый год?

Пусть цены на акции одинаковы для A и B и равны: ЦA = ЦB = 1 тыс.

  • Решение задачи на нахождение оптимального пути методом ветвей и границ

    Курсовая работа >> Математика

    Математическая постановка задачи коммивояжёра 5 1.2.Метод ветвей и границ. 5 1.3. Алгоритм решения 6 1.4. Схема решения задачи 6 ... множество допустимых решений (планов) некоторым способом разбивается... данной проблемы и её решение с помощью метода ветвей...

  • Применение муравьиных алгоритмов при решении задач оптимизации

    Задача >> Информатика

    Централизованного управления, и её особенностями являются обмен... условиями задачи . Потому что для каждой задачи способ размещение... решении задач оптимизации. 1.1.Применение муравьиных алгоритмов для задачи коммивояжёра . Задача формулируется как задача ...

  • Применение NP-полных задач в ассиметрично-ключевой криптографии

    Курсовая работа >> Информатика

    Представление о способах решения данной задачи и носит... обращающий её в 1. Свидетель – такой набор. Задача о... решение «пятнашек» размера Задача коммивояжёра Проблема раскраски графа Задача о вершинном покрытии Задача о покрытии множества Задача о клике Задача ...

  • Языки программирования (6)

    Реферат >> Информатика

    Виртуальные понятия, существующие в её рамках - таблица, табличное пространство... интеллекта. Это предполагает развитие способов решения задач по аналогии, методов дедукции... привлекаются для решения NP-полных задач , например, задачи коммивояжёра . ИИ занимается...

  • 1.9 ООП 14090 – 07 КР ПЗ

    Лист

    докумен.

    Подпись

    Дата

    Разраб.

    Ковешников Д.В.

    Решение задач коммивояжера

    Литера

    Лист

    Листов

    Руков.

    Селютина О.Н.

    Задачи коммивояжера решаются посредством различных методов, выведенных в результате теоретических исследований. Все эффективные методы (сокращающие полный перебор) - методы эвристические. В большинстве эвристических методов находится не самый эффективный маршрут, а приближённое решение. Зачастую востребованы алгоритмы постепенно улучшающие некоторое текущее приближенное решение. Выделяют следующие группы методов решения задач коммивояжера, которые относят к простейшим:

    · Полный перебор;

    Полный перебор (или метод «грубой силы») - метод решения задачи путем перебора всех возможных вариантов. Сложность полного перебора зависит от количества всех возможных решений задачи. Если пространство решений очень велико, то полный перебор может не дать результатов в течение нескольких лет или даже столетий.

    · Случайный перебор;

    Обычно выбор решения можно представить последовательностью выборов. Если делать эти выборы с помощью какого-либо случайного механизма, то решение находится очень быстро, так что можно находить решение многократно и запоминать «рекорд», т. е. наилучшее из встретившихся решений. Этот наивный подход существенно улучшается, когда удается учесть в случайном механизме перспективность тех или иных выборов, т. е. комбинировать случайный поиск с эвристическим методом и методом локального поиска. Такие методы применяются, например, при составлении расписаний для Аэрофлота.

    · Жадные алгоритмы (метод ближайшего соседа, метод включения ближайшего города, метод самого дешевого включения);

    Жадный алгоритм – алгоритм нахождения наикратчайшего расстояния путём выбора самого короткого, ещё не выбранного ребра, при условии, что оно не образует цикла с уже выбранными рёбрами. «Жадным» этот алгоритм назван потому, что на последних шагах приходится жестоко расплачиваться за жадность. При решении задачи коммивояжера жадный алгоритм превратится в стратегию «иди в ближайший (в который еще не входил) город». Жадный алгоритм, очевидно, бессилен в этой задаче. Рассмотрим для примера сеть (рис. 2), представляющую узкий ромб. Коммивояжер стартует из города 1. Алгоритм «иди в ближайший город» выведет его в город 2, затем 3, затем 4; на последнем шаге придется платить за жадность, возвращаясь по длинной диагонали ромба. В результате получится не кратчайший, а длиннейший тур.

    · Метод минимального остовного дерева (деревянный алгоритм);

    В основе алгоритма лежит утверждение: «Если справедливо неравенство треугольника, то для каждой цепи верно, что расстояние от начала до конца цепи меньше (или равно) суммарной длины всех ребер цепи». Это обобщение расхожего убеждения, что прямая короче кривой. Деревянный алгоритм для решения задачи коммивояжера будет следующим: строится на входной сети задачи коммивояжера кратчайшее остовное дерево и удваиваются все его ребра. В результате получаем граф - связный с вершинами, имеющими только четные степени. Затем строится эйлеров цикл, начиная с вершины 1, цикл задается перечнем вершин. Просматривается перечень вершин, начиная с 1, и зачеркивается каждая вершина, которая повторяет уже встреченную в последовательности. Останется тур, который и является результатом алгоритма.

    Доказано, что деревянный алгоритм ошибается менее чем в два раза, поэтому такие алгоритмы называют приблизительными, а не просто эвристическими.

    · Метод имитации отжига.

