Сайт о телевидении

Сайт о телевидении

» » Выбор контроллера заряда для солнечных батарей. Для чего нужны и какие бывают контроллеры заряда солнечной батареи

Выбор контроллера заряда для солнечных батарей. Для чего нужны и какие бывают контроллеры заряда солнечной батареи

Прислал:

Представлена простая, но "красивая" схема шунтового регулятора для зарядки аккумуляторов от солнечной батареи. Работает только на заряд.

Стабилизаторы для солнечных батарей весьма разнообразны. Самый простой тип стабилизатора – шунтовой. Он имеет следующие преимущества: простота, низкая рассеиваемая мощность, низкая стоимость, высокая надежность.

Но в обмен на эти преимущества приходится мириться с тем, что напряжение на батарее постоянно изменяется, то вверх, то вниз, что аккумулятор переключается, то в режим зарядки полным током, то в состояние отсутствия зарядного тока, и, что постоянные переключения приводят к импульсным помехам на выходе стабилизатора.

В зависимости от назначения, необходимо выбрать наиболее подходящий тип стабилизатора. В большинстве солнечных установок я использовал линейные стабилизаторы, который имеют преимущества плавного регулирования напряжения и крайне небольших выбросов напряжения на нагрузке. Правда, они имеют и существенные недостатки: более высокую стоимость, большие размеры и высокую рассеиваемую мощность. Но когда меня попросили сделать солнечный стабилизатор для яхты, который обслуживает только одну солнечную панель на 3.1 ампера, и подключается к аккумуляторной батарее на 300 A·ч, лучше было использовать маленькое и простое устройство, чем линейный стабилизатор.

Так что я спроектировал и изготовил именно такой стабилизатор. Вы также можете применить его для таких случаев, когда мощность солнечных батарей довольно мала в сочетании с относительно большой ёмкостью аккумулятора, или когда низкая стоимость, простота конструкции и высокая надёжность являются более важными, чем стабильность линейного регулирования.

Стабилизатор был собран на макетной плате и смонтирован в герметичном пластмассовом корпусе, который, в свою очередь, был установлен на алюминиевой монтажной пластине. Клеммы изготовлены из латуни. Такая конструкция устройства использована, чтобы противостоять суровой морской среде и небрежному обращению.

Схема

Если солнечная панель не генерирует энергию, вся схема отключена и не потребляет от аккумулятора абсолютно никакого тока. Когда солнце встает, и панель начинает выдавать не менее 10 В, включаются индикаторный светодиод и два маломощных транзистора. Устройство начинает работать. Пока напряжение батареи остается ниже 14 В, операционный усилитель (он имеет очень низкое потребление тока) будет держать MOSFET транзистор закрытым, так что ничего особенного не случится, и ток от солнечной панели будет проходить через диод Шоттки на батарею.

Когда напряжение батареи достигнет значения, равного 14.0 В, операционный усилитель U1 откроет MOSFET транзистор. Транзистор будет шунтировать солнечную панель (для нее это совершенно безопасно), аккумулятор перестанет получать ток заряда, индикатор погаснет, два маломощных транзистора закроются, и конденсатор С2 медленно разрядится. После истечения примерно 3 секунд, конденсатор С2 разрядится достаточно, чтобы преодолеть гистерезис микросхемы U1, которая снова закроет MOSFET транзистор. Теперь схема снова будет заряжать аккумулятор, пока его напряжение вновь не достигнет уровня переключения.

Таким образом, устройство работает циклично, каждый период включения полевого транзистора длится 3 секунды, а каждый из периодов заряда аккумулятора длится столько, сколько необходимо для достижения напряжения 14.0 В. Длительность этого периода будет меняться в зависимости от зарядного тока аккумулятора и мощности подключенной к нему нагрузки.

Минимальное время включения схемы определяется временем заряда конденсатора С2 током, ограниченным транзистором Q3 примерно до 40 мА. Эти импульсы могут быть очень короткими.

