Сайт о телевидении

Сайт о телевидении

» » В памяти компьютера числа хранятся. Что нужно знать про арифметику с плавающей запятой

В памяти компьютера числа хранятся. Что нужно знать про арифметику с плавающей запятой

Назначение сервиса . Онлайн-калькулятор предназначен для представления вещественных чисел в формат с плавающей точкой.

Число

представлено в 10 2 системы счисления.
Представить число в:
нормализованном экспоненциальном виде
денормализованном экспоненциальном виде
32 битный формат IEEE 754
64 битный формат IEEE 754
Перевести обратно в десятичное представление

Правила ввода чисел

  1. Числа в десятичной системе счисления могут вводиться как без дробной, так и с дробной частью (234234.455).
  2. Числа в двоичной системе счисления состоят только из цифр 0 и 1 (10100.01).
  3. Числа в шестнадцатеричной системе счисления состоят из цифр 0 ... 9 и букв A ... F .
  4. Можно также получать обратное представление кода (из шестнадцатеричной системы счисления в десятичную, 40B00000)
Пример №1 . Представить число 133,54 в форме числа с плавающей точкой.
Решение . Представим число 133.54 в нормализованном экспоненциальном виде:
1.3354*10 2 = 1.3354*exp 10 2
Число 1.3354*exp 10 2 состоит из двух частей: мантиссы M=1.3354 и экспоненты exp 10 =2
Если мантисса находится в диапазоне 1 ≤ M Представление числа в денормализованном экспоненциальном виде .
Если мантисса находится в диапазоне 0,1 ≤ M Представим число в денормализованном экспоненциальном виде: 0.13354*exp 10 3

Пример №2 . Представить двоичное число 101.10 2 в нормализованном виде, записать в 32-битом стандарте IEEE754.
Решение .
Представление двоичного числа с плавающей точкой в экспоненциальном нормализованном виде .
Сдвинем число на 2 разрядов вправо. В результате мы получили основные составляющие экспоненциального нормализованного двоичного числа:
Мантисса M=1.011
Экспонента exp 2 =2
Преобразование двоичного нормализованного числа в 32 битный формат IEEE 754 .
Первый бит отводится для обозначения знака числа. Поскольку число положительное, то первый бит равен 0
Следующие 8 бит (с 2-го по 9-й) отведены под экспоненту.
Для определения знака экспоненты, чтобы не вводить ещё один бит знака, добавляют смещение к экспоненте в половину байта +127. Таким образом, наша экспонента: 2 + 127 = 129
Переведем экспоненту в двоичное представление.
Оставшиеся 23 бита отводят для мантиссы. У нормализованной двоичной мантиссы первый бит всегда равен 1, так как число лежит в диапазоне 1 ≤ M Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
01100000000000000000000 = 2 22 *0 + 2 21 *1 + 2 20 *1 + 2 19 *0 + 2 18 *0 + 2 17 *0 + 2 16 *0 + 2 15 *0 + 2 14 *0 + 2 13 *0 + 2 12 *0 + 2 11 *0 + 2 10 *0 + 2 9 *0 + 2 8 *0 + 2 7 *0 + 2 6 *0 + 2 5 *0 + 2 4 *0 + 2 3 *0 + 2 2 *0 + 2 1 *0 + 2 0 *0 = 0 + 2097152 + 1048576 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 3145728
В десятичном коде мантисса выражается числом 3145728
В результате число 101.10 представленное в IEEE 754 c одинарной точностью равно.
Переведем в шестнадцатеричное представление.
Разделим исходный код на группы по 4 разряда.
2 = 0100 0000 1011 0000 0000 0000 0000 0000 2
Получаем число:
0100 0000 1011 0000 0000 0000 0000 0000 2 = 40B00000 16

Максимальное значение целого неотрицательного числа достигается в случае, когда во всех ячейках хранятся единицы. Для n-разрядного представления оно будет равно

целых неотрицательных чисел . Минимальное число соответствует восьми нулям, хранящимся в восьми битах ячейки памяти, и равно нулю. Максимальное число соответствует восьми единицам и равно

А = 1 × 2 7 + 1 × 2 6 + 1 × 2 5 + 1 × 2 4 + 1 × 2 3 + 1 × 2 2 + 1 × 2 1 + 1 × 2 0 = 1 × 2 8 - 1 = 255 10 .