    Экзотическое название данного алгоритма связано с методами имитационного моделирования в статистической физике, основанными на технике Монте-Карло. Исследование кристаллической решетки и поведения атомов при медленном остывании тела привело к появлению на свет вероятностных алгоритмов, которые оказались чрезвычайно эффективными в комбинаторной оптимизации. Впервые это было замечено в 1983 году. Сегодня этот алгоритм является популярным как среди практиков благодаря своей простоте, гибкости и эффективности, так и среди теоретиков, поскольку для данного алгоритма удается аналитически исследовать его свойства и доказать асимптотическую сходимость. Алгоритм имитации отжига относится к классу пороговых алгоритмов локального поиска. На каждом шаге этого алгоритма для текущего решения i k в его окрестности N(i k) выбирается некоторое решение j и, если разность по целевой функции между новым и текущим решением не превосходит заданного порога t k , то новое решение j заменяет текущее. В противном случае выбирается новое соседнее решение. На практике применяются различные модификации более эффективных методов:

    · Метод ветвей и границ;

    Метод ветвей и границ предложен в 1963 году группой авторов Дж. Литлом, К. Мурти, Д. Суини, К. Кэролом. Широко используемый вариант поиска с возвращением, фактически является лишь специальным частным случаем метода поиска с ограничениями 4 . Ограничения в данном случае основываются на предположении, что на множестве возможных и частичных решений задана некоторая функция цены и что нужно найти оптимальное решение, т.е. решение с наименьшей ценой. Для применения метода ветвей и границ функция цены должна обладать тем свойством, что цена любого частичного решения не превышает цены любого расширения этого частичного решения (Заметим, что в большинстве случаев функция цены неотрицательна и даже удовлетворяет более сильному требованию). Столь большой успех применения данного метода объясняется тем, что авторы первыми обратили внимание на широту возможностей метода, отметили важность использования специфики задачи и сами воспользовались спецификой задачи коммивояжера.

    В основе метода ветвей и границ лежит идея последовательного разбиения множества допустимых решений на подмножества. На каждом шаге метода элементы разбиения подвергаются проверке для выяснения, содержит данное подмножество оптимальное решение или нет. Проверка осуществляется посредством вычисления оценки снизу для целевой функции на данном подмножестве. Если оценка снизу не меньше рекорда - наилучшего из найденных решений, то подмножество может быть отброшено. Проверяемое подмножество может быть отброшено еще и в том случае, когда в нем удается найти наилучшее решение. Если значение целевой функции на найденном решении меньше рекорда, то происходит смена рекорда. По окончанию работы алгоритма рекорд является результатом его работы. Если удается отбросить все элементы разбиения, то рекорд - оптимальное решение задачи. В противном случае, из неотброшенных подмножеств выбирается наиболее перспективное (например, с наименьшим значением нижней оценки), и оно подвергается разбиению. Новые подмножества вновь подвергаются проверке и т.д.

    · Метод генетических алгоритмов;

    «Отцом-основателем» генетических алгоритмов считается Джон Холланд, книга которого «Адаптация в естественных и искусственных системах» (1975) является основополагающим трудом в этой области исследований. Генетический алгоритм - это эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, напоминающих биологическую эволюцию. Является разновидностью эволюционных вычислений. Отличительной особенностью генетического алгоритма является акцент на использование оператора «скрещивания», который производит операцию рекомбинации решений-кандидатов, роль которой аналогична роли скрещивания в живой природе. Генетические алгоритмы служат, главным образом, для поиска решений в многомерных пространствах поиска.

    · алгоритм муравьиной колонии.

    Алгоритмы муравья, или оптимизация по принципу муравьиной колонии (название было придумано изобретателем алгоритма, Марко Дориго), основаны на применении нескольких агентов и обладают специфическими свойствами, присущими муравьям, и используют их для ориентации в физическом пространстве. Алгоритмы муравья особенно интересны потому, что их можно использовать для решения не только статичных, но и динамических проблем, например, в изменяющихся сетях.

    2.4 Метод ветвей и границ

    Для решения задачи коммивояжера методом ветвей и границ необходимо выполнить следующую последовательность действий:

    (1) Построение матрицы с исходными данными.

    (2) Нахождение минимума по строкам.

    (3) Редукция строк.

    (4) Нахождение минимума по столбцам.

    (5) Редукция столбцов.

    (6) Вычисление оценок нулевых клеток.

    (7) Редукция матрицы.

    (8) Если полный путь еще не найден, переходим к пункту 2, если найден к пункту 9.

    (9) Вычисление итоговой длины пути и построение маршрута.

    Подробная методика решения

    В целях лучшего понимания задачи будем оперировать не понятиями графа, его вершин и т.д., а понятиями простыми и максимально приближенными к реальности: вершины графа будут называться «города», ребра их соединяющие – «дороги».

    Итак, методика решения задачи коммивояжера:

    1. Построение матрицы с исходными данными

    Сначала необходимо длины дорог соединяющих города представить в виде следующей таблицы:

    Таблица 1

    В нашем примере у нас 4 города и в таблице указано расстояние от каждого города к 3-м другим, в зависимости от направления движения (т.к. некоторые ж/д пути могут быть с односторонним движением и т.д.).

    Расстояние от города к этому же городу обозначено буквой M. Также используется знак бесконечности. Это сделано для того, чтобы данный отрезок путь был условно принят за бесконечно длинный. Тогда не будет смысла выбрать движение от 1-ого города к 1-му, от 2-ого ко 2-му, и т.п. в качестве отрезка маршрута.

    2. Нахождение минимума по строкам

    Находим минимальное значение в каждой строке (di) и выписываем его в отдельный столбец.

    Таблица 2

    3. редукция строк

    Производим редукцию строк – из каждого элемента в строке вычитаем соответствующее значение найденного минимума (di).

    Таблица 3

    В итоге в каждой строке будет хотя бы одна нулевая клетка .

    4. Нахождение минимума по столбцам

    Таблица 4


    5. редукция столбцов

    Вычитаем из каждого элемента матрицы соответствующее ему dj.

    Таблица 5

    В итоге в каждом столбце будет хотя бы одна нулевая клетка .