Конструкция

Конструкция схемы очень проста. Все компоненты довольно доступны, и большинство из них могут быть легко заменены другими сходными компонентами. Я бы не советовал заменять TLC271 или LM385-2.5, если вы не уверены в правильности замены. Обе эти микросхемы – маломощные приборы, и их потребление непосредственно определяет время выключения стабилизатора. Если вы используете микросхемы, которые имеют другое энергопотребление, необходимо изменить ёмкость конденсатора С2, подобрать смещение транзистора Q3, но может, даже это не поможет правильно настроить схему.

MOSFET транзистор может быть заменен любым другим с достаточно низким сопротивлением открытого канала, чтобы оно позволяло эффективно шунтировать солнечную панель. Диод D2 также может быть любым, способным выдержать максимальный ток солнечной панели. Применение диода Шоттки предпочтительнее, потому что на нем будет падать вдвое меньшее напряжение, чем на стандартном кремниевом, и такой диод будет в два раза меньше греться. Стандартный диод подходит, если правильно размещен и смонтирован. С приведенными на схеме компонентами стабилизатор может работать с солнечными панелями с током до 4 А.

Для более крупных панелей необходимо заменить лишь MOSFET транзистор и диод более мощными. Остальные компоненты схемы останутся прежними. Радиатор для управления 4 А панелью не требуется. Но если поставить MOSFET на подходящий теплоотвод, схема сможет работать с существенно более мощной панелью.

Резистор R8 в этой схеме равен 92 кОм, что является нестандартным значением. Я предлагаю, чтобы вы использовали включенные последовательно резисторы 82 кОм и 10 кОм, это проще, чем пытаться найти специальный резистор. Резисторы R8, R10 и R6 определяют напряжение отсечки, так что лучше, если они будут точными. Я использовал 5% резисторы, но если Вы хотите повысить надежность устройства, используйте 1% резисторы или выберите наиболее точные из 5% с помощью цифрового омметра.

Вы можете также использовать подстроечный резистор, и таким образом, регулировать напряжение, но я бы не советовал этого делать, если Вы хотите получить высокую надежность в агрессивной среде. Подстроечные резисторы просто выходят из строя в таких условиях.

На английском языке.


В 21 веке уже ни для кого не секрет, что энергию солнца можно трансформировать в электрический ток. Такое преобразование достигается с помощью специального оборудования – . Но не все знают, каким образом и в каких отраслях могут применяться солнечные батареи.


Сперва следует сказать о том, что данное оборудование может использоваться и в автономных системах, и в сетевых. То есть оно распространено во многих сферах, среди которых:

  • сельскохозяйственная отрасль;
  • телекоммуникации;
  • навигационные системы;
  • подсветка автодорожных знаков ночью;
  • системы уличного освещения и т.д.

Но использование фотоэлектрических установок может демонстрировать низкую эффективность, если не задействован контроллер заряда, обеспечивающий контроль за процессом . Этот прибор может выступать отдельной единицей или монтироваться в инверторы либо блоки бесперебойного питания. Различают несколько разновидностей контроллеров заряда солнечных батарей – ШИМ и МРРТ.


МРРТ контроллеры

Такие контроллеры наделены важной функциональной особенностью – поиск точки максимальной мощности. Электрическая энергия, которая вырабатывается батареями, должна максимально применяться в нагрузке – один из главных принципов контроллера данного вида.

Чтобы иметь четкое представление о работе МРРТ контроллеров, для начала нужно разобраться, что такое точка максимальной мощности. В данной точке значение напряжения, а также силы тока определяются несколькими аспектами, главными из которых являются яркость света, нагрев батареи и угол падения лучей. Поскольку эти величины непостоянны, точка максимальной мощности тоже будет изменять собственное положение. И чтобы оборудование работало наиболее эффективно, и производило как можно больше электроэнергии от солнца, необходим аккумулятор, подстраивающийся под регулярно меняющиеся параметры. Но даже он не способен точно «ловить» точку максимальной мощности – и тут на помощь приходят контроллеры заряда МРРТ.

