Сайт о телевидении

Сайт о телевидении

» » Современные проблемы науки и образования

Современные проблемы науки и образования

Системы связи с обратной связью

Цель лекции: изучение характеристик систем с обратной связью и рассмотрение структурной схемы с ОС.
Содержание:
а) характеристики систем с обратной связью и их особенности;
б) структурная схема системы с информационной обратной связью (ИОС) и решающей обратной связью (РОС), характеристики и алгоритмы работы.
12.1 Характеристики систем с обратной связью и их особенности
В системах с ОС ввод в передаваемую информацию избыточности производится с учетом состояния дискретного канала. С ухудшением состояния канала вводимая избыточность увеличивается, и, наоборот, по мере улучшения состояния канала она уменьшается.
В зависимости от назначения ОС различают системы: с решающей обратной связью (РОС), информационной обратной связью (ИОС) и с комбинированной обратной связью (КОС).
Передача с РОС аналогична телефонному разговору в условиях плохой слышимости, когда один из собеседников, плохо расслышав какое-либо слово или фразу, просит другого повторить их еще раз, а при хорошей слышимости или подтверждает факт получения информации, или, во всяком случае, не просит повторения.
Полученная по каналу ОС информация (квитанция) анализируется передатчиком, и по результатам анализа передатчик принимает решение о передаче следующей кодовой комбинации или о повторении ранее переданных. После этого передатчик передает служебные сигналы о принятом решении, а затем соответствующие кодовые комбинации. В соответствии с полученными от передатчика служебными сигналами приемник ПКпр или выдает накопленную кодовую комбинацию получателю информации, или стирает ее и запоминает вновь переданную. В системах с укороченной ИОС, естественно, меньше загрузка обратного канала, но больше вероятность появления ошибок по сравнению с полной ИОС.

В системах с КОС решение о выдаче кодовой комбинации получателю информации или о повторной передаче может приниматься и в приемнике, и в передатчике системы ПДС, а канал ОС используется для передачи как квитанций, так и решений. Системы с ОС подразделяют также на системы с ограниченным числом повторений и с неограниченным числом повторений. В системах с ограниченным числом повторений каждая кодовая комбинация может повториться не более l раз, и в системах с неограниченным числом повторений передача комбинаций повторяется до тех пор, пока приемник или передатчик не примет решение о выдаче этой комбинации потребителю. При ограниченном числе повторений вероятность выдачи получателю неправильной комбинации больше, но зато меньше потери времени на передачу и проще реализация аппаратуры. Заметим, что в системах с ОС время передачи сообщения не остается постоянным и зависит от состояния канала.
Системы с ОС могут отбрасывать либо использовать информацию, содержащуюся в забракованных кодовых комбинациях, с целью принятия более правильного решения. Системы первого типа получили название систем без памяти, а второго - систем с памятью.
Обратной связью могут быть охвачены различные части системы (рисунок 12.1):
1) канал связи, при этом по каналу ОС передаются сведения о принимаемом сигнале до принятия какого-либо решения;
2) дискретный канал, при этом по каналу ОС передаются решения, принятые первой решающей схемой PC 1 на основе анализа единичных элементов сигнала;
3) канал передачи данных, при этом по каналу ОС передаются решения, принятые второй решающей схемой РС 2 на основе анализа кодовых комбинаций.

Рисунок 12.1 - Обратная связь в системе ПДС
В системах с ИОС также возможны потери верности за счет ошибок в каналах ОС. В укороченных ИОС такие ошибки возникают по причинам, аналогичным вышеизложенным, когда квитанция, соответствующая искаженному сигналу в канале ОС, трансформируется в квитанцию, соответствующую неискаженному сигналу. В результате передатчик не в состоянии обнаружить факт ошибочного приема. В полных ИОС в канале ОС возможны искажения, полностью компенсирующие искажения в прямом канале, в результате чего ошибки не могут быть обнаружены. Поэтому вопросам образования каналов ОС в системах ПДС уделяется очень большое внимание. Каналы ОС обычно образуются в каналах обратного направления связи с помощью методов частотного или временного разделения от каналов передачи полезной информации. Методы ЧРК используют обычно в системах со сравнительно небольшой удельной скоростью передачи, например, при передаче данных со скоростью 600... 1200 бит/с по каналам ТЧ. Во многих системах с РОС применяется структурный метод разделения, когда для сигнала переспроса используется специальная кодовая комбинация, а любая разрешенная кодовая комбинация в приемнике дешифруется как сигнал подтверждения и любая неразрешенная комбинация - как сигнал переспроса. Для защиты от искаженных сигналов, передаваемых по каналам ОС, применяют те же способы, что и для повышения верности полезной информации: корректирующие коды, многократную и параллельную передачи.