Диапазон изменения целых неотрицательных чисел чисел: от 0 до 255.

Для хранения целых чисел со знаком отводится две ячейки памяти (16 битов), причем старший (левый) разряд отводится под знак числа (если число положительное, то в знаковый разряд записывается 0, если число отрицательное - 1).

Представление в компьютере положительных чисел с использованием формата "знак-величина" называется прямым кодом числа. Например, число 2002 10 = 11111010010 2 будет представлено в 16-разрядном представлении следующим образом:

0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0

Максимальное положительное число (с учетом выделения одного разряда на знак) для целых чисел со знаком в n-разрядном представлении равно:

Для представления отрицательных чисел используется дополнительный код . Дополнительный код позволяет заменить арифметическую операцию вычитания операцией сложения, что существенно упрощает работу процессора и увеличивает его быстродействие.

Дополнительный код отрицательного числа А, хранящегося в n ячейках, равен 2 n - |A|.

Дополнительный код представляет собой дополнение модуля отрицательного числа А до 0, так как в n-разрядной компьютерной арифметике:

2 n - |А| + |А| = 0,

поскольку в компьютерной n-разрядной арифметике 2 n = 0. Действительно, двоичная запись такого числа состоит из одной единицы и n нулей, а в n-разрядную ячейку может уместиться только n младших разрядов, то есть n нулей.

Для получения дополнительного кода отрицательного числа можно использовать довольно простой алгоритм:

1. Модуль числа записать в прямом коде в n двоичных разрядах.

2. Получить обратный код числа, для этого значения всех битов инвертировать (все единицы заменить на нули и все нули заменить на единицы).

3. К полученному обратному коду прибавить единицу.

Запишем дополнительный код отрицательного числа -2002 для 16-разрядного компьютерного представления:


При n-разрядном представлении отрицательного числа А в дополнительным коде старший разряд выделяется для хранения знака числа (единицы). В остальных разрядах записывается положительное число

Чтобы число было положительным, должно выполняться условие

|А| £ 2 n-1 .

Следовательно, максимальное значение модуля числа А в га-разрядном представлении равно:

Тогда минимальное отрицательное число равно:

Определим диапазон чисел, которые могут храниться в оперативной памяти в формате длинных целых чисел со знаком (для хранения таких чисел отводится четыре ячейки памяти - 32 бита).

Максимальное положительное целое число (с учетом выделения одного разряда на знак) равно:

А = 2 31 - 1 = 2 147 483 647 10 .

Минимальное отрицательное целое число равно:

А = -2 31 = - 2 147 483 648 10 .

Достоинствами представления чисел в формате с фиксированной запятой являются простота и наглядность представления чисел, а также простота алгоритмов реализации арифметических операций.

Недостатком представления чисел в формате с фиксированной запятой является небольшой диапазон представления величин, недостаточный для решения математических, физических, экономических и других задач, в которых используются как очень малые, так и очень большие числа.

Представление чисел в формате с плавающей запятой. Вещественные числа хранятся и обрабатываются в компьютере в формате с плавающей запятой . В этом случае положение запятой в записи числа может изменяться.

Формат чисел с плавающей запятой базируется на экспоненциальной форме записи, в которой может быть представлено любое число. Так число А может быть представлено в виде:

A = m × q n 2.3

где m - мантисса числа;
q - основание системы счисления;
n - порядок числа.

Для единообразия представления чисел с плавающей запятой используется нормализованная форма, при которой мантисса отвечает условию:

1/n £ |m|

Это означает, что мантисса должна быть правильной дробью и иметь после запятой цифру, отличную от нуля.

Преобразуем десятичное число 555,55, записанное в естественной форме, в экспоненциальную форму с нормализованной мантиссой:

555,55 = 0,55555 × 10 3 .

Здесь нормализованная мантисса: m = 0,55555, порядок: n = 3.