Согласно с результатами исследований, данная технология позволяет достичь увеличения эффективности солнечных батарей на целых 25 процентов.


ШИМ контроллеры

Применяющаяся же в ШИМ контроллерах технология, дает возможность достигнуть постоянного напряжения аккумуляторного заряда благодаря коммутации солнечной батареи. Схема действия данных устройств такова: в момент достижения заявленной величины напряжения на аккумуляторной батарее, контроллер выполняет функцию снижения тока заряда и предотвращения перегрева аккумулятора. Также такие контроллеры учитывают «возраст» батарей, понижают степень выработки газа (за исключением AGM и GEL технологий, которые вообще не выделяют газ), повышают способность принятия заряда, и обеспечивают выравнивание качества их отдельных элементов.

Получаемая солнечной батареей энергия применятся наиболее эффективно, если установлен ШИМ контроллер – на 30 процентов больше энергии для аккумуляторов, понижение стоимости системы, расходование электроэнергии с максимальной пользой.

Выбираем контроллер – МРРТ или ШИМ

МРРТ устройства позволяют достигнуть большей эффективности, в сравнении с ШИМ, однако к их минусам относится цена – почти вдвое большая. Исходя из этого, для небольших мощностей, когда применяется 1-2 солнечных модуля, лучше приобрести ШИМ контроллер – на столь маленьких «масштабах» установок, МРРТ будет демонстрировать практически ту же эффективность, что и ШИМ, лишь немногим большую. Если же у вас уже есть небольшая мощность солнечных модулей, но в будущем вы хотите ее нарастить с помощью добавления новых единиц оборудования, то в таком случае рекомендуется купить МРРТ контроллер.

Как вы уже могли понять из приведенных выше материалов, солнечные батареи для высокоэффективной работы обязательно должны быть оборудованы контроллерами заряда. Ведь контроллер является одной из наиболее важных составляющих всей системы, которая выполняет значимые функции – регулировка температуры, режима зарядки и многое другое.

К сожалению не все продавцы данного оборудования, как в наземных магазинах, так и во всемирной сети интернет, хорошо разбираются в реализуемых устройствах. По этой причине перед покупкой лучше собрать о них полную информацию, чтобы сделать правильный выбор. Также желательно покупать в надежных магазинах, которые пользуются доверием покупателей и хорошей репутацией.


Современные контроллеры заряда оборудованы большим количеством различных защит. Если говорить конкретнее, то это защита от перезарядки, перегрева, недопущение коротких замыканий и так далее. За счет этого достигается надежная, качественная и стабильная работа прибора. И перед тем как остановить свой выбор на том или ином контроллере, обязательно выясните, какие конкретно имеет защитные схемы устройство, достаточно ли оно защищено.

Сегодня купить контроллер заряда не проблема – множество магазинов предлагают такую аппаратуру своим покупателям. Но иногда случается так, что потребитель обнаруживает, что контроллер не совсем подходит для солнечной батареи, существует некая «несовместимость», в паре их работа оставляет желать лучшего. Поэтому будьте внимательны при выборе данных приборов и доверяйтесь только надежным продавцам, которые в своем деле считаются профессионалами – в таком случае покупка не разочарует вас и будет служить «верой и правдой» в течение долгого времени.

Солнечная энергетика пока что ограничивается (на бытовом уровне) созданием фотоэлектрических панелей относительно невысокой мощности. Но независимо от конструкции фотоэлектрического преобразователя света солнца в ток это устройство оснащается модулем, который называют контроллер заряда солнечной батареи.

Действительно, в схему установки фотосинтеза солнечного света входит аккумуляторная батарея — накопитель энергии, получаемой от солнечной панели. Именно этот вторичный источник энергии обслуживается в первую очередь контроллером.

Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда .

Такой выглядит одна из многочисленных существующих моделей контроллеров заряда для солнечной батареи. Этот модуль относится к числу разработок типа PWM

Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.

Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений). Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя.

Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.

Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.

