Сайт о телевидении

Сайт о телевидении

» » Постоянное запоминающее устройство сокращенно обозначается. Что такое ПЗУ и ОЗУ в компьютере или телефоне

Постоянное запоминающее устройство сокращенно обозначается. Что такое ПЗУ и ОЗУ в компьютере или телефоне

Все постоянные запоминающие устройства (ПЗУ) можно разделить на следующие группы:

● программируемые при изготовлении (обозначают как ПЗУ или ROM);

● с однократным программированием, позволяющим пользователю однократно изменить состояние матрицы памяти электрическим путем по заданной программе (обозначают как ППЗУ или PROM);

● перепрограммируемые (репрограммируемые), с возможностью многократного электрического перепрограммирования, с электрическим или ультрафиолетовым стиранием информации (обозначают как РПЗУ или RPROM).

Для обеспечения возможности объединения по выходу при наращивании памяти все ПЗУ имеют выходы с тремя состояниями или открытые коллекторные выходы.

{xtypo_quote}В ППЗУ накопитель построен на запоминающих ячейках с плавкими перемычками, изготовленными из нихрома или других тугоплавких материалов. Процесс записи состоит в избирательном пережигании плавких перемычек. {/xtypo_quote}
В РПЗУ запоминающие ячейки строятся на основе МОП-технологий. Используются различные физические явления хранения заряда на границе между двумя различными диэлектрическими средами или проводящей и диэлектрической средой.

В первом случае диэлектрик под затвором МОП-транзистора делают из двух слоев: нитрида кремния и двуокиси кремния (SiN 4 — SiO 2). Было обнаружено, что в сложной структуре SiN 4 — SiO 2 при изменении электрического напряжения возникает гистерезис заряда на границе раздела двух слоев, что и позволяет создавать запоминающие ячейки.

Во втором случае основой запоминающей ячейки является лавинно-инжекционный МОП-транзистор с плавающим затвором (ЛИПЗ МОП). Упрощенная структура такого транзистора приведена на рис. 3.77.
В лавинно-инжекционном транзисторе с плавающим затвором при достаточно большом напряжении на стоке происходит обратимый лавинный пробой диэлектрика, и в область плавающего затвора инжектируются носители заряда. Поскольку плавающий затвор окружен диэлектриком, то ток утечки мал и хранение информации обеспечивается в течение длительного промежутка времени (десятки лет). При подаче напряжения на основной затвор происходит рассасывание заряда за счет туннельного эффекта, т.е. стирание информации.

Приведем некоторые характеристики ПЗУ (табл. 3.1).

Промышленность выпускает большое количество микросхем ПЗУ. Приведем в качестве примера две микросхемы ПЗУ (рис. 3.78).



На схемах использованы следующие обозначения: A i — адресные входы; D i — информационные выходы; CS — выбор микросхемы; СЕ — разрешение выхода.

Микросхема К573РФ5 — это репрограммируемое ПЗУ (РПЗУ) с ультрафиолетовым стиранием, имеющее структуру 2Кх8. По входу и выходу эта микросхема совместима с ТТЛ-структурами. Микросхема К556РТ5 — это однократно программируемая ПЗУ, выполнена на основе ТТЛШ-структур, по входу и выходу совместима с ТТЛ-структурами, имеющая структуру 512бит х8.

ПЗУ - быстрая, энергонезависимая память, которая, предназначенная только для чтения. Информация заносится в нее один раз (обычно в заводских условиях) и сохраняется постоянно (при включенном и выключенном компьютере). В ПЗУ хранится информация, присутствие которой постоянно необходимо в компьютере. Комплект программ, находящийся в ПЗУ образовывает базовую систему ввода/вывода BIOS (Basic Input Output System). BIOS (Basic Input Output System - базовая система ввода-вывода) - совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память.

В ПЗУ находятся:

Тестовые программы, проверяющие при каждом включении компьютера правильность работы его блоков;

Программы для управления основными периферийными устройствами - дисководом, монитором, клавиатурой;

Информация о том, где на диске расположена операционная система.

Типы ПЗУ:

ПЗУ с масочным программированием это память, в которую информация записана раз и навсегда в процессе изготовления полупроводниковых интегральных схем. Постоянные запоминающие устройства применяются только в тех случаях, когда речь идет о массовом производстве, т.к. изготовление масок для интегральных схем частного применения обходится весьма недешево.