    6. Вычисление оценок нулевых клеток

    Для каждой нулевой клетки получившейся преобразованной матрицы находим «оценку». Ею будет сумма минимального элемента по строке и минимального элемента по столбцу, в которых размещена данная нулевая клетка. Сама она при этом не учитывается. Найденные ранее di и dj не учитываются. Полученную оценку записываем рядом с нулем, в скобках.

    Таблица 6

    И так по всем нулевым клеткам:


    Таблица 7

    7. редукция матрицы

    Выбираем нулевую клетку с наибольшей оценкой. Заменяем ее на «М». Мы нашли один из отрезков пути. Выписываем его (от какого города к какому движемся, в нашем примере от 4-ого к 2-му).

    Таблица 8

    Ту строку и тот столбец, где образовалось две «М» полностью вычеркиваем. В клетку соответствующую обратному пути ставим еще одну букву «М» (т.к. мы уже не будем возвращаться обратно).

    Таблица 9

    8. если полный путь еще не найден, переходим к пункту 2, если найден к пункту 9

    Если мы еще не нашли все отрезки пути, то возвращаемся ко 2-му пункту и вновь ищем минимумы по строкам и столбцам, проводим их редукцию, считаем оценки нулевых клеток и т.д.

    Если все отрезки пути найдены (или найдены еще не все отрезков, но оставшаяся часть пути очевидна) – переходим к пункту 9.

    9. вычисление итоговой длины пути и построение маршрута

    Найдя все отрезки пути, остается только соединить их между собой и рассчитать общую длину пути (стоимость поездки по этому маршруту, затраченное время и т.д.). Длины дорог соединяющих города берем из самой первой таблицы с исходными данными.

    В нашем примере маршрут получился следующий: 4 → 2 → 3 → 1 → 4.

    Общая длина пути: L = 30.


    Заключение

    В данной работе мы познакомились с основными понятиями теории графов, дали представление о задаче коммивояжера, описали основные методы оптимизации метод. Также привели пример использования метода ветвей и границ для решения задачи коммивояжера.

    Еще раз отметим, что задача коммивояжера является одной из самых важнейших задач в теории графов. Возможность представления различных производственных процессов на языке теории графов и умение решить сформулированную математическую задачу позволяют найти оптимальную стратегию ведения хозяйства, сэкономить ресурсы, выполнить поставленную задачу в более короткие сроки.


    Список использованной литературы

    1. Кирсанов М.Н. «Графы в Maple», М. Физматлит, 2007.

    2. Зыков А.А. «Основы теории графов» , М. «Вузовская книга», 2014

    3. Уилсон Р. «Введение в теорию графов» , М. «Мир», 2010

    4. Берж К. "Теория графов и ее применение", М., ИЛ, 2008;

    5. Гарднер М. "Математические досуги", М. "Мир", 2009(глава 35);

    6. "В помощь учителю математики", Йошкар-Ола, 2011 (ст. "Изучение элементов теории графов");

    7. Олехник С.Н., Нестеренко Ю.В., Потапов М.К. "Старинные занимательные задачи", М. "Наука", 2008;

    8. Гарднер М. "Математические головоломки и развлечения", М. "Мир",2012;

    9. Оре О. "Графы и их применения", М. "Мир", 2011;

    10. Зыков А.А. "Теория конечных графов", Новосибирск, "Наука", 2009;

    11. Реньи А., "Трилогия о математике", М., "Мир", 2010.

    Размещено на Allbest.ru


    ©2015-2019 сайт
    Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
    Дата создания страницы: 2016-08-08

    Совершенно очевидно, что задача может быть решена перебором всех вариантов объезда и выбором оптимального. Беда в том, что количество возможных маршрутов очень быстро возрастает с ростом n (оно равно n ! - количеству способов упорядочения пунктов). К примеру, для 100 пунктов количество вариантов будет представляться 158-значным числом - не выдержит ни один калькулятор! Мощная ЭВМ, способная перебирать миллион вариантов в секунду, будет биться с задачей на протяжении примерно 3 ⋅ 10 144 лет. Увеличение производительности ЭВМ в 1000 раз даст хоть и меньшее в 1000 раз, но по-прежнему чудовищное время перебора вариантов. Не спасает ситуацию даже то, что для каждого варианта маршрута имеется 2 ⁢ n равноценных, отличающихся выбором начального пункта (n вариантов) и направлением обхода (2 варианта). Перебор с учётом этого наблюдения сокращается незначительно - до n ! 2 ⁢ n = n − 1 ! 2 вариантов.

    Может быть, алгоритм, основанный на полном переборе вариантов, не является самым эффективным (в смысле быстродействия) для решения задачи коммивояжёра? Увы, доказано, что не существует алгоритма решения, имеющего степенную сложность (то есть требующего порядка n a операций для некоторого a) - любой алгоритм будет хуже. Всё это делает задачу коммивояжёра безнадёжной для ЭВМ с последовательным выполнением операций, если n хоть сколько-нибудь велико.

    В таком случае следует отказаться от попыток отыскать точное решение задачи коммивояжёра и сосредоточиться на поиске приближённого - пускай не оптимального, но хотя бы близкого к нему. В виду большой практической важности задачи полезными будут и приближённые решения.

    Заметим, что интеллект человека, не вооружённый вычислительной техникой, способен отыскивать такие приближённые решения задач, требующих огромного перебора вариантов в поисках оптимального. Вспомним хотя бы шахматы. Человек может весьма успешно соперничать в этой игре с вычислительной машиной либо вовсе не прибегая к перебору, либо сводя его к минимуму. Человек руководствуется при этом интуицией и набором эвристик (находок) - правил, которые обычно помогают в решении задач, хотя эффективность таких правил и не имеет достаточного обоснования. В качестве подобной универсальной эвристики можно упомянуть категорический императив Канта : «поступай с другими так, как тебе хотелось бы, чтобы поступали с тобой». Другой, более приземлённый пример даёт золотое правило валютного спекулянта: «когда все продают доллары, ты покупай, а когда все покупают - продавай».