В зависимости от мощности контроллера заряда аккумуляторных батарей солнечной энергетической установки, конструкции этих устройств могут иметь самую разную конфигурацию

В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.

Применяемые на практике виды

На промышленном уровне налажен и осуществляется выпуск двух видов электронных устройств, исполнение которых подходит для установки в схему солнечной энергетической системы:

  1. Устройства серии PWM.
  2. Устройства серии MPPT.

Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и ветряной энергетики.

Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.

Одна из популярных в обществе моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей

Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность.

Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.

Контроллер типа MPPT:

  • имеет более высокую стоимость;
  • обладает сложным алгоритмом настройки;
  • даёт выигрыш по мощности только на панелях значительной площади.

Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.

Контроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных

Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).

Структурные схемы контроллеров

Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.

Вариант #1 — устройства PWM

Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.

Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).

Так примерно выглядит структурная схема устройств, выполненных на базе PWM технологий. Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность

Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.

Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.

Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.

Вариант #2 — приборы MPPT

Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.

Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.

Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.

Схемой таких устройств реализуются несколько методов контроля:

  • возмущения и наблюдения;
  • возрастающей проводимости;
  • токовой развёртки;
  • постоянного напряжения.

А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.

Способы подключения контроллеров

Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.

Так, например, если используется контроллер, рассчитанный на максимум входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.

Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели

Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

Недопустимо наличие в непосредственной близости от прибора источников вибраций, тепла и влажности. Место установки необходимо защитить от попадания атмосферных осадков и прямых солнечных лучей.

Техника подключения моделей PWM

Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.

Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:

  1. Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
  2. Непосредственно в точке контакта положительного провода включить защитный предохранитель.
  3. На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
  4. Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).

Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В более подробно описана схема сборки солнечных батарей с аккумулятором.

Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.

Порядок подключения приборов MPPT

Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.

Для контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками

Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм 2 . То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм 2 .

Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.

Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.

Структурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина

Перед подключением к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.

Подключение периферии к аппарату MTTP:

  1. Выключатели панели и аккумулятора перевести в положение «отключено».
  2. Извлечь защитные предохранители на панели и аккумуляторе.
  3. Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
  4. Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
  5. Соединить кабелем клемму заземления с шиной «земли».
  6. Установить температурный датчик на контроллере согласно инструкции.

После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.

Экран прибора покажет значение напряжения солнечной панели. Этот момент свидетельствует об успешном запуске энергетической солнечной установки в работу.

Выводы и полезное видео по теме

Промышленностью выпускаются устройства многоплановые с точки зрения схемных решений. Поэтому однозначных рекомендаций относительно подключения всех без исключения установок дать невозможно.

Однако главный принцип для любых типов приборов остаётся единым: без подключения АКБ на шины контроллера соединение с фотоэлектрическими панелями недопустимо. Аналогичные требования предъявляются и для включения в схему . Его следует рассматривать как отдельный модуль, подключаемый на АКБ прямым контактом.

Если у вас есть необходимый опыт или знания, пожалуйста, поделитесь им с нашими читателями. Оставляйте свои комментарии в расположенном ниже блоке. Здесь же можно задать вопрос по теме статьи.

Для чего нужны и какие бывают контроллеры заряда солнечной батареи?

Среди современных гелиосистем большую популярность приобрели те, что работают автономно и не подключаются к электрической сети. То есть, они функционируют в замкнутом режиме. Например, в рамках энергоснабжения одного дома. В состав подобных систем входят солнечные панели (и/или ветряной генератор), контроллер заряда, инвертор, реле, аккумулятор, провода. Контроллер в этой схеме является ключевым элементом. В этой статье мы поговорим о том, для чего нужен контроллер солнечных батарей, какие бывают разновидности и как выбрать такое устройство.

Как уже было сказано, контроллер заряда является ключевым элементом гелиосистемы. Это электронное устройство, работающее на базе чипа, который контролирует работу системы и управляет зарядом аккумулятора. Контроллеры для солнечных батарей не допускают полной разрядки аккумулятора и его излишнего заряда. Когда заряд аккумуляторной батареи находится на максимальном уровне, то величина тока от фотоэлементов уменьшается. В результате подаётся ток, необходимый для компенсации саморазряда. Если аккумулятор чрезмерно разряжен, то контроллер отключит от него нагрузку.

