Сайт о телевидении

Сайт о телевидении

» » Таблица истинности для булевой функции калькулятор. Логическая равнозначность или эквивалентность

Таблица истинности для булевой функции калькулятор. Логическая равнозначность или эквивалентность

Информатика: аппаратные средства персонального компьютера Яшин Владимир Николаевич

4.3. Логические функции и таблицы истинности

Соотношения между логическими переменными и логическими функциями в алгебре логики можно отобразить также с помощью соответствующих таблиц, которые носят название таблиц истинности. Таблицы истинности находят широкое применение, поскольку наглядно показывают, какие значения принимает логическая функция при всех сочетаниях значений ее логических переменных. Таблица истинности состоит из двух частей. Первая (левая) часть относится к логическим переменным и содержит полный перечень возможных комбинаций логических переменных А, В, С… и т. д. Вторая (правая) часть этой таблицы определяет выходные состояния как логическую функцию от комбинаций входных величин.

Например, для логической функции F = A v B v C (дизъюнкции) трех логических переменных А, В, и С таблица истинности будет иметь вид, показанный на рис. 4.1. Для записи значений логических переменных и логической функции данная таблица истинности содержит 8 строк и 4 столбца, т. е. число строк для записи значений аргументов и функции любой таблицы истинности будет равно 2 n , где п – число аргументов логической функции, а число столбцов равно п + 1.

Рис. 4.1. Таблица истинности для логической функции F = A v В v С

Таблицу истинности можно составить для любой логической функции, например, на рис. 4.2 приведена таблица истинности логической функции F = A ? B ? C (эквиваленции).

Логические функции имеют соответствующие названия. Для двух двоичных переменных существует шестнадцать логических функций, названия которых приведены ниже. На рис. 4.3 представлена таблица, в которой приведены логические функции F 1 , F 2 , F 3 , … , F 16 двух логических переменных A и В.

Функция F 1 = 0 и называется функцией константы нуля, или генератора нуля.

Рис. 4.2. Таблица истинности для логической функции F = A ? B ? C

Рис. 4.3. Логические функции F 1 , F 2 , F 3 ,… F 16 двух аргументов А и В

Функция F 2 = A & B называется функцией конъюнкции.

А.

Функция F 4 = А А.

называется функцией запрета по логической переменной В.

Функция F 6 = В называется функцией повторения по логической переменной В.

называется функцией исключающее «ИЛИ».

Функция F 8 = A v В называется функцией дизъюнкции.

называется функцией Пирса.

называется функцией эквиваленции.

В.

Функция F 12 = B ? A B ? A.

называется функцией отрицания (инверсии) по логической переменной А.

Функция F 14 = A ? B называется функцией импликации A ? B .

называется функцией Шеффера.

Функция F 16 = 1 называется функцией генератора 1.

Среди перечисленных выше логических функций переменных можно выделить несколько логических функций, с помощью которых можно выразить другие логические функции. Операцию замены одной логической функции другой в алгебре логики называют операцией суперпозиции или методом суперпозиции. Например, функцию Шеффера можно выразить при помощи логических функций дизъюнкции и отрицания, используя закон де Моргана:

Логические функции, с помощью которых можно выразить другие логические функции методом суперпозиции, называются базовыми логическими функциями. Такой набор базовых логических функций называется функционально полным набором логических функций. На практике наиболее широко в качестве такого набора используют три логических функции: конъюнкцию, дизъюнкцию и отрицание. Если логическая функция представлена с помощью базовых функций, то такая форма представления называется нормальной. В предыдущем примере логическая функция Шеффера, выраженная через базовые функции, представлена в нормальной форме.

При помощи набора базовых функций и соответствующих им технических устройств, реализующих эти логические функции, можно разработать и создать любое логическое устройство или систему.