Число в формате с плавающей запятой занимает в памяти компьютера 4 (число обычной точности ) или 8 байтов (число двойной точности ). При записи числа с плавающей запятой выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы.

Диапазон изменения чисел определяется количеством разрядов, отведенных для хранения порядка числа, а точность (количество значащих цифр) определяется количеством разрядов, отведенных для хранения мантиссы.

Определим максимальное число и его точность для формата чисел обычной точности , если для хранения порядка и его знака отводится 8 разрядов, а для хранения мантиссы и ее знака - 24 разряда:

0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
знак и порядок знак и мантисса

Максимальное значение порядка числа составит 1111111 2 = 127 10 , и, следовательно, максимальное значение числа составит:

2 127 = 1,7014118346046923173168730371588 × 10 38 .

Максимальное значение положительной мантиссы равно:

2 23 - 1 » 2 23 = 2 (10 × 2,3) » 1000 2,3 = 10 (3 × 2,3) » 10 7 .

Таким образом максимальное значение чисел обычной точности с учетом возможной точности вычислений составит 1,701411 × 10 38 (количество значащих цифр десятичного числа в данном случае ограничено 7 разрядами).

Задания

1.26. Заполнить таблицу, записав отрицательные десятичные числа в прямом, обратном и дополнительном кодах в 16-разрядном представлении:

1.27. Определить диапазон представления целых чисел со знаком (отводится 2 байта памяти) в формате с фиксированной запятой.

1.28. Определить максимальное число и его точность для формата чисел двойной точности , если для хранения порядка и его знака отводится 11 разрядов, а для хранения мантиссы и ее знака - 53 разряда.

Любому, кто хоть раз задумывался в жизни о том, чтобы стать "айтишником" или системным администратором, да и просто связать судьбу с знание о том, как происходит представление чисел в абсолютно необходимо. Ведь именно на этом основываются языки программирования низкого уровня, такие как Assembler. Поэтому сегодня мы рассмотрим представление чисел в компьютере и их размещение в ячейках памяти.

Система счисления

Если вы читаете данную статью, то, скорее всего, уже знаете об этом, но повторить стоит. Все данные в персональном компьютере хранятся в двоичной Это означает, что любое число необходимо представить в соответствующей форме, то есть состоящим из нулей и единиц.

Чтобы перевести привычные для нас десятичные числа к виду, понятному компьютеру, нужно воспользоваться описанным ниже алгоритмом. Существуют и специализированные калькуляторы.

Итак, для того чтобы перевести число в двоичную систему счисления, нужно взять выбранное нами значение и поделить его на 2. После этого мы получим результат и остаток (0 или 1). Результат опять делим 2 и запоминаем остаток. Данную процедуру нужно повторять до тех пор, пока в итоге также не окажется 0 или 1. Затем записываем конечное значение и остатки в обратном порядке, как мы их получали.

Именно так и происходит представление чисел в компьютере. Любое число записывается в двоичной форме, а потом занимает ячейку памяти.

Память

Как вам должно быть уже известно, минимальная единица измерения информации составляет 1 бит. Как мы уже выяснили, представление чисел в компьютере происходит в двоичном формате. Таким образом, каждый бит памяти будет занят одним значением - 1 или 0.

Для хранения используются ячейки. Каждая такая единица содержит до 8 бит информации. Поэтому можно сделать вывод, что минимальное значение в каждом отрезке памяти может составлять 1 байт или быть восьмизначным двоичным числом.

Целые

Наконец мы подобрались к непосредственному размещению данных в компьютере. Как было уже сказано, первым делом процессор переводит информацию в двоичный формат, а только затем размещает в памяти.

Начнем мы с самого простого варианта, коим является представление целых чисел в компьютере. Память ПК отводит под этот процесс до смешного малое количество ячеек - всего одну. Таким образом, максимум в одном слоте могут быть значения от 0 до 11111111. Давайте переведём максимальное число в привычную нам форму записи.
Х = 1 × 2 7 + 1 × 2 6 + 1 × 2 5 + 1 × 2 4 + 1 × 2 3 + 1 × 2 2 + 1 × 2 1 + 1 × 2 0 = 1 × 2 8 - 1 = 255.