Итак, можно обобщить функции, которые выполняет контроллер солнечных батарей:

  • многостадийный заряд аккумулятора;
  • отключение зарядки или нагрузки при максимальном заряде или разряде, соответственно;
  • включение нагрузки, когда заряд батареи восстановлен;
  • автоматическое включение тока с фотоэлементов для зарядки аккумулятора.
Можно сделать вывод, что подобное устройство продлевает срок службы аккумуляторов и их поломку.

Параметры выбора

На что же следует обратить внимание при выборе контроллера для солнечных батарей? Основные характеристики изложены ниже:

  • Входное напряжение. Максимальное напряжение, указанное в техническом паспорте, должно быть на 20 процентов выше напряжения «холостого хода» батареи фотоэлементов. Это требование появилось из-за того, что производители часто ставят завышенные параметры контроллеров в спецификациях. Кроме того, при высокой солнечной активности напряжение может быть выше, чем указано в документации;
  • Номинальный ток. Для контроллера типа PWM номинал по току должен на 10 процентов превышать ток короткого замыкания батареи. Контроллер типа MPPT нужно подбирать по мощности. Его мощность должен быть равна или выше напряжения гелиосистемы умноженного на тока регулятора на выходе. Напряжение системы берётся для разряженных аккумуляторов. В период высокой солнечной активностью к полученной мощности следует прибавить 20 процентов про запас.


Не нужно экономить на этом запасе. Ведь экономия может плачевно сказаться в период высокой солнечной инсоляции. Система может выйти из строя и убытки будут гораздо больше.

Виды контроллеров

Контроллеры On/Off

Эти модели являются самыми простыми из всего класса контроллеров заряда для солнечных батарей.

Модели типа On/Off предназначены для того, чтобы отключать заряд аккумулятора, когда достигается верхний предел напряжения. Обычно это 14,4 вольта. В результате предотвращается перегрев и излишний заряд.

С помощью контроллеров On/Off не получится обеспечить полную зарядку аккумуляторной батареи. Ведь здесь отключение происходит в том момент, когда достигнут максимальный ток. А процесс зарядки до полной ёмкости ещё необходимо поддерживать несколько часов. Уровень заряда в момент отключения находится где-то 70 процентов от номинальной ёмкости. Естественно, что это негативно отражается на состоянии аккумулятора и снижает срок его эксплуатации.

Контроллеры PWM

В поисках решения неполной зарядки аккумулятора в системе с устройствами On/Off были разработаны блоки управления, основанные на принципе широтно-импульсной модуляции (сокращённо ШИМ) заряжающего тока. Смысл работы такого контроллера заключается в том, что он понижает заряжающий ток, когда достигается предельное значение напряжения. При таком подходе заряд аккумулятора доходит практически до 100 процентов. Эффективность процесса увеличивается до 30 процентов.



Есть модели PWM, которые умеют в зависимости от температуры ОС регулировать ток. Это хорошо сказывается на состоянии аккумулятора, уменьшается нагрев, лучше принимается заряд. Процесс становится регулируемым в автоматическом режиме.

ШИМ контроллеры заряда для солнечных батарей специалисты рекомендуют применять в тех регионах, где наблюдается высокая активность солнечных лучей. Их часто можно встретить в гелиосистемах маленькой мощности (менее двух киловатт). Как правило, в них работают аккумуляторные батареи небольшой ёмкости.

Регуляторы типа MPPT

Контроллеры заряда МРРТ сегодня являются самыми совершенными устройствами для регулирования процесса заряда аккумуляторной батареи в гелиосистемах. Эти модели увеличивают эффективность генерации электричества на одних и тех же солнечных батареях. Принцип работы устройств MPPT основан на определении точки максимального значения мощности.