Рис. 4.4. Диалоговое окно «Мастер функций – шаг 1 из 2»

Как видно из рис. 4.4, в состав логических функций программы MS Excel входит функционально полный набор логических функций, состоящий из следующих логических функций: И (конъюнкция), ИЛИ (дизъюнкция), НЕ (отрицание). Таким образом, с помощью функционально полного набора логических функций программы MS Excel можно реализовать другие функции. Логическая функция ЕСЛИ (импликация), также входящая в логические функции MS Excel, выполняет логическую проверку и в зависимости от результата проверки выполняет одно из двух возможных действий. В данной программе она имеет следующий формат: = ЕСЛИ (арг1;арг2;арг3), где арг1 – логическое условие; арг2 – возвращаемое значение при условии, что значение аргумента арг1 выполняется (ИСТИНА); арг3 – возвращаемое значение при условии, что значение аргумента арг1 не выполняется (ЛОЖЬ). Например, если в произвольную ячейку листа программы MS Excel ввести выражение « = ЕСЛИ (А1 = 5; „пять“; „не пять“)», то при вводе числа 5 в ячейку А1 и нажатии клавиши «Enter» в ячейке А1 автоматически будет записано слово «пять», при вводе любого другого числа в ячейку А1 в ней запишется слово «не пять». Как уже отмечалось, с помощью логических функций программы MS Excel можно представить другие логические функции и соответствующие им таблицы истинности.

Реализуем с помощью логических функций ЕСЛИ и И модифицированную таблицу истинности логической функции F = А & В (конъюнкции), состоящую из двух строк и трех столбцов, которая позволяет при изменении значений (0 или 1) логических переменных А и В автоматически устанавливать, например, в ячейке Е6 значение функции F = А & В, соответствующее значениям этих логических переменных. Для этого в ячейку Е6 введем следующее выражение: «=ЕСЛИ(И(С6;D6);1;0)», тогда при вводе в ячейки С6 и D6 значений 0 или 1 в ячейке Е6 будет выполняться логическая функция F = А & В. Результат этих действий представлен на рис. 4.5.

Рис. 4.5. Реализация модифицированной таблицы истинности логической функции F = A & В

Данный текст является ознакомительным фрагментом. Из книги Информатика и информационные технологии: конспект лекций автора Цветкова А В

1. Логические команды Наряду со средствами арифметических вычислений, система команд микропроцессора имеет также средства логического преобразования данных. Под логическими понимаются такие преобразования данных, в основе которых лежат правила формальной

Из книги Компьютер на 100. Начинаем с Windows Vista автора Зозуля Юрий

Логические функции в Excel При расчетах часто приходится выбирать формулу в зависимости от конкретных условий. Например, при расчете заработной платы могут применяться разные надбавки в зависимости от стажа, квалификации или конкретных условий труда, которые вычисляются

Из книги Excel. Мультимедийный курс автора Мединов Олег

Логические функции Логические функции могут найти применение при математических, инженерных вычислениях или при сравнительном анализе данных. Мы рассмотрим одну логическую функцию на примере функции ЕСЛИ.С помощью функции ЕСЛИ вы можете создать логическое выражение и

Из книги Информатика: аппаратные средства персонального компьютера автора Яшин Владимир Николаевич

4.1. Логические переменные и логические операции Информация (данные, машинные команды и т. д.) в компьютере представлена в двоичной системе счисления, в которой используется две цифры – 0 и 1. Электрический сигнал, проходящий по электронным схемам и соединительным

Из книги Справочник по PHP автора

Логические функции определения типа переменной is_scalarПроверяет, является ли переменная простой.Синтаксис:bool is_scalar(mixed var)Возвращает true, если var имеет скалярный тип (чила, строки, логические значения), но не комплексный (массивы или объекты).is_nullПроверяет, является ли

Из книги HTML 5, CSS 3 и Web 2.0. Разработка современных Web-сайтов автора Дронов Владимир

Логические операторы Логические операторы выполняют действия над логическими значениями. Все они приведены в табл. 14.5. А в табл. 14.6 и 14.7 показаны результаты выполнения этих операторов.Основная область применения логических операторов - выражения сравнения (о них см.