    Многие природные процессы решают задачи выбора оптимального варианта из огромного (даже, возможно, бесконечного) множества вариантов. Например, тяжёлая гибкая однородная цепочка, подвешенная за концы на двух гвоздиках, из всевозможных доступных форм принимает именно ту, которая соответствует минимуму потенциальной энергии силы тяжести (которая пропорциональна высоте центра тяжести цепочки). Причём цепочке для поиска нужной формы (она называется катеноидой , или цепной линией ) требуется времени гораздо меньше, чем человеку, составляющему и решающему дифференциальное уравнение Эйлера - Лагранжа для нахождения этой самой катеноиды. Мыльная плёнка, натянутая на проволочный контур, принимает форму, соответствующую минимуму внутренней энергии плёнки (состоящей, в основном, из потенциальной энергии сил поверхностного натяжения, пропорциональной площади плёнки). Световой луч в прозрачной (возможно, неоднородной) среде, преломляясь, отыскивает кратчайший путь (требующий наименьшего времени прохождения любого своего участка) с учётом скорости света в каждой точке среды, через которую он проходит. Вещество, кристаллизуясь из расплава, постепенно принимает ту кристаллическую форму, которая минимизирует опять же внутреннюю энергию, складывающуюся из энергий попарного взаимодействия молекул. В последнем примере молекулы вещества, совершающие хаотическое тепловое движение, которое замедляется по мере остывания, постепенно «нащупывают» нужную, минимальную в энергетическом смысле конфигурацию среди огромного количества вариантов расположения молекул. Биологическая эволюция совершенствует виды, снижая вероятность выживания (и, соответственно, передачи потомству генетической информации) менее приспособленных особей.

    Все эти соображения ведут нас к эвристике: «хочешь приближённо решить задачу - смоделируй (например, с помощью ЭВМ) природный процесс, решающий подобную задачу». Вот несколько конкретных приложений этой эвристики: «нужен эллипс - посвети фонариком на пол, слегка наклонив его (фонарик или пол)». Или «налей в цилиндрический или конический стакан воды и чуть наклони». Или «возьми батон колбасы и разрежь наискосок». «Нужна синусоида - заверни колбасу в бумагу и разрежь вместе с бумагой, а затем разверни бумажный лист». Или «присоедини колебательный контур к осциллографу» - колебательный контур мгновенно решает дифференциальное уравнение колебаний, а решения этого уравнения - синусы и косинусы. «Хочешь вычислить определённый интеграл - вырежи криволинейную трапецию из бумаги, взвесь её и подели на массу единичного бумажного квадратика».

    Описанные выше наблюдения позволяют считать природные процессы вычислительными машинами (такие машины называют аналоговыми ), вполне пригодными для решения многих важных задач. Аналоговые вычислительные машины можно использовать непосредственно, а можно принципы их работы положить в основу весьма эффективных алгоритмов для традиционных, цифровых ЭВМ. Единственное, что может пострадать при таком моделировании - точность решения задачи.

    Переборные задачи, нацеленные на поиск оптимального варианта, называют задачами комбинаторной оптимизации

    Дадим формальную постановку задачи оптимизации. Дано конечное (обычно очень большое) множество X и числовая функция U ⁡ x на этом множестве. Эту функцию называют целевой . Требуется найти такой x * ∈ X , что U ⁡ x * будет наименьшим, то есть U ⁡ x * ⩽ U ⁡ x для всех x ∈ X . Вариант постановки задачи, когда требуется найти точки максимума целевой функции, легко сводится к поиску точек минимума функции − U .

    Задача коммивояжёра может быть поставлена как задача оптимизации. В качестве множества X достаточно взять S n (множество перестановок n -элементного множества), а в качестве целевой функции U ⁡ x - длину замкнутой ломаной, проходящей через n заданных точек в порядке, заданной перестановкой x ∈ X .

    Для решения задачи поиска точки минимума функции придумано множество методов. Например, для дифференцируемых функций U , определённых на числовом множестве X , как известно, точки минимума (если они есть) следует искать среди критических точек U , то есть таких x , что U ′ x = 0 . Однако о дифференцируемости функции, определённой на конечном множестве, к тому же не обязательно числовом, говорить не приходится, поэтому метод, основанный на критических точках, не годится. Полный перебор всех x мы тоже отвергаем по причинам, которые обсуждались выше.

    Для множеств X , для которых определено отношение близости , годятся и другие методы. Среди них - метод градиентного спуска

    Отношение близости - это способ определить для двух элементов множества, являются ли они близкими (в каком-нибудь смысле). Для числовых множеств, для множеств точек на плоскости или в пространстве близкими можно считать два числа (две точки), расстояние между которыми не превосходит некоторого маленького числа ε . Для множества S n близкими удобно считать две перестановки, отличающиеся на одну транспозицию , то есть получающиеся друг из друга «рокировкой» двух элементов множества. Например, перестановки 2 4 1 3 и 2 3 1 4 являются близкими в этом смысле, так как отличаются перестановкой элементов с номерами 2 и 4 . Можно определить и более строгое отношение близости, при котором близкие перестановки отличаются на соседнюю транспозицию , когда рокировка затрагивает элементы множества с соседними номерами. Тогда указанные выше перестановки близкими уже не будут, но близкими окажутся 2 4 1 3 и 2 4 3 1 .