MPPT в постоянном режиме следит за током и напряжением в системе. На основании этих данных микропроцессор подсчитывает оптимальное отношение параметров для того, чтобы достигнуть максимальной выработки по мощности. При регулировке напряжения и учитывается даже этап процесса зарядки. MPPT контроллеры солнечных батарей даже позволяют снимать большое напряжение с модулей, затем преобразовывая его в оптимальное. Под оптимальным понимается то, которое обеспечивает полную зарядку АКБ.

Если оценивать работу MPPT по сравнению с PWM, то эффективность функционирования гелиосистемы возрастёт от 20 до 35 процентов. К плюсам также стоит отнести возможность работы при затенении солнечной панели до 40 процентов. Благодаря возможности поддержания высокого значения напряжения на выходе контроллера можно использовать проводку небольшого сечения. А также можно поставить солнечные панели и блок на большее расстояние, чем в случае с PWM.

Гибридные контроллеры заряда

В некоторых странах, например, США, Германии, Швеции, Дании значительную часть электроэнергии вырабатывают ветрогенераторы. В некоторых маленьких странах альтернативная энергетика занимает большую долю в энергосетях этих государств. В составе ветряных систем также работают устройства для управления процессом заряда. Если же электростанция представляет собой комбинированный вариант из ветрогенератора и солнечных батарей, то применяют гибридные контроллеры.

Эти устройства могут быть построены схеме МРРТ или PWM. Основное отличие заключается в том, что в них используются другие вольтамперные характеристики. В процессе работы ветряные генераторы дают очень неравномерную выработку электроэнергии. В результате на аккумуляторные батареи поступает неравномерная нагрузка, и они работают в стрессовом режиме. Задача гибридного контроллера заключается в сбросе избыточной энергии. Для этого, как правило, используются специальные тэны.

  • Благодаря тому, что человек научился преобразовывать солнечное излучение в электроэнергию, мы имеем возможность обеспечивать наши дома электричеством с помощью солнца без вреда для окружающей среды. Частный дом с множеством различных приборов и систем, которые потребляют электричество, требует сооружения целой солнечной электростанции. Она комплектуется с помощью таких приборов, как контроллер, и, конечно же, солнечные панели. Знакомимся с подробной информацией о том, для чего в этой системе нужен контроллер, с принципом его действия, а также с видами этого прибора, и узнаем, как выбрать контроллер заряда аккумуляторов для солнечной батареи.

    Предназначение и принцип работы

    Контроллер − это электронный прибор, который, как следует из названия, контролирует уровни заряда и разряда аккумуляторов для солнечных батарей. Для лучшего представления о сущности этого устройства рассмотрим особенности работы тепловых панелей.

    Солнечный свет попадает на поверхность батареи, где начинается процесс его преобразования в электрический ток при помощи фотоэлементов. От ток постоянного значения поступает в аккумулятор. Инвертор меняет постоянный ток на переменный перед распределением последнего между потребителями электричества. Контроллер заряда солнечной батареи предотвращает полный разряд и перезаряд аккумуляторов.

    Следить за уровнем заряда очень важно по нескольким причинам.

    Во-первых, должны соблюдаться максимальные и минимальные значения заряда, которые бывают разными и зависят от типа аккумулятора . Это существенно продлит срок эксплуатации аккумуляторной батареи (АКБ), а в отдельных случаях позволит избежать ее поломки. Перезарядка некоторых видов АКБ может привести к выделению вредных веществ или даже ко взрыву устройства.

    Во-вторых, многочисленные модели аккумуляторов работают с разными показателями напряжения. Контроллер солнечных батарей устанавливает необходимый уровень, с которым может работать конкретный прибор.

    Помимо этого, аккумулятор отключает подачу тока от солнечной батареи к предельно заряженному накопителю, а максимально разряженное устройство отключает от потребителей электричества.

    В общем, это устройство выполняет широкий спектр функций:

    1. Обеспечение многоступенчатого заряда аккумулятора.
    2. Отключение и подключение приборов в автоматическом режиме от источников энергии или от потребителей в зависимости от уровня заряда.