    информационная обратная связь - сравнение Передача по обратному каналу информации о подмножестве возможных сообщений, к которому отнесен выходной сигнал. [Сборник рекомендуемых терминов. Выпуск 94. Теория передачи информации. Академия наук СССР. Комитет технической терминологии …

    Информационная обратная связь ИОС Обратная связь при передаче данных, при которой по обратному каналу передачи данных поступает информация о сигнале, поступившем по прямому каналу передачи данных, с принятием решения на стороне передатчика. [ГОСТ … Справочник технического переводчика

    информационная обратная связь (по контрольному каналу) - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN message feedback … Справочник технического переводчика

    Информационная обратная связь при передаче данных - 86. Информационная обратная связь при передаче данных Информационная обратная связь ИОС Е. Information feedback Обратная связь при передаче данных, при которой по обратному каналу передачи данных поступает информация о сигнале, поступившем по… …

    Информационная обратная связь при передаче данных - 1. Обратная связь при передаче данных, при которой по обратному каналу передачи данных поступает информация о сигнале, поступившем по прямому каналу передачи данных, с принятием решения на стороне передатчика Употребляется в документе: ГОСТ 17657 … Телекоммуникационный словарь

    БИОЛОГИЧЕСКАЯ ОБРАТНАЯ СВЯЗЬ - Информационная обратная связь относительно функционирования тела. Большая часть биологической обратной связи осуществляется через обычные сенсорные каналы, например, если вы закрываете глаза и держите руку в стороне от тела, кинестетическая… … Толковый словарь по психологии

    Биологическая обратная связь - – информационная обратная связь относительно функционирования тела. Большей частью осуществляется через обычные сенсорные каналы. Например, обратная связь позволяет определить положение руки при закрытых глазах. Посредством обратной связи можно в … Энциклопедический словарь по психологии и педагогике

    Информационная - функция автоматизированной системы управления Функция АСУ, включающая получение информации, обработку и передачу информации персоналу АСУ или за пределы системы о состоянии ТОУ или внешней среды Источник … Словарь-справочник терминов нормативно-технической документации

    СВЯЗЬ - (1) информационная передача и приём сообщений с помощью различных технических средств (радио, электронной почты, телефона, телеграфа, телетайпа, телевидения, радиорелейных средств и др.). С. информационная может быть местной, дальней, наземной,… … Большая политехническая энциклопедия

    Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия

    - (ЭИС) представляет собой совокупность организационных, технических, программных и информационных средств, объединённых в единую систему с целью сбора, хранения, обработки и выдачи необходимой информации, предназначенной для выполнения функций… … Википедия


Если имеется возможность применить дополнительный канал между передающим и приёмным пунктами, или такой уже существует, то можно организовать канал обратной связи.

Известно 2 варианта использования канала обратной связи.

1. Системы с информационной обратной связью. В этом случае по каналу обратной связи передается весь переданный пакет с целью его контроля на передающей стороне. Если на передающей стороне пакет совпал, то данные верны. Время увеличивается в 2 раза.

2. Системы с управляющей обратной связью или системы с переспросом. Организуется пакет, в котором используется помехоустойчивое кодирование (только обнаруживает ошибки, но не исправляет). На приёмной стороне по помехоустойчивому коду определяется ошибка. Если ошибка есть, то по каналу обратной связи передается сообщение об ошибке и просьба повторить отправку пакета, то есть по каналу обратной связи идёт только сигнал «повторить» либо «подтверждение приема». Если есть необходимость повторной отправки пакета, то отправка производится.