Из книги XSLT автора Хольцнер Стивен

Логические функции XPath XPath также поддерживает следующий набор логических функций: boolean(). Приводит аргумент к логическому значению; false(). Возвращает false (ложь); lang(). Проверяет, совпадает ли язык, установленный в атрибуте xml:lang, с языком, переданным в функцию; not().

Из книги Технология XSLT автора Валиков Алексей Николаевич

Логические операции В XSLT имеются две логические операции - or и and. Эти операции бинарны, то есть каждая из них определена для двух операндов. Если операнды не являются булевыми значениями, они неявным образом приводятся к булевому типу.Семантика or и and очевидна - они

Из книги Язык программирования Си для персонального компьютера автора Бочков C. О.

Логические операции Логические операции выполняют над своими операндами логические функции И (&&) и ИЛИ (||). Операнды логических операций могут иметь целый, плавающий тип, либо быть указателями. Типы первого и второго операндов могут различаться. Сначала всегда

Из книги Краткое введение в программирование на Bash автора Родригес Гарольд

Логические И и ИЛИ Вы уже видели, что такое управляющие структуры и как их использовать. Для решения тех же задач есть еще два способа. Это логическое И - "&&" и логическое "ИЛИ" - « || ». Логическое И используется следующим образом:выражение_1&&выражение_2Сначала

Из книги Firebird РУКОВОДСТВО РАЗРАБОТЧИКА БАЗ ДАННЫХ автора Борри Хелен

Логические операторы Firebird предоставляет три логических оператора, которые могут работать с другими предикатами разными способами.* NOT задает отрицание условия поиска, к которому он применяется. Он имеет наивысший приоритет.* AND создает сложный предикат, объединяет два

Из книги Язык Си - руководство для начинающих автора Прата Стивен

Понимание истинности и ложности Семантически, если предикат возвращает "неопределенность", это не является ни истиной, ни ложью. В SQL при этом утверждения разрешаются только в виде "истина" или "ложь" - утверждение, которое не вычисляется как "истина", рассматривается как

Из книги Восстановление данных на 100% автора Ташков Петр Андреевич

IV. Логические операции Обычно логические операции "считают" условные выражения операндами. Операция! имеет один операнд, расположенный справа. Остальные операции имеют два операнда: один слева и один справа. && Логическое И: результат операции имеет значение "истина",

Из книги C++ для начинающих автора Липпман Стенли

Логические нарушения Если накопитель исправен физически, но представляется как пустой или неформатированный, а находящиеся на нем данные не видны операционной системе, то в данном случае повреждены служебные таблицы файловой системы.Данные почти всегда остаются на

Из книги Описание языка PascalABC.NET автора Коллектив РуБоард

12.3.4. Логические объекты-функции Логические объекты-функции поддерживают операции "логическое И" (возвращает true, если оба операнда равны true, – применяет оператор &&, аcсоциированный с типом Type), "логическое ИЛИ" (возвращает true, если хотя бы один из операндов равен true, –

Из книги автора

Логические операции К логическим относятся бинарные операции and, or и xor, а также унарная операция not, имеющие операнды типа boolean и возвращающие значение типа boolean. Эти операции подчиняются стандартным правилам логики: a and b истинно только тогда, когда истинны a и b, a or b истинно

Выбираем строки, где
и выписываем конъюнкции всех переменных, при чем, если переменная в этом наборе равна 1, то записываем ее саму, а если переменная = 0, то ее отрицание.

Для данного примера





коньюнкция этих дизъюнкций и будет искомой формулой:

Определение: Конъюнкция называетсяэлементарной , если все переменные, входящие в нее, различны. Количество букв, входящих в элементарную конъюнкцию или элементарную дизъюнкцию, называетсярангом.

Число 1 считается элементарной конъюнкцией ранга 0. Переменная считается элементарной конъюнкцией или элементарной дизъюнкцией ранга 1. Число 0 считается элементарной дизъюнкцией ранга 0. Любую конъюнкцию переменных, не являющуюся тождественно ложной, можно привести к виду элементарной, а любую дизъюнкцию букв, не являющуюся тождественно истинной, также можно привести к виду элементарной. Для этого надо применить свойства коммутативности, идемпотентности и ассоциативности конъюнкции и дизъюнкции.

