Сайт о телевидении

Сайт о телевидении

» » Принцип действия счетчика гейгера мюллера. Методы и технические средства регистрации радиации. Ионизационные методы дозиметрии. Газоразрядные счетчики

Принцип действия счетчика гейгера мюллера. Методы и технические средства регистрации радиации. Ионизационные методы дозиметрии. Газоразрядные счетчики

Счётчик Гейгера

Счётчик Гейгера СИ-8Б (СССР) со слюдяным окошком для измерения мягкого β-излучения. Окно прозрачно, под ним можно разглядеть спиральный проволочный электрод, другим электродом является корпус прибора.

Дополнительная электронная схема обеспечивает счётчик питанием (как правило, не менее 300 ), обеспечивает, при необходимости, гашение разряда и подсчитывает количество разрядов через счётчик.

Счётчики Гейгера разделяются на несамогасящиеся и самогасящиеся (не требующие внешней схемы прекращения разряда).

Чувствительность счётчика определяется составом газа, его объёмом, а также материалом и толщиной его стенок.

Примечание

Следует отметить, что по историческим причинам сложилось несоответствие между русским и английским вариантами этого и последующих терминов:

Русский English
счётчик Гейгера Geiger sensor
трубка Гейгера Geiger tube
радиометр Geiger counter
дозиметр dosimeter

См. также

  • Коронарный счётчик
  • http://www.u-tube.ru/pages/video/38781 принцип работы

Wikimedia Foundation . 2010 .

Смотреть что такое "Счётчик Гейгера" в других словарях:

    счётчик Гейгера-Мюллера - Geigerio ir Miulerio skaitiklis statusas T sritis fizika atitikmenys: angl. Geiger Müller counter; Geiger Müller counter tube vok. Geiger Müller Zählrohr, n; GM Zählrohr, n rus. счётчик Гейгера Мюллера, m pranc. compteur de Geiger Müller, m; tube … Fizikos terminų žodynas

    разрядный счётчик Гейгера-Мюллера - — Тематики нефтегазовая промышленность EN electronic pulse height analyzer … Справочник технического переводчика

    - … Википедия

    - (Гейгера Мюллера счётчик), газоразрядный детектор, срабатывающий при прохождении через его объём заряж. ч ц. Величина сигнала (импульса тока) не зависит от энергии ч ц (прибор работает в режиме самостоят. разряда). Г. с. изобретён в 1908 нем.… … Физическая энциклопедия

    Газоразрядный прибор для обнаружения ионизирующих излучений (a – и b частиц, g квантов, световых и рентгеновских квантов, частиц космического излучения и т. п.). Счётчик Гейгера – Мюллера представляет собой герметично запаянную стеклянную трубку … Энциклопедия техники

    Гейгера счётчик - Гейгера счетчик ГЕЙГЕРА СЧЁТЧИК, газоразрядный детектор частиц. Срабатывает при попадании в его объем частицы или g кванта. Изобретен в 1908 немецким физиком Х. Гейгером и усовершенствован им совместно с немецким физиком В. Мюллером. Гейгера… … Иллюстрированный энциклопедический словарь

    ГЕЙГЕРА СЧЁТЧИК, газоразрядный детектор частиц. Срабатывает при попадании в его объем частицы или g кванта. Изобретен в 1908 немецким физиком Х. Гейгером и усовершенствован им совместно с немецким физиком В. Мюллером. Гейгера счетчик применяются… … Современная энциклопедия

    Газоразрядный прибор для обнаружения и исследования различного рода радиоактивных и др. ионизирующих излучений: α и β частиц, γ kвантов, световых и рентгеновских квантов, частиц высокой энергии в космических лучах (См. Космические лучи) и … Большая советская энциклопедия

    - [по имени нем. физиков X. Гейгера (Н. Geiger; 1882 1945) и В. Мюллера (W. Muller; 1905 79)] газоразрядный детектор радиоактивных и др. ионизирующих излучений (а и бета частиц, у квантов, световых и рентгеновских квантов, частиц космич. излучения… … Большой энциклопедический политехнический словарь

    Счётчик устройство для счёта чего либо. Счётчик (электроника) устройство для подсчета количества событий, следующих друг за другом (напр. импульсов) с помощью непрерывного суммирования, или для определения степени накопления какой… … Википедия

Неконтролируемое ионизирующее излучение в любых проявлениях опасно. Поэтому существует необходимость его регистрации, наблюдения и учета. Ионизационный метод регистрации ИИ - один из методов дозиметрии, позволяющий быть в курсе реальной радиационной обстановки.