    Суть метода градиентного спуска отражена в его названии и заключается в следующем. Строится последовательность x 0 x 1 x 2 x 3 … ⊂ X , в которой начальный элемент x 0 выбирается произвольно (возможно, случайным образом), а каждый последующий является одним из соседей предыдущего, причём именно тем из соседей, для которого значение функции U будет наименьшим. Построение последовательности завершается тогда, когда последовательность значений целевой функции U ⁡ x 0 U ⁡ x 1 U ⁡ x 2 U ⁡ x 3 … перестанет быть монотонно убывающей.

    Последний элемент построенной последовательности называют точкой локального минимума . Это такая точка, в которых значение U строго меньше, чем во всех соседних с ней. В слове «локальный» заключён главный недостаток описанного метода. Локальных минимумов у функции U может быть много, и каждому из них отвечает, как правило, своё локально минимальное значение целевой функции. Нас же интересует абсолютный минимум функции и тот элемент множества X , в котором он достигается. Если бы было легко найти все точки локального минимума, перебором среди них мы нашли бы точку абсолютного минимума. Но метод градиентного спуска не даёт рецепта поиска всех точек локального минимума, он позволяет найти лишь какую-нибудь .

    Имеется вероятностная версия метода градиентного спуска. На каждом шаге для элемента множества X выбирается случайный сосед. Если значение целевой функции в случайной соседней точке уменьшилось, она добавляется в последовательность и мы переходим к следующему шагу. Если же нет, то снова выбирается случайный сосед. Алгоритм останавливается, если достаточно долго не пополняется последовательность (не происходит переход к следующему шагу): вероятно, алгоритм в этом случае привёл в точку локального минимума.

    Один из приближённых методов решения таких задач оптимизации - метод имитации отжига . Отжиг - уже упоминавшийся процесс постепенного остывания вещества, при котором молекулы на фоне всё замедляющегося теплового движения собираются в наиболее энергетически выгодные конфигурации. Термин «отжиг» пришёл из металлургии. Дело в том, что металл в более энергетически выгодном состоянии одновременно твёрже и прочней: требуется большее внешнее воздействие, большая механическая работа над куском металла, чтобы нарушить выгодную конфигурацию молекул, «приподнять» эту конфигурацию над самым дном энергетической ямы.

    Метод имитации отжига является модификацией вероятностного метода градиентного спуска. Отличие заключается в поведении алгоритма, когда U ⁡ x ⩽ U ⁡ x ~ , где x - очередной элемент последовательности, а x ~ - его сосед, выбранный наугад. Вероятностный метод градиентного спуска отвергал такого соседа безусловно, а метод имитации отжига допускает добавление такого «плохого» соседа в последовательность, правда, с некоторой вероятностью p , зависящей от того, насколько плохой сосед ухудшил целевую функцию. Возьмём разность ∆ ⁡ U = U ⁡ x ~ − U ⁡ x (она неотрицательна, если сосед «плохой») и положим p = e − ∆ ⁡ U Θ . Здесь e - некоторое число, большее единицы (какое именно, не принципиально, но обычно берут e ≈ 2,718281828459045… - основание натуральных логарифмов), а Θ - некоторое положительное число, называемое температурой

    На рисунке 45.1. «Вероятность мутации для метода имитации отжига» показаны зависимости вероятности мутации от величины ∆ ⁡ U при различных значениях температуры Θ . Высоким температурам соответствуют графики, чей цвет ближе к красному, низким - к синему. Как и положено, значение вероятности заключено в отрезке 0 1 . При отрицательных ∆ ⁡ U вероятность равна 1 , что соответствует случаю «хорошей» мутации.


    Продолжение следует…


    В задаче коммивояжера для формирования оптимального маршрута объезда n городов необходимо выбрать один лучший из (n-1)! вариантов по критерию времени, стоимости или длине маршрута. Эта задача связана с определением гамильтонова цикла минимальной длины. В таких случаях множество всех возможных решений следует представить в виде дерева - связного графа, не содержащего циклов и петель. Корень дерева объединяет все множество вариантов, а вершины дерева - это подмножества частично упорядоченных вариантов решений.

    Назначение сервиса . С помощью сервиса можно проверить свое решение или получить новое решение задачи коммивояжёра двумя методами: методом ветвей и границ и венгерским методом .

    Математическая модель задачи коммивояжера

    Сформулированная задача - задача целочисленная. Пусть х ij =1 , если путешественник переезжает из i -ого города в j -ый и х ij =0 , если это не так.
    Формально введем (n+1) город, расположенный там же, где и первый город, т.е. расстояния от (n+1) города до любого другого, отличного от первого, равны расстояниям от первого города. При этом, если из первого города можно лишь выйти, то в (n+1) город можно лишь придти.
    Введем дополнительные целые переменные, равные номеру посещения этого города на пути. u 1 =0 , u n +1 =n . Для того, чтобы избежать замкнутых путей, выйти из первого города и вернуться в (n+1) введем дополнительные ограничения, связывающие переменные x ij и переменные u i (u i целые неотрицательные числа).

    U i -u j +nx ij ≤ n-1, j=2..n+1, i=1..n, i≠j, при i=1 j≠n+1
    0≤u i ≤n, x in+1 =x i1 , i=2..n

    Методы решения задачи коммивояжера

    1. метод ветвей и границ (алгоритм Литтла или исключения подциклов). Пример решения методом ветвей и границ ;
    2. венгерский метод. Пример решения венгерским методом .