    Таким образом, контроллер заряда отслеживает условия работы аккумуляторов, страхуя их от простоя, перезарядки и излишней нагрузки. Эти функции продлевают время эксплуатации приборов.

    Виды приборов

    Контроллеры для солнечных батарей представлены в нескольких видах:

    • Устройства On/Off.
    • PWM контроллеры.
    • MPPT контроллеры.
    • Устройства гибридного типа.
    • Самодельные контроллеры.

    Познакомимся с каждым из этих видов. На сегодняшний день самыми популярными считаются PWM контроллер и контроллер MPPT.

    Устройства On/Off

    Такие контроллеры заряда аккумуляторов являются самыми простыми из всех моделей, которые представлены на современном рынке. Их функциональность весьма ограничена. Устройства этого типа отключают процесс зарядки аккумулятора при достижении максимального значения напряжения. Таким образом, предотвращается перегрев и перезарядка АКБ.

    Важно подчеркнуть, что контроллер такого типа не сможет обеспечить 100% уровень заряда АКБ . Этот нюанс объясняется тем, что отключение происходит по достижении максимального значения тока. На момент обесточивания уровень заряда может находиться в пределах от 70 до 90%. Чтобы загрузить аккумуляторную батарею полностью, потребуется еще несколько часов. Неполная зарядка неблагоприятно сказывается на функционировании прибора и уменьшает срок его эксплуатации.

    Контроллеры типа PWM

    Контроллер уровня заряда PWM (Pulse-Width Modulation) по-другому называется ШИМ. ШИМ контроллер − устройство, принцип действия которого основан на широтно-импульсной модуляции тока. Прибор разработан с целью устранения проблемы неполной зарядки. 100% уровень достигается благодаря тому, что механизм при обнаружении максимального значения тока, понижает его продлевая таким образом зарядку аккумулятора.

    Описанное устройство предотвращает перегрев аккумуляторной батареи, способствует повышению принятия заряда. В общем, хорошо сказывается на ее состоянии. Прибор этого типа считается весьма эффективным, но MPPT контроллер, если сравнивать его принцип действия с PWM, является более предпочтительным вариантом по ряду функциональных возможностей.

    MPPT контроллеры

    МРРТ контроллер (Maximum Power Point Tracking) − устройство, которое отслеживает максимальный предел мощности заряда. С помощью сложного алгоритма устройство этого типа следит за показаниями тока и напряжения системы энергоснабжения, определяя оптимальное соотношение параметров для обеспечения максимальной продуктивности всей солнечной электростанции.

    Без преувеличения можно утверждать, что именно MPPT контроллер является наиболее усовершенствованной и эффективной моделью по сравнению с другими. Для сравнения: MPPT контроллер повышает продуктивность системы энергообеспечения до 35% относительно PWM .

    На сегодняшний день MPPT контроллер считается более подходящим для систем, в которых солнечные панели занимают значительные площади. Но высокая стоимость приборов данного типа вводит определенные ограничения при его использовании. Поэтому PWM модель является доступной для эксплуатации в системах энергоснабжения частных домов.

    Устройства гибридного типа

    Используются в случае энергоснабжения с помощью комбинирования источников энергии, например, ветра и солнца. В основу разработки гибридного прибора положен п ринцип работы МРРТ и PWM контроллеров . Единственное, чем он отличается от других моделей, − это вольтамперные параметры.

    Главная цель моделей гибридного типа состоит в своеобразном выравнивании нагрузки на аккумуляторы. Эта проблема возникает в результате работы ветрогенераторов, которые производят ток непостоянной величины. При этом аккумуляторы работают в усиленном режиме, который значительно уменьшает срок эксплуатации.

    Самодельные приборы

    В некоторых случаях, при наличии соответствующего опыта и навыков, собирают контроллер аккумуляторов для солнечной панели самостоятельно. Но, скорее всего, такой прибор будет значительно уступать в плане функциональности и эффективности. Устройства подобного типа подходят только для очень маленькой системы энергообеспечения, которая работает с низкой мощностью.