ППЗУ (программируемое постоянное запоминающее устройство).

Программирование ПЗУ – это однократно выполняемая операция, т.е. информация, когда-то записанная в ППЗУ, впоследствии изменена быть не может.

СППЗУ (стираемое программируемое постоянное запоминающее устройство). При работе с ним, пользователь может запрограммировать его, а затем стереть записанную информацию.

ЭИПЗУ (электрически изменяемое постоянное запоминающее устройство). Его программирование и изменение осуществляются с помощью электрических средств. В отличии от СППЗУ для стирания информации, хранимой в ЭИПЗУ, не требуется специальных внешних устройств.

Наглядно ОЗУ и ПЗУ можно представить себе в виде массива ячеек, в которые записаны отдельные байты информации. Каждая ячейка имеет свой номер, причем нумерация начинается с нуля. Номер ячейки является адресом байта.

Центральный процессор при работе с ОЗУ должен указать адрес байта, который он желает прочитать из памяти или записать в память. Разумеется, из ПЗУ можно только читать данные. Прочитанные из ОЗУ или ПЗУ данные процессор записывает в свою внутреннюю память, устроенную аналогично ОЗУ, но работающую значительно быстрее и имеющую емкость не более десятков байт.

Процессор может обрабатывать только те данные, которые находятся в его внутренней памяти, в ОЗУ или в ПЗУ. Все эти виды устройства памяти называются устройствами внутренней памяти, они обычно располагаются непосредственно на материнской плате компьютера (внутренняя память процессора находится в самом процессоре).


Кэш-память. Обмен данными внутри процессора происходит намного быстрее, чем обмен данными между процессором и оперативной памятью. Поэтому, для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают так называемую сверхоперативную или кэш-память. Когда процессору нужны данные, он сначала обращается к кэш-памяти, и только тогда, когда там отсутствуют нужные данные, происходит обращение к оперативной памяти. Чем больше размер кэш-памяти, тем большая вероятность, что необходимые данные находятся там. Поэтому высокопроизводительные процессоры имеют повышенные объемы кэш-памяти.

Различают кэш-память первого уровня (выполняется на одном кристалле с процессором и имеет объем порядка несколько десятков Кбайт), второго уровня (выполняется на отдельном кристалле, но в границах процессора, с объемом в сто и более Кбайт) и третьего уровня (выполняется на отдельных быстродействующих микросхемах с расположением на материнской плате и имеет объем один и больше Мбайт).

В процессе работы процессор обрабатывает данные, находящиеся в его регистрах, оперативной памяти и внешних портах процессора. Часть данных интерпретируется как собственно данные, часть данных - как адресные данные, а часть - как команды. Совокупность разнообразных команд, которые может выполнить процессор над данными, образовывает систему команд процессора. Чем больше набор команд процессора, тем сложнее его архитектура, тем длиннее запись команд в байтах и тем дольше средняя продолжительность выполнения команд.

Доброго времени суток.

Если вы хотите заполнить пробел в знаниях относительно того, что такого ПЗУ, то попали по адресу. В нашем блоге вы сможете прочитать об этом емкую информацию на языке, доступном для простого пользователя.


Расшифровка и объяснение

Буквы ПЗУ являются заглавными в формулировке «постоянное запоминающее устройство». Его еще можно равноправно назвать «ROM». Английская аббревиатура расшифровывается как Read Only Memory, а переводится - память только для чтения.

Эти два названия раскрывают суть предмета нашей беседы. Речь идет об энергонезависимом типе памяти, которую можно только считывать. Что это значит?

  • Во-первых, на ней хранятся неизменяемые данные, заложенные разработчиком при изготовлении техники, то есть те, без которых ее работа невозможна.
  • Во-вторых, термин «энергонезависимый» указывает на то, что при перезагрузке системы данные с нее никуда не деваются, в отличие от того, как это происходит с оперативной памятью.

Стереть информацию с такого устройства можно только специальными методами, к примеру, ультрафиолетовыми лучами.