Теперь мы видим, что в одной ячейке памяти может располагаться значение от 0 до 255. Однако это относится исключительно к целым неотрицательным числам. Если же компьютеру понадобится записать отрицательное значение, всё пройдет немного по-другому.

Отрицательные числа

Теперь давайте посмотрим, как происходит представление чисел в компьютере, если они являются отрицательными. Для размещения значения, которое меньше нуля, отводится две ячейки памяти, или 16 бит информации. При этом 15 уходят под само число, а первый (крайний левый) бит отдается под соответствующий знак.

Если цифра отрицательная, то записывается "1", если положительная, то "0". Для простоты запоминания можно провести такую аналогию: если знак есть, то ставим 1, если его нет, то ничего (0).

Оставшиеся 15 бит информации отводятся под число. Аналогично предыдущему случаю, в них можно поместить максимум пятнадцать единиц. Стоит отметить, что запись отрицательных и положительных чисел существенно отличается друг от друга.

Для того чтобы разместить в 2 ячейках памяти значение больше нуля или равное ему, используется так называемый прямой код. Данная операция производится так же, как и было описано, а максимальное А = 32766, если использовать Сразу хочется отметить, что в данном случае "0" относится к положительным.

Примеры

Представление целых чисел в памяти компьютера не является такой уж трудной задачей. Хотя она немного усложняется, если речь идет об отрицательном значении. Для записи числа, которое меньше нуля, используется дополнительный код.

Чтобы его получить, машина производит ряд вспомогательных операций.

  1. Сначала записывается модуль отрицательного числа в двоичном счислении. То есть компьютер запоминает аналогичное, но положительное значение.
  2. Затем проводится инвертирование каждого бита памяти. Для этого все единицы заменяются нулями и наоборот.
  3. Прибавляем "1" к полученному результату. Это и будет дополнительный код.

Приведем наглядный пример. Пусть у нас есть число Х = - 131. Сначала получаем его модуль |Х|= 131. Затем переводим в двоичную систему и записываем в 16 ячеек. Получим Х = 0000000010000011. После инвертирования Х=1111111101111100. Добавляем к нему "1" и получаем обратный код Х=1111111101111101. Для записи в 16-битную ячейку памяти минимальным числом является Х = - (2 15) = - 32767.

Длинные целые

Как видите, представление вещественных чисел в компьютере не так уж и сложно. Однако рассмотренного диапазона может не хватать для большинства операций. Поэтому, для того чтобы разместить большие числа, компьютер выделяет из памяти 4 ячейки, или 32 бита.

Процесс записи абсолютно не отличается от представленного выше. Так что мы просто приведем диапазон чисел, которые могут храниться в данном типе.

Х мах =2 147 483 647.

Х min =- 2 147 483 648.

Данных значений в большинстве случаев достаточно для того, чтобы записывать и проводить операции с данными.

Представление вещественных чисел в компьютере имеет свои преимущества и недостатки. С одной стороны, данная методика позволяет проще производить операции между целочисленными значениями, что значительно ускоряет работу процессора. С другой стороны, данного диапазона недостаточно для решения большинства задач экономики, физики, арифметики и других наук. Поэтому теперь мы рассмотрим очередную методику для сверхвеличин.

Плавающая запятая

Это последнее, что вам необходимо знать про представление чисел в компьютере. Поскольку при записи дробей возникает проблема определения положения запятой в них, для размещения подобных цифр в компьютере используется экспоненциальная форма.

Любое число может быть представлено в следующей форме Х = m * р п. Где m - это мантисса числа, р - основание системы счисления и п - порядок числа.

Для стандартизации записи чисел с плавающей запятой используется следующее условие, согласно которому модуль мантиссы должен быть больше или равен 1/п и меньше 1.

Пусть нам дано число 666,66. Приведём его к экспоненциальной форме. Получится Х = 0,66666 * 10 3 . Р = 10 и п = 3.

На хранение значений с плавающей запятой обычно выделяется 4 или 8 байт (32 или 64 бита). В первом случае это называется числом обычной точности, а во втором - двойной точности.