    Алгоритм Литтла или исключения подциклов

    1. Операция редукции по строкам: в каждой строке матрицы находят минимальный элемент d min и вычитают его из всех элементов соответствующей строки. Нижняя граница: H=∑d min .
    2. Операция редукции по столбцам: в каждом столбце матрицы выбирают минимальный элемент d min , и вычитают его из всех элементов соответствующего столбца. Нижняя граница: H=H+∑d min .
    3. Константа приведения H является нижней границей множества всех допустимых гамильтоновых контуров.
    4. Поиск степеней нулей для приведенной по строкам и столбцам матрицы. Для этого временно нули в матице заменяэт на знак «∞» и находят сумму минимальных элементов строки и столбца, соответствующих этому нулю.
    5. Выбирают дугу (i,j) , для которой степень нулевого элемента достигает максимального значения.
    6. Разбивают множество всех гамильтоновых контуров на два подмножества: подмножество гамильтоновых контуров содержащих дугу (i,j) и не содержащих ее (i*,j*) . Для получения матрицы контуров, включающих дугу (i,j) , вычеркивают в матрице строку i и столбец j . Чтобы не допустить образования негамильтонова контура, заменяют симметричный элемент (j,i) на знак «∞». Исключение дуги достигается заменой элемента в матрице на ∞.
    7. Проводят приведение матрицы гамильтоновых контуров с поиском констант приведения H(i,j) и H(i*,j*) .
    8. Сравнивают нижние границы подмножества гамильтоновых контуров H(i,j) и H(i*,j*) . Если H(i,j)
    9. Если в результате ветвлений получается матрица (2x2) , то определяют полученный ветвлением гамильтонов контур и его длину.
    10. Сравнивают длину гамильтонова контура с нижними границами оборванных ветвей. Если длина контура не превышает их нижних границ, то задача решена. В противном случае развивают ветви подмножеств с нижней границей, меньшей полученного контура, до тех пор, пока не получится маршрут с меньшей длиной.

    Пример . Решить по алгоритму Литтла задачу коммивояжера с матрицей

    1 2 3 4
    1 - 5 8 7
    2 5 - 6 15
    3 8 6 - 10
    4 7 15 10 -

    Решение . Возьмем в качестве произвольного маршрута: X 0 = (1,2);(2,3);(3,4);(4,5);(5,1). Тогда F(X 0) = 20 + 14 + 6 + 12 + 5 = 57
    Для определения нижней границы множества воспользуемся операцией редукции или приведения матрицы по строкам, для чего необходимо в каждой строке матрицы D найти минимальный элемент: d i = min(j) d ij
    i j 1 2 3 4 5 d i
    1 M 20 18 12 8 8
    2 5 M 14 7 11 5
    3 12 18 M 6 11 6
    4 11 17 11 M 12 11
    5 5 5 5 5 M 5
    Затем вычитаем d i из элементов рассматриваемой строки. В связи с этим во вновь полученной матрице в каждой строке будет как минимум один ноль.
    i j 1 2 3 4 5
    1 M 12 10 4 0
    2 0 M 9 2 6
    3 6 12 M 0 5
    4 0 6 0 M 1
    5 0 0 0 0 M
    Такую же операцию редукции проводим по столбцам, для чего в каждом столбце находим минимальный элемент:
    d j = min(i) d ij
    i j 1 2 3 4 5
    1 M 12 10 4 0
    2 0 M 9 2 6
    3 6 12 M 0 5
    4 0 6 0 M 1
    5 0 0 0 0 M
    d j 0 0 0 0 0
    После вычитания минимальных элементов получаем полностью редуцированную матрицу, где величины d i и d j называются константами приведения .
    i j 1 2 3 4 5
    1 M 12 10 4 0
    2 0 M 9 2 6
    3 6 12 M 0 5
    4 0 6 0 M 1
    5 0 0 0 0 M
    Сумма констант приведения определяет нижнюю границу H: H = ∑d i + ∑d j = 8+5+6+11+5+0+0+0+0+0 = 35
    Элементы матрицы d ij соответствуют расстоянию от пункта i до пункта j.
    Поскольку в матрице n городов, то D является матрицей nxn с неотрицательными элементами d ij ≥ 0
    Каждый допустимый маршрут представляет собой цикл, по которому коммивояжер посещает город только один раз и возвращается в исходный город.
    Длина маршрута определяется выражением: F(M k) = ∑d ij
    Причем каждая строка и столбец входят в маршрут только один раз с элементом d ij .
    Шаг №1 .
    Определяем ребро ветвления

    i j 1 2 3 4 5 d i
    1 M 12 10 4 0(5) 4
    2 0(2) M 9 2 6 2
    3 6 12 M 0(5) 5 5
    4 0(0) 6 0(0) M 1 0
    5 0(0) 0(6) 0(0) 0(0) M 0
    d j 0 6 0 0 1 0
    d(1,5) = 4 + 1 = 5; d(2,1) = 2 + 0 = 2; d(3,4) = 5 + 0 = 5; d(4,1) = 0 + 0 = 0; d(4,3) = 0 + 0 = 0; d(5,1) = 0 + 0 = 0; d(5,2) = 0 + 6 = 6; d(5,3) = 0 + 0 = 0; d(5,4) = 0 + 0 = 0;
    Наибольшая сумма констант приведения равна (0 + 6) = 6 для ребра (5,2), следовательно, множество разбивается на два подмножества (5,2) и (5*,2*).
    Исключение ребра (5,2) проводим путем замены элемента d 52 = 0 на M, после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества (5*,2*), в результате получим редуцированную матрицу.
    i j 1 2 3 4 5 d i
    1 M 12 10 4 0 0
    2 0 M 9 2 6 0
    3 6 12 M 0 5 0
    4 0 6 0 M 1 0
    5 0 M 0 0 M 0
    d j 0 6 0 0 0 6
    Нижняя граница гамильтоновых циклов этого подмножества: H(5*,2*) = 35 + 6 = 41
    Включение ребра (5,2) проводится путем исключения всех элементов 5-ой строки и 2-го столбца, в которой элемент d 25 заменяем на М, для исключения образования негамильтонова цикла.