Строго доказано, что любую формулу булевой алгебры можно выразить с помощью операций , &,. Интуитивно этот факт очевиден, вспомним алгоритм составления формулы по таблице истинности. При этом мы используем только эти операции. Такая форма записи называетсядизъюнктивной нормальной формой (ДНФ). Это своеобразный механизм нормализации формул алгебры логики.

Определение: ДНФ – это дизъюнкция различных элементарных конъюнкций (т.е. каждая конъюнкция состоит из элементарных высказываний или их отрицаний).

Аналогично определяется КНФ – коньюктивная нормальная форма.

Определение: Если в ДНФ все элементарные конъюнкции имеют один и тот же ранг, равный числу переменных, от которых зависит ДНФ, то она называетсясовершенной (СДНФ).

Теорема. Для любой функции, не являющейся тождественно ложной, существует и притом единственная СДНФ.

Следствие . Любую булеву функцию, не являющуюся тождественно ложной можно представить в виде суперпозиции&,,, причем отрицание относится только к переменным.

Определение: Система логических операций называется функционально полной, если с помощью этих операций и констант этой системы можно представить любую функцию булевой алгебры.

Системы {&,,}; {,}; {&,},{/} – являются функционально полными

{&,} – функционально неполная.

Мы примем эти факты без доказательства, и решая задачи, будем стараться любую формулу представить с помощью {&,,}. Позже мы более подробно обсудим вопрос функциональной полноты и неполноты системы операций.

Тема 1.7. Методы упрощения логических выражений. Методы решения логических задач.

Рассмотрим пример решения логической задачи.

Пример :

После обсуждения состава участников экспедиции решено, что должны выполняться два условия.

    Если поедет Арбузов, то должны ехать Брюквин или Вишневский

    Если поедут Арбузов и Вишневский то поедет Брюквин

Составить логическую формулу принятия решения в символической форме, упростить полученную формулу и сформулировать по ней новое условие формирования экспедиции.

Введём переменные и соответствующие им элементарные высказывания.

- поедет Арбузов

- поедет Брюквин

- поедет Вишневский

Тогда выработанные условия формирования экспедиции будут выглядеть следующим образом:


Составим общую формулу и упростим выражение

т.е. если поедет Арбузов, то поедет Брюквин.

Пример:

Если завтра будет хорошая погода, то мы пойдем на пляж или поедем в лес. Составим формулу нашего поведения на завтра.

– хорошая погода

– мы пойдем на пляж

– мы поедем в лес

Теперь построим отрицание этой фразы

т.о. получим высказывание "Завтра будет хорошая погода, и мы не пойдем в лес и на пляж.

Желающие могут построить таблицу истинности и проверить это утверждение.

Пример :

По подозрению в совершенном преступлении, задержаны Браун, Джон и Смит. Один из них уважаемый в городе старик, второй чиновник, а третий известный мошенник. В ходе следствия старик говорил правду, мошенник лгал, а третий задержанный в одном случае говорил правду, а в другом лгал.

Вот что они говорили:

Браун: Я совершил это. Джон не виноват. (Б&Д)

Джон: Браун не виноват. Преступник Смит. (Б&С)

Смит: Я не виноват. Виноват Браун (С&Б)

Опишем эти высказывания формально:

- преступление совершил Браун

- преступление совершил Джон

- преступление совершил Смит

Тогда их слова описываются следующими выражениями:

Браун:

Джон:

Смит:

Т.к. по условиям задачи две из этих &ложны и одна истинна, то

Составим таблицу истинности


Остается только случай 2 , т.е. преступник Смит, и оба его высказывания ложны.

следовательно– ложно и- истинно

= 1 – Джон уважаемый старик

Остается, что Браун чиновник, и поскольку – ложно, то– истинно.

Пользуясь законами и тождествами булевой алгебры можно упрощать логические выражения.

Пример :

Упражнение:

Учимся составлять логические выражения из высказываний, определяем понятие “таблица истинности”, изучаем последовательность действий построения таблиц истинности, учимся находить значение логических выражений посредством построения таблиц истинности.