Что такое ионизационный метод регистрации излучения?

В основе этого метода лежит регистрация эффектов ионизации. Электрическое поле не дает ионам рекомбинировать и направляет их движение к соответствующим электродам. Благодаря этому появляется возможность замерить величину заряда ионов, образующихся под действием ионизирующего излучения.

Детекторы и их особенности

В качестве детекторов при ионизационном методе используются:

  • ионизационные камеры;
  • счетчики Гейгера—Мюллера;
  • пропорциональные счетчики;
  • полупроводниковые детекторы;
  • и др.

Все детекторы за исключением полупроводниковых - это баллоны, наполненные газом, в которые вмонтированы два электрода с подведенным к ним напряжением постоянного тока. На электродах собираются ионы, образующиеся при прохождении ионизирующего излучения сквозь газовую среду. Отрицательные ионы движутся к аноду, а положительные к катоду, образуя ионизационный ток. По его значению можно оценить количество зарегистрированных частиц и определить интенсивность излучения.

Принцип работы счетчика Гейгера-Мюллера

В основе работы счетчика лежит ударная ионизация. Движущиеся в газе электроны (выбитые излучением при попадании на стенки счетчика) сталкиваются с его атомами, выбивая из них электроны, в результате чего создаются свободные электроны и положительные ионы. Существующее между катодом и анодом электрическое поле придает свободным электронам ускорение, достаточное для начала ударной ионизации. Вследствие этой реакции появляется большое количество ионов с резким возрастанием тока через счетчик и импульсом напряжения, который фиксируется регистрирующим устройством. Далее лавинный разряд гасится. Только после этого может быть зарегистрирована следующая частица.

Отличие ионизационной камеры и счетчика Гейгера-Мюллера.

В газовом счетчике (счетчик Гейгера) используется вторичная ионизация, создающая большое газовое усиление тока, которое возникает вследствие того, что скорость движущихся ионов, созданных ионизирующим веществом, настолько велика, что образуются новые ионы. Они, в свою очередь, также могут ионизировать газ, тем самым, развивая процесс. Таким образом, каждая частица образует ионов в 10 6 раз больше, чем это возможно в ионизационной камере, позволяя, таким образом, измерять ионизирующее излучение даже малой интенсивности.

Полупроводниковые детекторы

Основным элементом полупроводниковых детекторов является кристалл, а принцип работы отличается от ионизационной камеры только тем, что ионы создаются в толще кристалла, а не в газовом промежутке.

Примеры дозиметров на основе ионизационных методов регистрации

Современный прибор этого типа - клинический дозиметр 27012 с набором ионизационных камер, который на сегодняшний день является эталоном.

Среди индивидуальных дозиметров получили распространение КИД-1, КИД-2,ДК-02, ДП-24 и др., а также ИД-0,2, который является современным аналогом упомянутых выше.

Строение и принцип работы счетчика Гейгера – Мюллера

В последнее время, внимание к радиационной безопасности со стороны обычных граждан в нашей стране все в большей степени возрастает. И это связано не только с трагическими событиями на чернобыльской АЭС и дальнейшими ее последствиями, но и с различного рода происшествиями, которые периодически случаются в том или ином месте планеты. В связи с этим, в конце прошлого века стали появляться приборы дозиметрического контроля радиации бытового назначения . И такие приборы очень многим людям спасли не только здоровье, но иногда и жизнь, и это касается не только прилежащих к зоне отчуждения территориях. Поэтому вопросы радиационной безопасности актуальны в любом месте нашей страны и по сегодняшний день.

В се бытовые и практически все профессиональные современные дозиметры оснащаются . По-другому его можно назвать чувствительным элементом дозиметра. Данный прибор был изобретен в 1908 году немецким физиком Гансом Гейгером, а спустя двадцать лет, данную разработку усовершенствовал еще один физик Вальтер Мюллер, и именно принцип этого устройства и применяется в и по настоящий момент.

Н екоторые современные дозиметры имеют сразу по четыре счетчика, что позволяет повысить точность измерений и чувствительность прибора, а также уменьшить время проведения замера. Большинство счетчиков Гейгера – Мюллера способны регистрировать гамма-излучение, высокоэнергетическое бета-излучение и рентгеновские лучи. Однако есть специальные разработки для определения альфа-частиц высоких энергий. Для настройки дозиметра на определение только гамма-излучения, самого опасного из трех видов радиации, чувствительную камеру укрывают специальным кожухом из свинца или другой стали, что позволяет отсечь проникновение в счетчик бета-частиц.