  1. Связь корректирующей способности кода с кодовым расстоянием. Модуляция с использованием периодической последовательности прямоугольных импульсов.

Степень различия любых двух кодовых комбинаций характеризуется расстоянием между ними по Хэммингу или просто кодовым расстоянием .

Расстояние Хэмминга d выражается числом позиций, в которых кодовые комбинации отличаются одна от другой. Чтобы подсчитать кодовое расстояние между двумя комбинациями двоичного кода, необходимо сложить по модулю два эти комбинации, а затем подсчитать число единиц в сумме. Поясним примерами. Найти расстояние Хэмминга d между кодовыми комбинациями 10101011 и 11111011.

Произведем сложение по модулю два:

Å
01010000 .

При сложении по модулю два переносов нет, сложение производится поразрядно по правилам: 0Å0=0; 0Å1=1; 1Å1=0. Сосчитав число единиц, в сумме получаем d=2.

Для всех возможных комбинаций многоразрядного двоичного кода вводится понятие минимального кодового расстояния . Минимальное расстояние Хэмминга, взятое по всем парам возможных кодовых комбинаций данного кода, называется минимальным кодовым расстоянием .

Минимальное кодовое расстояние d min определяет способности кода обнаруживать и исправлять ошибки, возникающие при передаче данных.

Для создания возможности обнаружения ошибок при передаче поступим следующим образом. В трехразрядном коде для передачи исходной информации будем использовать два разряда, а третий передаваемый разряд для передачи будем формировать по правилу: его значение равно нулю, если число единиц в информационных разрядах, четно, и равно единице, если число единиц в информационных разрядах нечетно.

В результате такого кодирования все множество двоичных трехразрядных кодовых комбинаций разбивается на две группы:

Разрешенные – 000, 011, 101, 110;

Запрещенные – 001, 010, 100, 111.

При передаче формируются и передаются помехоустойчивые кодовые комбинации, в которых число единиц четно. Если принята кодовая комбинация, содержащая нечетное число единиц (одна из запрещенных комбинаций), то можно утверждать, что при передаче произошла ошибка.

Для создания возможности исправления однократной ошибки поступим следующим образом.

В трехразрядном коде под информационный символ отведем один разряд, а два других отведем под избыточные контрольные символы (алгоритм формирования контрольных символов пока не важен). Из всех трехразрядных кодовых комбинаций выберем разрешенными 000 и 111. Тогда при передаче и приеме информации могут возникать следующие ситуации (при возможности возникновения только одной ошибки):

Видно, что все искаженные однократной ошибкой кодовые комбинации можно исправить. Расстояние Хэмминга между разрешенными кодовыми комбинациями для данного случая d min =3.

Хэммингом доказано, что в общем случае для обеспечения кода возможностью исправления ошибок кратности S минимальное расстояние Хэмминга d min должно находится из условия d min ³ 2S+1.

Для кода, позволяющего обнаруживать ошибки кратности r и исправлять ошибки кратности S (r³S), минимальное расстояние Хэмминга выбирается из условия d min ³ r+S+1.

Если код должен обнаруживать двукратные ошибки и исправлять однократные, то d min должно быть равно 4. Поэтому код Хемминга с d min =3 может либо исправлять однократные ошибки, либо только обнаруживать однократные и двукратные ошибки.

  1. Измерение количества информации.

В информатике используются различные подходы к измерению информации. Содержательный подход к измерению информации рассматривается с точки зрения человека, получившего информацию (сообщение). Измерение количества информации не связывают с содержанием сообщения. Количество информации зависит от объема сообщения, но не его содержания. В этом случае более подходит алфавитный подход к измерению информации. Измерение количества информации – это мера уменьшения определенности. 1-бит, такое количество информации содержит сообщение, уменьшающее неопределенность знаний в два раза. Согласно измерению информации, количество информации достигает максимального значения, если события равновероятны, поэтому количество информации такое, сколько несет в себе сообщение. Наиболее просто измерить количество информации в случае , когда все исходы события могут реализоваться с равной долей вероятности.