Цели урока:

  1. Обучающие:
    1. Научить составлять логические выражения из высказываний
    2. Ввести понятие “таблица истинности”
    3. Изучить последовательность действий построения таблиц истинности
    4. Научить находить значение логических выражений посредством построения таблиц истинности
    5. Ввести понятие равносильности логических выражений
    6. Научить доказывать равносильность логических выражений, используя таблицы истинности
    7. Закрепить навыки нахождения значений логических выражений посредством построения таблиц истинности
  2. Развивающие:
    1. Развивать логическое мышление
    2. Развивать внимание
    3. Развивать память
    4. Развивать речь учащихся
  3. Воспитательные:
    1. Воспитывать умение слушать учителя и одноклассников
    2. Воспитывать аккуратность ведения тетради
    3. Воспитывать дисциплинированность

Ход урока

Организационный момент

Здравствуйте, ребята. Мы продолжаем изучать основы логики и тема нашего сегодняшнего урока «Составление логических выражений. Таблицы истинности». Изучив данную тему, вы научитесь, как из высказываний составляются логические формы, и определять их истинность посредством составления таблиц истинности.

Проверка домашнего задания

Записать решение домашних задач на доску
Все остальные откройте тетради, я пройду, проверю, как вы выполнили домашнее задание
Давайте еще раз повторим логические операции
В каком случае в результате операции логического умножения составное высказывание будет истинно?
Составное высказывание, образованное в результате операции логического умножения, истинно тогда и только тогда, когда истинны все входящие в него простые высказывания.
В каком случае в результате операции логического сложения составное высказывание будет ложно?
Составное высказывание, образованное в результате операции логического сложения, ложно тогда, когда ложны все входящие в него простые высказывания.
Как влияет инверсия на высказывание?
Инверсия делает истинное высказывание ложным и, наоборот, ложное – истинным.
Что вы можете сказать об импликации?
Логическое следование (импликация) образуется соединением двух высказываний в одно с помощью оборота речи «если…, то…».
Обозначается А -> В
Составное высказывание, образованное с помощью операции логического следования (импли­кации), ложно тогда и только тогда, когда из истинной предпосылки (первого высказывания) следует ложный вывод (второе высказывание).
Что вы можете сказать о логической операции эквивалентности?
Логическое равенство (эквивалентность) образуется соединением двух высказываний в одно с помощью оборота речи “... тогда и только тогда, когда…”, “…в том и только в том случае…”
Составное высказывание, образованное с помощью логической операции эквивалентности истинно тогда и только тогда, когда оба высказывания одновременно либо ложны, либо истинны.

Объяснение нового материала

Хорошо, повторили пройденный материал, переходим к новой теме.

На прошлом уроке мы находили значение составного высказы­вания путем подстановки исходных значений входящих логических переменных. А сегодня мы узнаем, что можно построить таблицу истинности, которая определяет истинность или лож­ность логического выражения при всех возможных комбинациях исходных значе­ний простых высказываний (логических переменных) и, что можно определить значения исходных логических переменных, зная какой нам нужен результат.

Еще раз рассмотрим наш пример с прошлого урока

и построим таблицу истинности для этого составного высказывания

При построении таблиц истинности есть определенная последовательность действий. Давайте запишем