В современных дозиметрах бытового и профессионального назначения широко применяются датчики типа СБМ-20, СБМ-20-1, СБМ-20У, СБМ-21, СБМ-21-1. Они отличаются габаритными размерами камеры и другими параметрами, для линейки 20-х датчиков характерны следующие габариты, длина 110 мм, диаметр 11 мм, а для 21-й модели, длина 20-22 мм при диаметре 6мм. Важно понимать, что чем больше размеры камеры, тем большее количество радиоактивных элементов будет через нее пролетать, и тем большей чувствительностью и точностью она обладает. Так, для 20-х серий датчика характерны размеры в 8-10 раз большие, чем для 21-й, примерно в таких же пропорциях мы будем иметь разницу в чувствительности.

К онструкцию счетчика Гейгера можно схематически описать так. Датчик, состоящий из цилиндрического контейнера, в который закачан инертный газ (к примеру, аргон, неон или их смеси) под минимальным давлением, это делается для облегчения возникновения электрического разряда между катодом и анодом. Катод, чаще всего, представляет собой весь металлический корпус чувствительного датчика, а анод небольшую проволочку, размещенную на изоляторах. Иногда катод дополнительно оборачивают защитным кожухом из нержавейки или свинца, это делается для настройки счетчика на определение только гамма-квантов.

Д ля бытового применения, в настоящее время, чаще всего используются датчики торцевого исполнения (к примеру, Бета-1, Бета-2). Такие счетчики устроены таким образом, что способны обнаруживать и регистрировать даже альфа-частицы. Такой счетчик представляет собой плоский цилиндр с расположенными внутри электродами, и входным (рабочим) окном, выполненным из слюдяной пленки толщиной всего 12 мкм. Такая конструкция позволяет определить (с близкого расстояния) высокоэнергетические альфа-частицы и слабоэнергетические бета-частицы. При этом площадь рабочего окна счетчиков Бета-1 и Бета 1-1 составляет 7 кв.см. Площадь слюдяного рабочего окна для прибора Бета-2 в 2 раза больше, чем у Бета-1, его вполне можно использовать для определения , и т.д.

Е сли говорить о принципе работы камеры счетчика Гейгера, то вкратце ее можно описать следующим образом. При активации , на катод и анод подается высокое напряжение (порядка 350 – 475 вольт), через нагрузочный резистор, однако между ними не происходит разряда из-за инертного газа, служащего диэлектриком. При попадании в камеру , ее энергии оказывается достаточно, чтобы выбить свободный электрон из материала корпуса камеры или катода, этот электрон лавинообразно начинает выбивать свободные электроны из окружающего инертного газа и происходит его ионизация, которая в итоге приводит к разряду между электродами. Цепь замыкается, и данный факт можно зарегистрировать при помощи микросхемы прибора, что является фактом обнаружения или кванта гамма или рентгеновского излучения. Затем камера приходит в исходное состояние, что позволяет обнаружить следующую частицу.

Ч тобы процесс разряда в камере прекратить и подготовить камеру для регистрации следующей частицы, существует два способа, один из них основан на том, что на очень короткий промежуток времени прекращается подача напряжения на электроды, что прекращает процесс ионизации газа. Второй способ основан на добавлении в инертный газ еще одного вещества, к примеру, йода, спирта и других веществ, при этом они приводят к уменьшению напряжения на электродах, что также прекращает процесс дальнейшей ионизации и камера становится способной обнаружить следующий радиоактивный элемент. При данном методе используется нагрузочный резистор большой емкости.

П о количеству разрядов в камере счетчика и можно судить об уровне радиации на измеряемой местности или от конкретного предмета.

Принцип действия приборов для регистрации элементарных частиц. Любое устройство, регистрирующее элементарные частицы или движущиеся атомные ядра, подобно заряженному ружью с взведенным курком. Небольшое усилие при нажатии на спусковой крючок ружья вызывает эффект, не сравнимый с затраченным усилием, - выстрел.

Регистрирующий прибор - это более или менее сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении, вызванном пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние. Этот процесс и позволяет регистрировать частицу. В настоящее время используется множество различных методов регистрации частиц.

В зависимости от целей эксперимента и условий, в которых он проводится, применяются те или иные регистрирующие устройства, отличающиеся друг от друга по основным характеристикам.