Теперь рассмотрим алфавитный подход к измерению количества информации. При этом подходе измерения количества информации важно учитывать количество в каждом из знаков дискретного сообщения с последующим подсчетом количества этих знаков в сообщении. Для простоты предположим, что все символы (знаки) появляются в тексте с одинаковой вероятностью. Тогда измерение количества информации будет строиться из того, что все символы «равноправны», значит, и объем информации в каждом из них одинаков. Измерение информации представлено дискретным сигналом. При этом различают следующие подходы измерения информации: структурный (измеряет количество информации простым подсчетом символов); статистический (учитывает вероятность появления сообщений). Есть еще один вид информационного процесса – это семантический. Семантический подход к измерению информации учитывает целесообразность и полезность информации

  1. Теоретические модели каналов связи. Теоремы Шеннона о кодировании для каналов связи (без доказательства). Пропускная способность каналов.

Для анализа информационных возможностей канала по передаче информации принято пользоваться обобщенной информационной моделью канала.

Источник информации создаёт сигналы z , которые после кодирования и модуляции в преобразователе информации 1 превращается в сигналы х и поступают в канал.

Под кодированием широком смысле) подразумевается представление сообщений в форме, удобной для передачи по каналу. Операция восстановления сообщения по принятому сигналу называется декодированием. Поскольку информация передаётся в виде сигналов, то сообщению на выходе источника информации необходимо поставить в соответствие определённый сигнал. Поскольку число возможных сообщений при неограниченном времени стремится к бесконечности, а за достаточно большой промежуток времени велико, создать для каждого сообщения свой сигнал невозможно (да и не нужно).

Дискретные сообщения складываются из букв, поэтому используют конечное число образцовых сигналов, соответствующих отдельным буквам алфавита источника. При большом объёме алфавита прибегают к представлению букв в другом алфавите с меньшим числом букв, которые называют символами. Для обозначения этой операции также используется термин кодирование .

Поскольку алфавит символов меньше алфавита букв, то каждой букве соответствует кодовая комбинация. Число символов в кодовой комбинации называется её значностью . Операцию сопоставления кодовой комбинации соответствующей ей буквы называют также декодированием.

Преобразователь информации решает задачи:

1) преобразование информации в такой код, который обеспечивал бы простоту и надёжность аппаратной реализации.

2) кодирование сообщений так, чтобы уменьшить избыточность. Это достигается путём такого кодирования, при котором снижается среднее число символов, требующееся на букву сообщения. Поскольку при отсутствии помех такое кодирование даёт выигрыш во времени передачи или в объёме запоминающего устройства, то оно получило названиеэффективного. Теоретическую основу эффективного кодирования создал Клод Шеннон, который в своей теореме показал возможность создания эффективных кодов.

3) обеспечение помехоустойчивого кодирования как один из вариантов обеспечения заданной достоверности передачи и приёма.

4) модуляция кодированного сигнала. Получаемый на выходе модулятора сигнал подготовлен к передаче по конкретной линии связи.

Сигнал х передаётся по каналу.

В результате действия помех сигнал у на выходе канала будет отличаться от сигнала х. Для удобства принято считать, что помехи создаются неким воображаемым источником помех с определенными статистическими свойствами и поступают в канал в виде мешающего сигнала ξ. По уровню помех и по виду передаваемых сигналов различают:

1)дискретный канал без помех;

2) дискретный канал с помехами;

3) непрерывный канал с помехами.

Каналы позволяют вести передачу с различной максимальной скоростью(пропускной способностью) и требуют различного подхода к передаче данных.

Информация из канала поступает в преобразователь информации 2. Преобразователь информации 2:

Демодулирует поступивший сигнал;

Декодирует помехоустойчивый код;

Распаковывает сжатые данные и в виде сигналов z подаёт информацию к приёмнику.

Системами передачи дискретной информации с обратной связью (ОС) называют системы, в которых повторение ранее переданной происходит лишь после приема сигнала ОС. Системы с обратной связью делятся на системы с решающей ОС и информационной ОС.