Из 4 байт, выделенных под хранение цифр, 1 (8 разрядов) отдается под данные о порядке и его знаке, а 3 байта (24 разряда) уходят на хранение мантиссы и её знака по тем же принципам, что и для целочисленных значений. Зная это, мы можем провести нехитрые расчеты.

Максимальное значение п = 1111111 2 = 127 10 . Исходя из него, мы можем получить максимальный размер числа, которое может храниться в памяти компьютера. Х=2 127 . Теперь мы можем вычислить максимально возможную мантиссу. Она будет равна 2 23 - 1 ≥ 2 23 = 2 (10 × 2,3) ≥ 1000 2,3 = 10 (3 × 2,3) ≥ 10 7 . В итоге, мы получили приближенное значение.

Если теперь мы объединим оба расчета, то получим значение, которое может быть записано без потерь в 4 байта памяти. Оно будет равно Х = 1,701411 * 10 38 . Остальные цифры были отброшены, поскольку именно такую точность позволяет иметь данный способ записи.

Двойная точность

Поскольку все вычисления были расписаны и объяснены в предыдущем пункте, здесь мы расскажем всё очень коротко. Для чисел с двойной точностью обычно выделяется 11 разрядов для порядка и его знака, а также 53 разряда для мантиссы.

П = 1111111111 2 = 1023 10 .

М = 2 52 -1 = 2 (10*5.2) = 1000 5.2 = 10 15.6 . Округляем в большую сторону и получаем максимальное число Х = 2 1023 с точностью до "м".

Надеемся, информация про представление целых и вещественных чисел в компьютере, которую мы предоставили, пригодится вам в обучении и будет хоть немного понятнее, чем то, что обычно пишут в учебниках.

| Планирование уроков на учебный год (ФГОС) | § 1.2. Представление чисел в компьютере

Уроки 6 - 7
§ 1.2. Представление чисел в компьютере

Ключевые слова:

Разряд
беззнаковое представление целых чисел
представление целых чисел со знаком
представление вещественных чисел

1.2.1. Представление целых чисел

Оперативная память компьютера состоит из ячеек, каждая из которых представляет собой физическую систему, состоящую из некоторого числа однородных элементов. Эти элементы обладают двумя устойчивыми состояниями, одно из которых соответствует нулю, а другое - единице. Каждый такой элемент служит для хранения одного из битов - разряда двоичного числа. Именно поэтому каждый элемент ячейки называют битом или разрядом (рис. 1.2).

Рис. 1.2. Ячейка памяти

Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (под целые числа обычно отводится 8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда. Беззнаковое представление можно использовать только для неотрицательных целых чисел, отрицательные числа представляются только в знаковом виде.

Беззнаковое представление используется для таких объектов, как адреса ячеек, всевозможные счётчики (например, число символов в тексте), а также числа, обозначающие дату и время, размеры графических изображений в пикселях и т. д.

Максимальное значение целого неотрицательного числа достигается в случае, когда во всех разрядах ячейки хранятся единицы. Для n-разрядного представления оно будет равно 2 n -1. Минимальное число соответствует п нулям, хранящимся в n разрядах памяти, и равно нулю.

Ниже приведены максимальные значения для беззнаковых целых n-разрядных чисел:

Для получения компьютерного представления беззнакового целого числа достаточно перевести число в двоичную систему счисления и дополнить полученный результат слева нулями до стандартной разрядности.

Пример 1 . Число 53 10 = 110101 2 в восьмиразрядном представлении имеет вид:

Это же число 53 в шестнадцати разрядах будет записано следующим образом:

При представлении со знаком самый старший (левый) разряд отводится под знак числа, остальные разряды - под само число. Если число положительное, то в знаковый разряд помещается 0, если число отрицательное - 1. Такое представление чисел называется прямым кодом.

В компьютере прямые коды используются для хранения положительных чисел в запоминающих устройствах, для выполнения операций с положительными числами.

На сайте Федерального центра информационно-образовательных ресурсов (http://fcior.edu.ru/) размещён информационный модуль «Число и его компьютерный код». С помощью этого ресурса вы можете получить дополнительную информацию по изучаемой теме.