Газоразрядный счетчик Гейгера. Счетчик Гейгера - один из важнейших приборов для автоматического подсчета частиц.

Счетчик (рис. 13.1) состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод). Трубка заполняется газом, обычно аргоном. Действие счетчика основано на ударной ионизации. Заряженная частица (электрон, -частица и т. д.), пролетая в газе, отрывает от атомов электроны и создает положительные ионы и свободные электроны. Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подается в регистрирующее устройство.

Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный paзряд, необходимо погасить. Это происходит автоматически. Так как в момент появления импульса тока падение напряжения на нагрузочном резисторе R велико, то напряжение между анодом и катодом резко уменьшается - настолько, что разряд прекращается.

Счетчик Гейгера применяется в основном для регистрации электронов и -квантов (фотонов большой энергии).

В настоящее время созданы счетчики, работающие на и пых принципах.

Камера Вильсона. Счетчики позволяют лишь регистрировать факт прохождения через них частицы и фиксировать некоторые ее характеристики. В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать. Этот прибор можно назвать окном в микромир, т. е. мир элементарных частиц и состоящих из них систем.

Принцип действия камеры Вильсона основан на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создает вдоль своей траектории движущаяся заряженная частица.

Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению (рис. 13.2). При резком опускании поршня, вызванном уменьшением давления под ним, пар в камере адиабатно расширяется. Вследствие этого происходит охлаждение, и пар становится перенасыщенным. Это -неустойчивое состояние пара: он легко конденсируется, если в сосуде появляются центры конденсации. Центрами

конденсации становятся ионы, которые образует в рабочем пространстве камеры пролетевшая частица. Если частица проникает в камеру сразу после расширения пара, то на ее пути появляются капельки воды. Эти капельки образуют видимый след пролетевшей частицы - трек (рис. 13.3). Затем камера возвращается в исходное состояние, и ионы удаляются электрическим полем. В зависимости от размеров камеры время восстановления рабочего режима варьируется от нескольких секунд до десятков минут.

Информация, которую дают треки в камере Вильсона, значительно богаче той, которую могут дать счетчики. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека - ее скорость. Чем длиннее трек частицы, тем больше ее энергия. А чем больше капелек воды образуется на единицу длины трека, тем меньше ее скорость. Частицы с большим зарядом оставляют трек большей толщины. Советские физики П. Л. Капица и Д. В. Скобельцын предложили помещать камеру Вильсона в однородное магнитное поле.

Магнитное поле действует на движущуюся заряженную частицу с определенной силой (силой Лоренца). Эта сила искривляет траекторию частицы, не изменяя модуля ее скорости. Трек имеет тем большую кривизну, чем больше заряд частицы и чем меньше ее масса. По кривизне трека можно определить отношение заряда частицы к ее массе. Если известна одна из этих величин, то можно вычислить другую. Например, по заряду частицы и кривизне ее трека можно найти массу частицы.

Пузырьковая камера. В 1952 г. американским ученым Д. Глейзером было предложено использовать для обнаружения треков частиц перегретую жидкость. В такой жидкости на ионах (центрах парообразования), образующихся при движении быстрой заряженной частицы, появляются пузырьки пара, дающие видимый трек. Камеры данного типа были названы пузырьковыми.

В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости несколько выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой, и в течение небольшого времени она будет находиться в неустойчивом состоянии. Заряженые частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара (рис. 1.4.4). И качестве жидкости используются главным образом жидкий водород и пропан. Длительность рабочего цикла пузырьковой камеры невелика - около 0,1 с.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.

Треки в камере Вильсона и пузырьковой камере - один из главных источников информации о поведении и свойствах частиц.

Наблюдение следов элементарных частиц производит сильное впечатление, создает ощущение непосредственного соприкосновения с микромиром.

ЧЕРЕНКОВСКИЙ СЧЁТЧИК детектор для регистрации заряж. ч-ц, в к-ром используется Черенкова Вавилова излучение. При движении заряж. ч-цы в среде со скоростью v, превышающей фазовую скорость света c/n в данной среде (n - показатель преломления среды), ч-ца излучает в направлении, составляющем угол q с её траекторией. Угол q связан со скоростью ч-цы v и показателем преломления среды га соотношением: cosq=c/vn=1/bn, b=v/c. (1) Интенсивность W черенковского излучения на 1 см пути заряж. ч-цы в интервале длин волн от l1 до l2 выражается соотношением:


Похожая информация.