    i j 1 3 4 5 d i
    1 M 10 4 0 0
    2 0 9 2 M 0
    3 6 M 0 5 0
    4 0 0 M 1 0
    d j 0 0 0 0 0

    Нижняя граница подмножества (5,2) равна: H(5,2) = 35 + 0 = 35 ≤ 41
    Поскольку нижняя граница этого подмножества (5,2) меньше, чем подмножества (5*,2*), то ребро (5,2) включаем в маршрут с новой границей H = 35
    Шаг №2 .
    Определяем ребро ветвления и разобьем все множество маршрутов относительно этого ребра на два подмножества (i,j) и (i*,j*).
    С этой целью для всех клеток матрицы с нулевыми элементами заменяем поочередно нули на М(бесконечность) и определяем для них сумму образовавшихся констант приведения, они приведены в скобках.
    i j 1 3 4 5 d i
    1 M 10 4 0(5) 4
    2 0(2) 9 2 M 2
    3 6 M 0(7) 5 5
    4 0(0) 0(9) M 1 0
    d j 0 9 2 1 0
    d(1,5) = 4 + 1 = 5; d(2,1) = 2 + 0 = 2; d(3,4) = 5 + 2 = 7; d(4,1) = 0 + 0 = 0; d(4,3) = 0 + 9 = 9;
    Наибольшая сумма констант приведения равна (0 + 9) = 9 для ребра (4,3), следовательно, множество разбивается на два подмножества (4,3) и (4*,3*).
    Исключение ребра (4,3) проводим путем замены элемента d 43 = 0 на M, после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества (4*,3*), в результате получим редуцированную матрицу.
    i j 1 3 4 5 d i
    1 M 10 4 0 0
    2 0 9 2 M 0
    3 6 M 0 5 0
    4 0 M M 1 0
    d j 0 9 0 0 9
    Нижняя граница гамильтоновых циклов этого подмножества: H(4*,3*) = 35 + 9 = 44
    Включение ребра (4,3) проводится путем исключения всех элементов 4-ой строки и 3-го столбца, в которой элемент d 34 заменяем на М, для исключения образования негамильтонова цикла.