Для выполнения операций с отрицательными числами используется дополнительный код, позволяющий заменить операцию вычитания сложением. Узнать алгоритм образования дополнительного кода вы можете с помощью информационного модуля «Дополнительный код», размещённого на сайте Федерального центра информационно-образовательных ресурсов (http://fcior.edu.ru/).

1.2.2. Представление вещественных чисел

Любое вещественное число А может быть записано в экспоненциальной форме:

где:

m - мантисса числа;

p - порядок числа.

Например, число 472 ООО ООО может быть представлено так: 4,72 10 8 , 47,2 10 7 , 472,0 10 6 и т. д.

С экспоненциальной формой записи чисел вы могли встречаться при выполнении вычислений с помощью калькулятора, когда в качестве ответа получали записи следующего вида: 4.72Е+8.

Здесь знак «Е» обозначает основание десятичной системы счисления и читается как «умножить на десять в степени».

Из приведённого выше примера видно, что положение запятой в записи числа может изменяться.

Для единообразия мантиссу обычно записывают как правильную дробь, имеющую после запятой цифру, отличную от нуля. В этом случае число 472 ООО ООО будет представлено как 0,472 10 9 .

Вещественное число может занимать в памяти компьютера 32 или 64 разряда. При этом выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы.

Пример:

Диапазон представления вещественных чисел определяется количеством разрядов, отведённых для хранения порядка числа, а точность определяется количеством разрядов, отведённых для хранения мантиссы.

Максимальное значение порядка числа для приведённого выше примера составляет 1111111 2 = 127 10 , и, следовательно, максимальное значение числа:

0,11111111111111111111111 10 1111111

Попытайтесь самостоятельно выяснить, каков десятичный эквивалент этой величины.

Широкий диапазон представления вещественных чисел важен для решения научных и инженерных задач. Вместе с тем следует понимать, что алгоритмы обработки таких чисел более трудоёмки по сравнению с алгоритмами обработки целых чисел.

САМОЕ ГЛАВНОЕ

Для компьютерного представления целых чисел используются несколько различных способов, отличающихся друг от друга количеством разрядов (8, 16, 32 или 64) и наличием или отсутствием знакового разряда.

Для представления беззнакового целого числа его следует перевести в двоичную систему счисления и дополнить полученный результат слева нулями до стандартной разрядности.

При представлении со знаком самый старший разряд отводится под знак числа, остальные разряды - под само число. Бели число положительное, то в знаковый разряд помещается 0, если число отрицательное, то 1. Положительные числа хранятся в компьютере в прямом коде, отрицательные - в дополнительном.

При хранении в компьютере вещественных чисел выделяются разряды на хранение знака порядка числа, самого порядка, знака мантиссы и мантиссы. При этом любое число записывается так:

где:

m - мантисса числа;
q - основание системы счисления;
p - порядок числа.

Вопросы и задания

1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Используйте эти материалы при подготовке ответов на вопросы и выполнении заданий.

2. Как в памяти компьютера представляются целые положительные и отрицательные числа?

3. Любое целое число можно рассматривать как вещественное, но с нулевой дробной частью. Обоснуйте целесообразность наличия особых способов компьютерного представления целых чисел.

4. Представьте число 63 10 в беззнаковом 8-разрядном формате.

5. Найдите десятичные эквиваленты чисел по их прямым кодам, записанным в 8-разрядном формате со знаком:

а) 01001100;
б) 00010101.

6. Какие из чисел 443 8 , 101010 2 , 256 10 можно сохранить в 8-разрядном формате?

7. Запишите следующие числа в естественной форме:

а) 0,3800456 10 2 ;
б) 0,245 10 -3 ;
в) 1,256900Е+5;
г) 9,569120Е-3.

8. Запишите число 2010,0102 10 пятью различными способами в экспоненциальной форме.

9. Запишите следующие числа в экспоненциальной форме с нормализованной мантиссой - правильной дробью, имеющей после запятой цифру, отличную от нуля:

а) 217,934 10 ;
б) 75321 10 ;
в) 0,00101 10 .