  1. Необходимо определить количество строк в таблице истинности.
  • количество строк = 2 n , где n – количество логических переменных
  • Необходимо определить количество столбцов в таблице истинности, которое равно количеству логических переменных плюс количество логических операций.
  • Необходимо построить таблицу истинности с указанным количеством строк и столбцов, ввести названия столбцов таблицы в соответствии с последовательностью выполнения логических операций с учетом скобок и приоритетов;
  • Заполнить столбцы входных переменных наборами значений
  • Провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии с установленной последовательностью.
  • Записали. Строим таблицу истинности
    Что мы делаем во-первых?
    Определить количество столбцов в таблице
    Как мы это делаем?
    Считаем количество переменных. В нашем случае логическая функция содержит 2 переменные
    Какие?
    А и В
    Значит сколько строк будет в таблице?
    Количество строк в таблице истинности должно быть равно 4.
    А если 3 переменных?
    Количество строк = 2³ = 8
    Верно. Что делаем дальше?
    Определяем количество столбцов = количеству логических переменных плюс количество логических операций.
    Сколько будет в нашем случае?
    В нашем случае количество переменных равно двум, а количество логических операции - пяти, то есть количество столбцов таблицы истинности равно семи.
    Хорошо. Дальше?
    Строим таблицу с указанным количеством строк и столбцов, обозначаем столбцы и вносим в таблицу возможные наборы значений исходных логических переменных и заполняем таблицу истинности по столбцам.
    Какую операцию будем выполнять первой? Только учитывайте скобки и приоритеты
    Можно сначала выполнить логическое отрицание или найти значение сначала в первой скобке, затем инверсию и значение во второй скобке, затем значение между этими скобками

    ┐Аv┐В

    (AvB)&(┐Av┐B)

    Теперь мы можем определить значение логической функции для любого набора значении логических переменных
    Теперь записываем пункт “Равносильные логические выражения”.
    Логические выра­жения, у которых последние столбцы таблиц истинности сов­падают, называются равносильными. Для обозначения равносильных логических выражений используется знак “ = “,
    Докажем, что логические выражения ┐ А& ┐В и AvB равносильны. Построим сначала таблицу истинности логического выражения


    Сколько столбцов будет в таблице? 5
    Какую операцию будем выполнять первой? Инверсию А, инверсию В

    ┐А&┐В

    Теперь построим таблицу истинности логического выражения AvB
    Сколько строк будет в таблице? 4
    Сколько столбцов будет в таблице? 4

    Мы все понимаем, что, если нужно найти отрицание для всего выражения, то приоритет, в нашем случае, принадлежит дизъюнкции. Поэтому сначала выполняем дизъюнкцию, а затем инверсию. К тому же мы можем переписать наше логическое выражение AvB. Т.к. нам нужно найти отрицание всего выражения, а не отдельных переменных, то инверсию можно вынести за скобки ┐(AvB), а мы знаем, что сначала находим значение в скобках

    ┐(AvB)

    Построили таблицы. Теперь давайте, сравним значения в последних столбцах таблиц истинности, т.к. именно последние столбцы являются результирующими. Они совпадают, следовательно, логические выражения равносильны и мы можем поставить между ними знак “=”

    Решение задач

    1.

    Сколько переменных содержит данная формула? 3
    Сколько строк и столбцов будет в таблице? 8 и 8
    Какова будет в нашем примере последовательность операций? (инверсия, операции в скобках, операцию за скобкой)

    Bv┐B (1)

    (1) =>┐C

    Av(Bv┐B=>┐C)

    2. Докажите с помощью таблиц истинности равносильность следую­щих логических выражений:

    (А → B) И (Av┐B)

    Какой делаем вывод? Данные логические выражения не равносильны

    Домашнее задание

    Доказать, используя таблицы истинности, что логические выражения

    ┐A v ┐B и А&В равносильны

    Объяснение нового материала (продолжение)

    Мы уже несколько уроков подряд используем понятие “таблица истинности”, а что же такое таблица истинности , как вы думаете?
    Таблица истинности – это таблица, устанавливающая соответствие между возможными наборами значений логических переменных и значениями функций.
    Как вы справились с домашним заданием, какой у вас получился вывод?
    Выражения равносильны
    Помните, на предыдущем уроке мы из составного высказывания составляли формулу, заменяя простые высказывания 2*2=4 и 2*2=5 переменными А и В
    Теперь давайте учиться составлять логические выражения из высказываний

    Запишите задание

    Записать в виде логической формулы высказывания:

    1) Если Иванов здоров и богат, то он здоров

    Анализируем высказывание. Выявляем простые высказывания

    А – Иванов здоров
    В – Иванов богат

    Хорошо, тогда как будет выглядеть формула? Только не забудьте, чтобы не терялся смысл высказывания, расставить скобки в формуле

    2) Число является простым, если оно делится только на 1 и само на себя

    А - число делится только на 1
    В - число делится только на себя
    С - число является простым

    3) Если число делится на 4, оно делится на 2

    А - делится на 4
    В - делится на 2

    4) Произвольно взятое число либо делится на 2,либо делится на 3

    А - делится на 2
    В - делится на 3

    5) Спортсмен подлежит дисквалификации, если он некорректно ведет себя по отношению к сопернику или судье, и если он принимал «допинг».