    После операции приведения сокращенная матрица будет иметь вид:
    i j 1 4 5 d i
    1 M 4 0 0
    2 0 2 M 0
    3 6 M 5 5
    d j 0 2 0 7
    Сумма констант приведения сокращенной матрицы: ∑d i + ∑d j = 7
    Нижняя граница подмножества (4,3) равна: H(4,3) = 35 + 7 = 42 ≤ 44
    Поскольку 42 > 41, исключаем подмножество (5,2) для дальнейшего ветвления.
    Возвращаемся к прежнему плану X 1 .
    План X 1 .
    i j 1 2 3 4 5
    1 M 12 10 4 0
    2 0 M 9 2 6
    3 6 12 M 0 5
    4 0 6 0 M 1
    5 0 M 0 0 M
    Операция редукции .
    i j 1 2 3 4 5
    1 M 6 10 4 0
    2 0 M 9 2 6
    3 6 6 M 0 5
    4 0 0 0 M 1
    5 0 M 0 0 M
    Шаг №1 .
    Определяем ребро ветвления и разобьем все множество маршрутов относительно этого ребра на два подмножества (i,j) и (i*,j*).
    С этой целью для всех клеток матрицы с нулевыми элементами заменяем поочередно нули на М(бесконечность) и определяем для них сумму образовавшихся констант приведения, они приведены в скобках.
    i j 1 2 3 4 5 d i
    1 M 6 10 4 0(5) 4
    2 0(2) M 9 2 6 2
    3 6 6 M 0(5) 5 5
    4 0(0) 0(6) 0(0) M 1 0
    5 0(0) M 0(0) 0(0) M 0
    d j 0 6 0 0 1 0
    d(1,5) = 4 + 1 = 5; d(2,1) = 2 + 0 = 2; d(3,4) = 5 + 0 = 5; d(4,1) = 0 + 0 = 0; d(4,2) = 0 + 6 = 6; d(4,3) = 0 + 0 = 0; d(5,1) = 0 + 0 = 0; d(5,3) = 0 + 0 = 0; d(5,4) = 0 + 0 = 0;
    Наибольшая сумма констант приведения равна (0 + 6) = 6 для ребра (4,2), следовательно, множество разбивается на два подмножества (4,2) и (4*,2*).
    Исключение ребра (4,2) проводим путем замены элемента d 42 = 0 на M, после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества (4*,2*), в результате получим редуцированную матрицу.
    i j 1 2 3 4 5 d i
    1 M 6 10 4 0 0
    2 0 M 9 2 6 0
    3 6 6 M 0 5 0
    4 0 M 0 M 1 0
    5 0 M 0 0 M 0
    d j 0 6 0 0 0 6
    Нижняя граница гамильтоновых циклов этого подмножества: H(4*,2*) = 41 + 6 = 47
    Включение ребра (4,2) проводится путем исключения всех элементов 4-ой строки и 2-го столбца, в которой элемент d 24 заменяем на М, для исключения образования негамильтонова цикла.
    В результате получим другую сокращенную матрицу (4 x 4), которая подлежит операции приведения.
    После операции приведения сокращенная матрица будет иметь вид:
    i j 1 3 4 5 d i
    1 M 10 4 0 0
    2 0 9 M 6 0
    3 6 M 0 5 0
    5 0 0 0 M 0
    d j 0 0 0 0 0
    Сумма констант приведения сокращенной матрицы: ∑d i + ∑d j = 0
    Нижняя граница подмножества (4,2) равна: H(4,2) = 41 + 0 = 41 ≤ 47
    Поскольку нижняя граница этого подмножества (4,2) меньше, чем подмножества (4*,2*), то ребро (4,2) включаем в маршрут с новой границей H = 41
    Шаг №2 .
    Определяем ребро ветвления и разобьем все множество маршрутов относительно этого ребра на два подмножества (i,j) и (i*,j*).
    С этой целью для всех клеток матрицы с нулевыми элементами заменяем поочередно нули на М(бесконечность) и определяем для них сумму образовавшихся констант приведения, они приведены в скобках.
    i j 1 3 4 5 d i
    1 M 10 4 0(9) 4
    2 0(6) 9 M 6 6
    3 6 M 0(5) 5 5
    5 0(0) 0(9) 0(0) M 0
    d j 0 9 0 5 0
    d(1,5) = 4 + 5 = 9; d(2,1) = 6 + 0 = 6; d(3,4) = 5 + 0 = 5; d(5,1) = 0 + 0 = 0; d(5,3) = 0 + 9 = 9; d(5,4) = 0 + 0 = 0;
    Наибольшая сумма констант приведения равна (4 + 5) = 9 для ребра (1,5), следовательно, множество разбивается на два подмножества (1,5) и (1*,5*).
    Исключение ребра (1,5) проводим путем замены элемента d 15 = 0 на M, после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества (1*,5*), в результате получим редуцированную матрицу.
    i j 1 3 4 5 d i
    1 M 10 4 M 4
    2 0 9 M 6 0
    3 6 M 0 5 0
    5 0 0 0 M 0
    d j 0 0 0 5 9
    Нижняя граница гамильтоновых циклов этого подмножества: H(1*,5*) = 41 + 9 = 50
    Включение ребра (1,5) проводится путем исключения всех элементов 1-ой строки и 5-го столбца, в которой элемент d 51 заменяем на М, для исключения образования негамильтонова цикла.
    В результате получим другую сокращенную матрицу (3 x 3), которая подлежит операции приведения.
    После операции приведения сокращенная матрица будет иметь вид:
    i j 1 3 4 d i
    2 0 9 M 0
    3 6 M 0 0
    5 M 0 0 0
    d j 0 0 0 0
    Сумма констант приведения сокращенной матрицы: ∑d i + ∑d j = 0
    Нижняя граница подмножества (1,5) равна: H(1,5) = 41 + 0 = 41 ≤ 50
    Поскольку нижняя граница этого подмножества (1,5) меньше, чем подмножества (1*,5*), то ребро (1,5) включаем в маршрут с новой границей H = 41
    Шаг №3 .
    Определяем ребро ветвления и разобьем все множество маршрутов относительно этого ребра на два подмножества (i,j) и (i*,j*).
    С этой целью для всех клеток матрицы с нулевыми элементами заменяем поочередно нули на М(бесконечность) и определяем для них сумму образовавшихся констант приведения, они приведены в скобках.
    i j 1 3 4 d i
    2 0(15) 9 M 9
    3 6 M 0(6) 6
    5 M 0(9) 0(0) 0
    d j 6 9 0 0
    d(2,1) = 9 + 6 = 15; d(3,4) = 6 + 0 = 6; d(5,3) = 0 + 9 = 9; d(5,4) = 0 + 0 = 0;
    Наибольшая сумма констант приведения равна (9 + 6) = 15 для ребра (2,1), следовательно, множество разбивается на два подмножества (2,1) и (2*,1*).
    Исключение ребра (2,1) проводим путем замены элемента d 21 = 0 на M, после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества (2*,1*), в результате получим редуцированную матрицу.
    i j 1 3 4 d i
    2 M 9 M 9
    3 6 M 0 0
    5 M 0 0 0
    d j 6 0 0 15
    Нижняя граница гамильтоновых циклов этого подмножества: H(2*,1*) = 41 + 15 = 56
    Включение ребра (2,1) проводится путем исключения всех элементов 2-ой строки и 1-го столбца, в которой элемент d 12 заменяем на М, для исключения образования негамильтонова цикла.
    В результате получим другую сокращенную матрицу (2 x 2), которая подлежит операции приведения.
    После операции приведения сокращенная матрица будет иметь вид:
    i j 3 4 d i
    3 M 0 0
    5 0 0 0
    d j 0 0 0
    Сумма констант приведения сокращенной матрицы:
    ∑d i + ∑d j = 0
    Нижняя граница подмножества (2,1) равна: H(2,1) = 41 + 0 = 41 ≤ 56
    Поскольку нижняя граница этого подмножества (2,1) меньше, чем подмножества (2*,1*), то ребро (2,1) включаем в маршрут с новой границей H = 41.
    В соответствии с этой матрицей включаем в гамильтонов маршрут ребра (3,4) и (5,3).
    В результате по дереву ветвлений гамильтонов цикл образуют ребра:
    (4,2), (2,1), (1,5), (5,3), (3,4). Длина маршрута равна F(Mk) = 41

    Дерево решений.

    1
    (5*,2*), H=41 (5,2)
    (4*,2*), H=47 (4,2) (4*,3*), H=44 (4,3)
    (1*,5*), H=50 (1,5)
    (2*,1*), H=56 (2,1)
    (3,4) (3*,4*), H=41
    (5,3) (5*,3*), H=41