Системы с решающей обратной связью

В приемнике системы правильно принятые комбинации накапливаются в накопителе и, если после приема блока хотя бы одна из комбинаций не будет принята, то формируется сигнал переспроса, единый на весь блок. Повторяется снова весь блок, а в приемнике системы из блока отбираются комбинации, не принятые при первой передаче. Переспросы производятся до тех пор, пока не будет приняты все комбинации блока. После приема всех комбинаций посылается сигнал подтверждения. Получив его, передатчик передает следующий блок комбинаций (системы с адресным переспросом - РОС-АП). Эти системы во многом аналогичны системам с накоплением, но в отличие от последних приемник их формирует и передает сложный сигнал переспроса, в котором указываются условные номера (адреса) не принятых приемником комбинаций блока. В соответствии с этим сигналом, передатчик повторяет не весь блок, как в системе с накоплением, а лишь не принятые комбинации (системы с последовательной передачей кодовых комбинаций - РОС-ПП).

Известны различные варианты построения систем РОС-ПП, основными из которых являются:

Системы с изменением порядка следования комбинаций (РОС-ПП). В этих системах приемник стирает лишь комбинации, по которым решающим устройством принято решение на стирание, и только по этим комбинациям посылает на передатчик сигналы переспроса. Остальные комбинации выдаются в ПИ по мере их поступления.

Системы с восстановлением порядка следования комбинаций (РОС-ПП). От систем РОС-ПП данные системы отличаются лишь тем, что приемник их содержит устройство, восстанавливающее порядок следования комбинаций.

Системы с переменным уплотнением (РОС-ПП). Здесь передатчик поочередно передает комбинации из последовательностей, причем число последних выбирается так, чтобы ко времени передачи комбинаций на передатчике уже был принят сигнал ОС по ранее переданной комбинации этой последовательности.

Системы с блокировкой приемника на время приема комбинаций после обнаружения ошибки и повторением или переносом блока из комбинаций (РОС-ПП).

Системы с контролем заблокированных комбинаций (РОС-ПП). В этих системах после обнаружения ошибки в кодовой комбинации и передачи сигнала переспроса производится контроль на наличие обнаруженных ошибок h -1 комбинаций, следующих за комбинацией с обнаруженной ошибкой.

Системы с информационной обратной связью

Различие в логике работы систем с РОС и ИОС проявляется в скорости передачи. В большинстве случаев передача служебных знаков требуют меньших затрат энергии и времени, чем передача по прямому каналу опознавателей в системе с РОС. Поэтому скорость передачи сообщений в прямом направлении в системе с ИОС больше. Если помехоустойчивость обратного канала выше помехоустойчивости прямого, то достоверность передачи сообщений в системах с ИОС также выше. В случае полной бесшумной информационной обратной связи можно обеспечить безошибочную передачу сообщений по прямому каналу независимо от уровня помех в нем. Для этого надо дополнительно организовать корректировку искажаемых в прямом канале служебных знаков. Такой результат, в принципе, недостижим в системах с РОС распределенного типа. В случае группирующихся ошибок существенную роль играют условия, в которых передаются информационная и контрольная части кодовых комбинаций в обеих системах связи. При использовании ИОС часто имеет место единственная декорреляция ошибок в прямом и обратном каналах.

Важную роль при сравнении передачи сообщений с РОС и ИОС играют также длина используемого кода n и его избыточность s/t. Если избыточность невелика (s/n<0,3), то даже при бесшумном обратном канале ИОС практически не обеспечивает по достоверности преимущества перед РОС. Однако скорость передачи у систем с ИОС по-прежнему выше. Следует указать еще одно преимущество систем с ИОС, обусловленное различием в скорости. Каждому заданному значению эквивалентной вероятности ошибки соответствует оптимальная длина кода, при отклонении от которой скорость передачи в системе с РОС уменьшается. В системах с ИОС при s/n>0,3 передачу сообщений выгоднее вести короткими кодами. При заданной наперед достоверности скорость передачи от этого становится больше. Это выгодно с практической точки зрения, т.к осуществлять кодирование и декодирование при коротких кодах легче. С увеличением избыточности кода преимущество систем с ИОС по достоверности передачи возрастает даже при одинаковых по помехоустойчивости прямом и обратном каналах, особенно если передача сообщений и квитанции в системе с ИОС организована так, что ошибки в них оказываются некорректированными. Энергетический выигрыш в прямом канале системы с ИОС оказывается на порядок выше, чем в системе с РОС. Таким образом, ИОС во всех случаях обеспечивает равную или более высокую помехозащищенность передачи сообщений по прямому каналу, особенно при больших s и бесшумном обратном канале. ИОС наиболее рационально применять в таких системах, где обратный канал по роду своей загрузки может быть без ущерба для других целей использован для эффективной передачи квитирующей информации.