Примеры

Постоянная память в компьютере - это определенное место на материнской плате, в котором хранятся:

  • Тестовые утилиты, проверяющие правильность работы аппаратной части при каждом запуске ПК.
  • Драйвера управления главными периферийными девайсами (клавиатурой, монитором, дисководом). В свою очередь, те слоты на материнской плате, в функции которых не входит включение компьютера, не хранят свои утилиты в ROM. Ведь место ограничено.
  • Прогу начальной загрузки (BIOS), которая при включении компа запускает загрузчик операционной системы. Хотя нынешний биос может включать ПК не только с оптических и магнитных дисков, но и с USB-накопителей.

В мобильных гаджетах постоянная память хранит в себе стандартные приложения, темы, картинки и мелодии. При желании пространство для дополнительной мультимедийной информации расширяют с помощью перезаписываемых SD-карт. Однако если устройство используется только для звонков, в расширении памяти нет необходимости.

В целом, сейчас ROM есть в любой бытовой технике, автомобильных плеерах и прочих девайсах с электроникой.

Физическое исполнение

Чтобы вы лучше могли познакомиться с постоянной памятью, расскажу больше о ее конфигурации и свойствах:

  • Физически представляет собой микросхему со считывающим кристаллом, если входит в комплект компьютера, к примеру. Но бывают и самостоятельные массивы данных (компакт-диск, грампластинка, штрих-код и т. д.).
  • ПЗУ состоит из двух частей «А» и «Э». Первая - диодно-трансформаторная матрица, прошиваемая при помощи адресных проводов. Служит для хранения программ. Вторая предназначена для их выдачи.
  • Схематически состоит из нескольких одноразрядных ячеек. При записи определенного бита данных выполняется запайка к корпусу (ноль) или к источнику питания (единица). В современных устройствах схемы соединяются параллельно для увеличения разрядности ячеек.
  • Объем памяти варьируется от нескольких килобайт до терабайт, в зависимости от того, к какому устройству она применена.

Виды

Разновидностей ПЗУ несколько, но чтобы не терять ваше время, назову только две основных модификации:

  • Первая буква добавляет слово «programmable» (программируемое). Это значит, что пользователь может один раз самостоятельно прошить устройство.

  • Еще две буквы впереди скрывают под собой формулировку «electrically erasable» (электрически стираемое). Такие ПЗУ можно перезаписывать сколько угодно. К этому типу относится флеш-память.

В принципе это всё, что я хотел сегодня до Вас донести.

Буду рад, если вы подпишетесь на обновления и будете заходить чаще.

Важно знать разницу между ОЗУ и ПЗУ. Если вы понимаете эту разницу вы сможете лучше понять, как работает компьютер. ОЗУ и ПЗУ, как различные типы запоминающих устройств, и они оба хранят данные в компьютере. В этой статье мы расскажем вам об основных различиях между этими двумя воспоминаниями, а именно ОЗУ и ПЗУ.

Random Access Memory (RAM)

Оперативная память представляет собой тип памяти , которая позволяет получить доступ к хранимым данным в любой последовательности и из любого физического расположения в памяти. RAM могут быть считаны и записаны с новыми данными. Основное преимущество оперативной памяти является то, что она занимает почти такое же время в доступе в него любые данные, независимо от места нахождения данных. Это делает RAM очень быстрой памяти. Компьютеры могут читать из памяти очень быстро, а также они могут записывать новые данные в оперативной памяти очень быстро.

Как RAM выглядит?

Коммерчески доступные обычные чипы памяти могут быть легко подключен в и подключен выход материнской платы компьютера. На следующем рисунке показаны чипы памяти.

Постоянное запоминающее устройство (ПЗУ)

Как следует из названия, данные записываются в ПЗУ только один раз и навсегда. После этого, данные могут быть прочитаны только с помощью компьютеров. Только для чтения памяти часто используется, чтобы установить постоянные инструкции в компьютер. Эти инструкции никогда не изменится. Чипы ROM хранить базовую систему ввода / вывода (BIOS) компьютера. На следующем рисунке показан коммерчески доступный чип ROM BIOS.

Разница между ОЗУ и ПЗУ

В следующей таблице перечислены основные различия между произвольным доступом и только для чтения памяти.