10. Изобразите схему, связывающую основные понятия, рассмотренные в данном параграфе.

    Целые числа являются простейшими числовыми данными, с которыми оперирует ЭВМ. Для целых чисел существуют два представления: беззнаковое (только для неотрицательных целых чисел) и со знаком. Очевидно, что отрицательные числа можно представлять только в знаковом виде. Целые числа в компьютере хранятся в формате с фиксированной запятой .

  • Представление целых чисел в беззнаковых целых типах.

    Для беззнакового представления все разряды ячейки отводятся под представление самого числа. Например, в байте (8 бит) можно представить беззнаковые числа от 0 до 255. Поэтому, если известно, что числовая величина является неотрицательной, то выгоднее рассматривать её как беззнаковую.

    Представление целых чисел в знаковых целых типах. Для представления со знаком самый старший (левый) бит отводится под знак числа, остальные разряды - под само число. Если число положительное, то в знаковый разряд помещается 0, если отрицательное - 1. Например, в байте можно представить знаковые числа от -128 до 127.

    Прямой код числа. Представление числа в привычной форме "знак"-"величина", при которой старший разряд ячейки отводится под знак, а остальные - под запись числа в двоичной системе, называется прямым кодом двоичного числа. Например, прямой код двоичных чисел 1001 и -1001 для 8-разрядной ячейки равен 00001001 и 10001001 соответственно. Положительные числа в ЭВМ всегда представляются с помощью прямого кода. Прямой код числа полностью совпадает с записью самого числа в ячейке машины. Прямой код отрицательного числа отличается от прямого кода соответствующего положительного числа лишь содержимым знакового разряда. Но отрицательные целые числа не представляются в ЭВМ с помощью прямого кода, для их представления используется так называемый дополнительный код . Дополнительный код положительного числа равен прямому коду этого числа. Дополнительный код отрицательного числа m равен 2 k -|m|, где k - количество разрядов в ячейке. Как уже было сказано, при представлении неотрицательных чисел в беззнаковом формате все разряды ячейки отводятся под само число. Например, запись числа 243=11110011 в одном байте при беззнаковом представлении будет выглядеть следующим образом:

При представлении целых чисел со знаком старший (левый) разряд отводится под знак числа, и под собственно число остаётся на один разряд меньше. Поэтому, если приведённое выше состояние ячейки рассматривать как запись целого числа со знаком, то для компьютера в этой ячейке записано число -13 (243+13=256=28). Но если это же отрицательное число записать в ячейку из 16-ти разрядов, то содержимое ячейки будет следующим:

    Знаковый разряд Возникает вопрос: с какой целью отрицательные числа записываются в виде дополнительного кода и как получить дополнительный код отрицательного числа? Дополнительный код используется для упрощения выполнения арифметических операций. Если бы вычислительная машина работала с прямыми кодами положительных и отрицательных чисел, то при выполнении арифметических операций следовало бы выполнять ряд дополнительных действий. Например, при сложении нужно было бы проверять знаки обоих операндов и определять знак результата. Если знаки одинаковые, то вычисляется сумма операндов и ей присваивается тот же знак. Если знаки разные, то из большего по абсолютной величине числа вычитается меньшее и результату присваивается знак большего числа. То есть при таком представлении чисел (в виде только прямого кода) операция сложения реализуется через достаточно сложный алгоритм. Если же отрицательные числа представлять в виде дополнительного кода, то операция сложения, в том числе и разного знака, сводится к из поразрядному сложению. Для компьютерного представления целых чисел обычно используется один, два или четыре байта, то есть ячейка памяти будет состоять из восьми, шестнадцати или тридцати двух разрядов соответственно.

    Алгоритм получения дополнительного кода отрицательного числа. Для получения дополнительного k-разрядного кода отрицательного числа необходимо

    модуль отрицательного числа представить прямым кодом в k двоичных разрядах;

    значение всех бит инвертировать:все нули заменить на единицы, а единицы на нули(таким образом, получается k-разрядный обратный код исходного числа);

    к полученному обратному коду прибавить единицу. Пример: Получим 8-разрядный дополнительный код числа -52:

    00110100 - число |-52|=52 в прямом коде

    11001011 - число -52 в обратном коде

    11001100 - число -52 в дополнительном коде Можно заметить, что представление целого числа не очень удобно изображать в двоичной системе, поэтому часто используют шестнадцатеричное представление:

    Представление вещественных чисел в компьютере.