    А - спортсмен подлежит дисквалификации
    В - некорректно ведет себя по отношению к сопернику
    С - некорректно ведет себя по отношению к судье
    D - принимал «допинг».

    Решение задач

    1. Построить таблицу истинности для формулы

    ((p&q)→ (p→ r)) v p

    Объясняем сколько строк и столбцов будет в таблице? (8 и 7) Какова будет последовательность операций и почему?

    (p&q)→ (p→ r)

    ((p&q)→ (p→ r)) v p

    Посмотрели на последний столбец и сделали вывод, что при любом наборе входных параметров формула принимает истинное значение, такая формула называется тавтологией. Запишем определение:

    Формула называется законом логики, или тавтологией, если она принимает тождественно значение “истина” при любом наборе значений переменных, входящих в эту формулу.
    А если все значения будут ложны, как вы думаете, что можно сказать о такой формуле?
    Можно сказать, что формула невыполнима

    2. Записать в виде логической формулы высказывания:

    Администрация морского порта издала следующее распоряжение:

    1. Если капитан корабля получает специальное указание, то он должен покинуть порт на своем корабле
    2. Если капитан не получает специального указания, то он не должен покидать порт, или он впредь лишается допуска в этот порт
    3. Капитан или лишается допуска в этот порт, или не получает специального указания

    Выявляем простые высказывания, составляем формулы

    • А - капитан получает специальное указание
    • В - покидает порт
    • С - лишается допуска в порт
    1. ┐А→(┐В v С)
    2. С v ┐А

    3. Записать составное высказывание “(2*2=4 и 3*3 = 9) или (2*2≠4 и 3*3≠9)” в форме логического выражения. Построить таблицу истинности.

    А={2*2=4} B={3*3 = 9}

    (А&В) v (┐А&┐В)

    ┐А&┐В

    (А&В) v (┐А&┐В)

    Домашнее задание

    Выбрать составное высказывание, имеющее ту же таблицу истинно­сти, что и не (не А и не (В и С)).

    1. АиВ или СиА;
    2. (А или В) и (А или С);
    3. А и (В или С);
    4. А или (не В или не С).

    Построение таблиц истинности и логических функций

    Логическая функция - это функция, в которой переменные принимают только два значения: логическая единица или логический ноль. Истинность или ложность сложных суждений представляет собой функцию истинности или ложности простых. Эту функцию называют булевой функцией суждений f (a , b ).

    Любая логическая функция может быть задана с помощью таблицы истинности, в левой части которой записывается набор аргументов, а в правой части - соответствующие значения логической функции. При построении таблицы истинности необходимо учитывать порядок выполнения логических операций.

    Порядок выполнения логических операций в сложном логическом выражении:

    1. инверсия;

    2. конъюнкция;

    3. дизъюнкция;

    4. импликация;

    5. эквивалентность.

    Для изменения указанного порядка выполнения операций используются скобки.

    Алгоритм построения таблиц истинности для сложных выражений :

    количество строк = 2 n + строка для заголовка ,

    n - количество простых высказываний.

    количество столбцов = количество переменных + количество логических операций ;

    · определить количество переменных (простых выражений);

    · определить количество логических операций и последовательность их выполнения.

    3. Заполнить столбцы результатами выполнения логических операций в обозначенной последовательности с учетом таблиц истинности основных логических операций.

    Пример: Составить таблицу истинности логического выражения:

    D = А & ( B V C )

    Решение:

    1. Определить количество строк:

    на входе три простых высказывания: А, В, С поэтому n =3 и количество строк = 23 +1 = 9.