Сравнительная таблица ОЗУ и ПЗУ
ОЗУ ПЗУ
1. Подставки для RANDON-доступа памяти Подставки для памяти только для чтения
2. RAM для чтения и записи в память Обычно ПЗУ постоянное запоминающее устройство и оно не может быть перезаписана. Тем не менее, СППЗУ может быть перепрограммирован
3. RAM быстрее ROM относительно медленнее, чем RAM
4. Оперативная память представляет собой энергонезависимое запоминающее устройство. Это означает, что данные в оперативной памяти будут потеряны, если блок питания отсечку ROM является постоянной памяти. Данные в ПЗУ будет оставаться как есть, даже если мы удалим источника питания
5. Есть в основном два типа оперативной памяти; статическая оперативная память и динамическое ОЗУ Есть несколько типов ROM; Стираемое программируемое ПЗУ, программируемом ПЗУ, СППЗУ и т.д.
6. RAM хранит все приложения и данные, когда компьютер работает в нормальном режиме ROM обычно хранятся инструкции, необходимые для запуска (загрузки) компьютера
7. Цена ОЗУ сравнительно высока чипы ROM сравнительно дешевле
8. чипы памяти больше по размеру микросхемы ROM меньше по размеру
9. Процессор может непосредственно получить доступ к содержимому памяти Содержание ROM, как правило, сначала переносится в оперативную память, а затем доступ к процессору. Это делается для того, чтобы иметь возможность получить доступ к содержимому диска с более высокой скоростью.
10. RAM часто устанавливается с большим объемом памяти. Емкость запоминающего устройства ПЗУ, установленного в компьютере намного меньше, чем RAM

ОЗУ и ПЗУ являются неотъемлемой частью современной компьютерной системы. Вы хотите знать, когда диск работает и когда RAM находится в игре? Ну, когда вы переключаетесь на вашем компьютере, вы можете увидеть черный экран с каким-то белым текстом. Этот текст из ПЗУ. Инструкции ПЗУ управления компьютером для первого несколько секунд, когда вы включить его. В этот период, как инструкции " , как читать с жесткого диска", "как печатать на экране" загружаются из ПЗУ. После того, как компьютер способен делать эти основные операции, операционная система (Windows / Linux / OSX и т.д.) для чтения с жесткого диска и загружается в оперативную память. Следующее видео объясняет RAM против концепции ROM дополнительно.

При открытии программы, как Microsoft Word , программа загружается с жесткого диска компьютера в оперативную память.

Мы надеемся, что эта статья помогла вам понять основные различия между ОЗУ и ПЗУ. Если у вас есть какие-либо вопросы, связанные с этой темой, пожалуйста, не стесняйтесь задавать в разделе комментариев. Мы постараемся помочь вам. Благодарим Вас за использование TechWelkin!

Дата последнего обновления файла 23.10.2009

Постоянные запоминающие устройства (ПЗУ)

Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация как программы в микроконтроллерах, начальные загрузчики (BIOS) в компьютерах, таблицы коэффициентов цифровых фильтров в , и , таблицы синусов и косинусов в NCO и DDS. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации (ПЗУ) можно построить на мультиплексорах. Иногда в переводной литературе постоянные запоминающие устройства называются ROM (read only memory — память доступная только для чтения). Схема такого постоянного запоминающего устройства (ПЗУ) приведена на рисунке 1.


Рисунок 1. Схема постоянного запоминающего устройства (ПЗУ), построенная на мультиплексоре

В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля). На принципиальных схемах такое устройство обозначается как показано на рисунке 2.


Рисунок 2. Обозначение постоянного запоминающего устройства на принципиальных схемах

Для того, чтобы увеличить разрядность ячейки памяти ПЗУ эти микросхемы можно соединять параллельно (выходы и записанная информация естественно остаются независимыми). Схема параллельного соединения одноразрядных ПЗУ приведена на рисунке 3.


Рисунок 3. Схема многоразрядного ПЗУ (ROM)

В реальных ПЗУ запись информации производится при помощи последней операции производства микросхемы — металлизации. Металлизация производится при помощи маски, поэтому такие ПЗУ получили название масочных ПЗУ . Еще одно отличие реальных микросхем от упрощенной модели, приведенной выше — это использование кроме мультиплексора еще и . Такое решение позволяет превратить одномерную запоминающую структуру в двухмерную и, тем самым, существенно сократить объем схемы , необходимого для работы схемы ПЗУ. Эта ситуация иллюстрируется следующим рисунком:



Рисунок 4. Схема масочного постоянного запоминающего устройства (ROM)

Масочные ПЗУ изображаются на принципиальных схемах как показано на рисунке 5. Адреса ячеек памяти в этой микросхеме подаются на выводы A0 ... A9. Микросхема выбирается сигналом CS. При помощи этого сигнала можно наращивать объем ПЗУ (пример использования сигнала CS приведён при обсуждении ). Чтение микросхемы производится сигналом RD.