    Для представления вещественных чисел в современных компьютерах принят способ представления с плавающей запятой . Этот способ представления опирается на нормализованную (экспоненциальную) запись действительных чисел. Как и для целых чисел, при представлении действительных чисел в компьютере чаще всего используется двоичная система, следовательно, предварительно десятичное число должно быть переведено двоичную систему.

  • Представление чисел с плавающей запятой. При представлении чисел с плавающей запятой часть разрядов ячейки отводится для записи порядка числа, остальные разряды - для записи мантиссы. По одному разряду в каждой группе отводится для изображения знака порядка и знака мантиссы. Для того, чтобы не хранить знак порядка, был придуман так называемый смещённый порядок , который рассчитывается по формуле 2 a-1 +ИП, где a - количество разрядов, отводимых под порядок. Пример : Если истинный порядок равен -5, тогда смещённый порядок для 4-байтового числа будет равен 127-5=122.

    Алгоритм представления числа с плавающей запятой.

    Перевести число из p-ичной системы счисления в двоичную;

    представить двоичное число в нормализованной экспоненциальной форме;

    разместить знак, порядок и мантиссу в соответствующие разряды сетки.

    Пример: Представить число -25,625 в машинном виде с использованием 4 байтового представления (где 1 бит отводится под знак числа, 8 бит - под смещённый порядок, остальные биты - под мантиссу).

    25 10 =100011 2 0,625 10 =0,101 2 -25,625 10 = -100011,101 2 2. -100011,101 2 = -1,00011101 2 * 2 4 3. СП=127+4=131 4.

  • Можно заметить, что представление действительного числа не очень удобно изображать в двоичной системе, поэтому часто используют шестнадцатеричное представление:

  • Окончательный ответ: C1CD0000.

  • Записать внутреннее представление числа 250,1875 в форме с плавающей точкой.

  • 1) Приведем его в двоичную систему счисления с 24 значащими цифрами: 250,1875 10 =1111 1010 , 0011 0000 0000 0000 2 . 2) Запишем в форме нормлизованного двоичного числа с плавающей точкой: 0,1111 1010 0011 0000 0000 0000*10 2 1000 . Здесь мантисса, основание системы счисления (2 10 =10 2) и порядок (8 10 =1000 2) записаны в двоичной системе. 3) Вычислим машинный порядок в двоичной системе счисления: Mp 2 = 1000 + 100 0000 =100 1000. 4) Запишем представление числа в 4-х байтовой ячейке памяти с учетом знака числа:

  • Шестнадцатеричная форма: 48FA3000.

  • В семи двоичных разрядах помещаются двоичные числа в диапозоне от 0000000 до 1111111. Значит, машинный порядок изменяется в диапозоне от 0 до 127 (в десятичной системе счисления). Всего 128 значений. Порядок, очевидно, может быть как положительным так и отрицательным. Разумно эти 128 значений разделить поровну между положительным и отрицательным значениеями порядка: от -64 до 63.

    Машинный порядок смещен относительно математического и имеет только положительные значения. Смещение выбирается так, чтобы минимальному математическому значению порядка соответствовал нуль.

    Связь между машинным порядком (Мр) и математическим (р) в рассматриваемом случае выражается формулой: Мр = р + 64

    Полученная формула записана в десятичной системе. В двоичной системе формула имеет вид: Mp 2 =p 2 +1000000 2 Для записи внутреннего представления вещественного числа в 4-х байтовой ячейке необходимо: 1) перевести модуль данного числа в двоичную систему счисления с 24 значащими цифрами; 2) нормализовать двоичное число; 3) найти машинный порядок в двоичной системе счисления; 4) учитывая знак числа, выписать его представление в 4-х байтовом машинном слове.