    2. Определить количество столбцов:

    простые выражения (переменные): А, В, С ;

    промежуточные результаты (логические операции):

    А - инверсия (обозначим через E );

    B V C - операция дизъюнкции (обозначим через F );

    а также искомое окончательное значение арифметического выражения:

    D = А & ( B V C ) . т. е. D = E & F - это операция конъюнкции.

    Заполнить столбцы с учетом таблиц истинности логических операций.

    font-size:12.0pt">Построение логической функции по ее таблице истинности:

    Попробуем решить обратную задачу. Пусть дана таблица истинности для некоторой логической функции Z (X ,Y ):

    font-size:12.0pt">1 .

    Так как строки две, получаем дизъюнкцию двух элементов: () V () .

    Каждый логический элемент в этой дизъюнкции запишем в виде конъюнкции аргументов функции X и Y : ( X & Y ) V ( X & Y ).

    Определение 1

    Логическая функция – функция, переменные которой принимают одно из двух значений: $1$ или $0$.

    Любую логическую функцию можно задать с помощью таблицы истинности: набор всех возможных аргументов записывается в левой части таблицы, а соответствующие значения логической функции – в правой части.

    Определение 2

    Таблица истинности – таблица, которая показывает, какие значения примет составное выражение при всех возможных наборах значений простых выражений, входящих в него.

    Определение 3

    Равносильными называются логические выражения, последние столбцы таблиц истинности которых совпадают. Равносильность обозначается с помощью знака $«=»$.

    При составлении таблицы истинности важно учитывать следующий порядок выполнения логических операций:

    Рисунок 1.

    Приоритетом в выполнении порядка выполнения операций пользуются скобки.

    Алгоритм построения таблицы истинности логической функции

      Определяют количество строк: кол-во строк = $2^n + 1$ (для строки заголовка) , $n$ – количество простых выражений. Например, для функций двух переменных существует $2^2 = 4$ комбинации наборов значений переменных, для функций трех переменных – $2^3 = 8$ и т.д.

      Определяют количество столбцов: кол-во столбцов = кол-во переменных + кол-во логических операций. При определении количества логических операций учитывают также порядок их выполнения.

      Заполняют столбцы результатами выполнения логических операций в определенной последовательности, учитывая таблицы истинности основных логических операций.

    Рисунок 2.

    Пример 1

    Составить таблицу истинности логического выражения $D=\bar{A} \vee (B \vee C)$.

    Решение:

      Определим количество строк:

      кол-во строк = $2^3 + 1=9$.

      Количество переменных – $3$.

      1. инверсия ($\bar{A}$);
      2. дизъюнкция, т.к. она находится в скобках ($B \vee C$);
      3. дизъюнкция ($\overline{A}\vee \left(B\vee C\right)$) – искомое логическое выражение.

        Кол-во столбцов = $3 + 3=6$.

      Заполним таблицу, учитывая таблицы истинности логических операций.

    Рисунок 3.

    Пример 2

    По данному логическому выражению построить таблицу истинности:

    Решение:

      Определим количество строк:

      Количество простых выражений – $n=3$, значит

      кол-во строк = $2^3 + 1=9$.

      Определим количество столбцов:

      Количество переменных – $3$.

      Количество логических операций и их последовательность:

      1. отрицание ($\bar{C}$);
      2. дизъюнкция, т.к. она находится в скобках ($A \vee B$);
      3. конъюнкция ($(A\vee B)\bigwedge \overline{C}$);
      4. отрицание, которое обозначим $F_1$ ($\overline{(A\vee B)\bigwedge \overline{C}}$);
      5. дизъюнкция ($A \vee C$);
      6. конъюнкция ($(A\vee C)\bigwedge B$);
      7. отрицание, которое обозначим $F_2$ ($\overline{(A\vee C)\bigwedge B}$);
      8. дизъюнкция – искомая логическая функция ($\overline{(A\vee B)\bigwedge \overline{C}}\vee \overline{(A\vee C)\bigwedge B}$).