    Для изготовления контроллера заряда аккумуляторов вам понадобится его схема. Погрешность работы самодельного контроллера должна позволять фиксировать перепады измеряемых величин с точностью до одной десятой.

    Способы подключения устройств

    Контроллер для солнечных батарей может быть как встроенным в инвертор или блок питания, так и существовать самостоятельным прибором.

    При выборе метода подключения всех компонентов системы следует учитывать соотношение значений. Например, напряжение от солнечных батарей не должно превышать максимальный показатель, с которым может работать контроллер. Перед подключением прибора в схему для него следует выбрать сухое место, придерживаясь при этом правил противопожарной безопасности. Ниже приводится описание способов подключения самых распространенных типов контроллеров: PWM и MPPT.

    PWM

    При подключении PWM контроллеров требуется соблюдать четко определенную последовательность:

    1. Провода аккумуляторной батареи соединить на клеммах контроллера заряда солнечных батарей.
    2. Включить защитный предохранитель возле провода с положительной полярностью.
    3. Подсоединить выходы солнечных батарей к контактам контроллера.
    4. Подключение лампы необходимого напряжения 12 вольт (стандартное обычное значение) к выводам нагрузки контроллера.

    При этих действиях важно подключать приборы со строжайшим соблюдением маркировок клемм и полярности. Нарушение последовательности подключения приборов может привести к их поломке. Инвертор нельзя подключать к клеммам контроллера. Он должен присоединяться к клеммам аккумуляторной батареи.

    MPPT

    МРРТ контроллер, являясь устройством более мощным, технологически подключается немного по-другому. Хотя общие требования, касающиеся физической установки, соблюдаются в соответствии с вышеописанной схемой.

    Кабели, с помощью которых МРРТ контроллер соединяется с другими приборами, оснащены медными обжимными наконечниками. Клеммы отрицательной полярности, соединяемые с контроллером, следует оборудовать переходниками с выключателями и предохранителями. Это позволит вам предотвратить потерю энергии, а также обеспечит безопасное использование системы. Важно проверить соответствие значения напряжения на солнечных батареях и эти же показатели у устройства.

    Перед подключением приборов в систему необходимо перевести выключатели клемм в отключенное состояние и вынуть предохранители. Процесс происходит в несколько этапов:

    1. Соединить клеммы контроллера и аккумуляторной батареи.
    2. Соединить солнечные батареи с контроллером.
    3. Подключить заземление.
    4. Установить на контроллере датчик температуры.

    Все это должно делаться в соответствии с маркировками клемм и соблюдением полярностей. После того как установка завершена, переводим выключатель в состояние «включено» и вставляем предохранители. Если установка выполнена правильно, на экране должны высветиться показатели заряда аккумулятора.

    Критерии выбора контроллера

    Контроллер процесса зарядки аккумуляторов для солнечных панелей является очень важным элементом системы энергоснабжения. Разнообразный ассортимент моделей может немного озадачить при выборе устройства.

    Подобрать подходящую модель проще, если при покупке взять во внимание следующие критерии:

    1. Показатель входного напряжения. Данное значение выбранного прибора должно быть выше примерно на 20% показателей напряжения батарей, которые генерируют преобразователи солнечного света в ток.
    2. Значение общей мощности батарей. Оно не должно быть выше показателя тока на выходе.

    Современные модели имеют ряд дополнительных функций, предназначенных для повышения безопасности при использовании регуляторов процесса зарядки. Устройства управления процессами зарядки-разрядки могут иметь защиту от воздействия погодных условий, излишней нагрузки, коротких замыканий, перегрева, а также от неправильного подключения (это касается несоблюдения полярности). Поэтому выбирать прибор следует не только в зависимости от описанных критериев, но и с учетом функций защиты, которые лучшим образом обеспечат безопасную эксплуатацию устройства.