Однако общая сложность реализации систем с ИОС больше, чем систем с РОС. Поэтому системы с РОС нашли более широкое применение. Системы с ИОС применяют в тех случаях, когда обратный канал может быть без ущерба для других целей эффективно использован для передачи квитанций.

Структурная схема системы ИОС в общих чертах такая же, как и для систем с РОС. Отличие состоит в том, что решение о качестве в данном случае принимает передающая сторона.

В системах с ИОС каждое принятое сообщение передается по обратному каналу в пункт передачи, где оно сравнивается с исходным сообщением, хранимым в БЗУ. Если сообщения совпадают или различаются в допустимых пределах, зависящих от корректирующей способности используемого кода, то на передающей стороне принимается решение, что сообщение принято правильно, и получателю посылается сигнал подтверждения, в соответствии с которым принятое ранее сообщение, хранящееся в запоминающем устройстве, передается по назначению. Если же различие между сообщениями превышает допустимые пределы, передающая сторона посылает сигнал, что принятое сообщение недостоверно и повторяет передачу. Системы с ИОС, в которых по обратному каналу передается вся информация, переданная по прямому, называется системами с ретрансляционной обратной связью.

Существует несколько разновидностей систем с ИОС. В частности, если для передачи применяются корректирующие коды, то по прямому каналу можно передавать только информационные символы, а по обратному – только проверочные. Сравнивая на передающей стороне принятые проверочные символы с хранящимися в запоминающем устройстве, можно сделать вывод о правильности приема сообщения.

Имеется вариант, в котором после проверки принятого по обратному каналу сообщения и обнаружения ошибки передатчик может либо повторить его, либо послать дополнительную информацию, необходимую для исправления (корректирующая информация).

Из принципа действия систем с ИОС следует, что их целесообразно применять в случаях, когда скорость передачи информации не является главным, а требуется обеспечить высокую достоверность передаваемых сообщений (например, при передаче команд).

В системах с ИОС качество обратного канала должно быть не хуже качества прямого во избежание искажений, которые могут увеличить число повторений.

Системы с обратной связью любого типа следует относить к системам с адаптивным кодированием, т.к. реальная скорость передачи информации в них зависит от состояния канала связи – при ухудшении состояния канала увеличивается число повторных передач и наоборот. Это эквивалентно изменению избыточности в передаваемых сообщениях, что является характерным признаком адаптивного кодирования.


Список литературы.

1. Э.М. Габидулин, В.Б. Афанасьев. Кодирование в радиоэлектронике. – М.: «Радио и связь», 1986.

2. Журавлев Ю.П., Забубенков В.Н. Мультитаймеры. – Л.: «Энергия», 1979.

3. В.А. Острейковский. Информатика. – М.: «Высшая школа», 2001.

4. В.И. Першиков, В.М. Савинков. Толковый словарь по информатике. – М.: «Финансы и статистика», 1991.

5. И.В. Ситняковский, О.Н. Порохов, А.Л. Нехаев. Цифровые системы передачи абонентских линий. – М.: «Радио и связь», 1987.

6. Ф.Е. Темников, В.А. Афонин, В.И. Дмитриев. Теоретические основы информационной техники. – М.: «Энергия», 1979.

7. Тутевич В.Н. Телемеханика. – М.: «Высшая школа», 1985.

8. Цымбал В.П. Задачник по теории информации и кодированию. – Киев, изд. «Вища школа», 1976.

9. Н.С. Щербаков. Достоверность работы цифровых устройств. – М.: «Машиностроение», 1989.

10. Ю.Э. Яцкевич. Теоретические основы вычислительной техники. Информационные основы. – Л.: изд. ЛПИ, 1977.