Рисунок 5. масочного ПЗУ (ROM) на принципиальных схемах

Программирование масочного ПЗУ производится на заводе изготовителе, что очень неудобно для мелких и средних серий производства, не говоря уже о стадии разработки устройства. Естественно, что для крупносерийного производства масочные ПЗУ являются самым дешевым видом ПЗУ, и поэтому широко применяются в настоящее время. Для мелких и средних серий производства радиоаппаратуры были разработаны микросхемы, которые можно программировать в специальных устройствах — программаторах. В этих ПЗУ постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве ПЗУ изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти ПЗУ логических единиц. В процессе программирования ПЗУ на выводы питания и выходы микросхемы подаётся повышенное питание. При этом, если на выход ПЗУ подаётся напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход ПЗУ подать низкий уровень напряжения (присоединить к корпусу), то через перемычку запоминающей матрицы будет протекать ток, который испарит ее и при последующем считывании информации из этой ячейки ПЗУ будет считываться логический ноль.

Такие микросхемы называются программируемыми ПЗУ (ППЗУ) или PROM и изображаются на принципиальных схемах как показано на рисунке 6. В качестве примера ППЗУ можно назвать микросхемы 155РЕ3, 556РТ4, 556РТ8 и другие.


Рисунок 6. Условно-графическое обозначение программируемого постоянного запоминающего устройства (PROM) на принципиальных схемах

Программируемые ПЗУ оказались очень удобны при мелкосерийном и среднесерийном производстве. Однако при разработке радиоэлектронных устройств часто приходится менять записываемую в ПЗУ программу. ППЗУ при этом невозможно использовать повторно, поэтому раз записанное ПЗУ при ошибочной или промежуточной программе приходится выкидывать, что естественно повышает стоимость разработки аппаратуры. Для устранения этого недостатка был разработан еще один вид ПЗУ, который мог бы стираться и программироваться заново.

ПЗУ с ультрафиолетовым стиранием строится на основе запоминающей матрицы построенной на ячейках памяти, внутреннее устройство которой приведено на следующем рисунке:


Рисунок 7. Запоминающая ячейка ПЗУ с ультрафиолетовым и электрическим стиранием

Ячейка представляет собой МОП транзистор, в котором затвор выполняется из поликристаллического кремния. Затем в процессе изготовления микросхемы этот затвор окисляется и в результате он будет окружен оксидом кремния — диэлектриком с прекрасными изолирующими свойствами. В описанной ячейке при полностью стертом ПЗУ, заряда в плавающем затворе нет, и поэтому транзистор ток не проводит. При программировании ПЗУ, на второй затвор, находящийся над плавающим затвором, подаётся высокое напряжение и в плавающий затвор за счет туннельного эффекта индуцируются заряды. После снятия программирующего напряжения индуцированный заряд остаётся на плавающем затворе, и, следовательно, транзистор остаётся в проводящем состоянии. Заряд на плавающем затворе подобной ячейки может храниться десятки лет.

Описанного постоянного запоминающего устройства не отличается от описанного ранее масочного ПЗУ. Единственное отличие — вместо плавкой перемычки используется описанная выше ячейка. Такой вид ПЗУ называется репрограммируемыми постоянными запоминающими устройствами (РПЗУ) или EPROM. В РПЗУ стирание ранее записанной информации осуществляется ультрафиолетовым излучением. Для того, чтобы этот свет мог беспрепятственно проходить к полупроводниковому кристаллу, в корпус микросхемы ПЗУ встраивается окошко из кварцевого стекла.



Рисунок 8. Внешний вид стираемого постоянного запоминающего устройства (EPROM)

При облучении микросхемы РПЗУ, изолирующие свойства оксида кремния теряются, накопленный заряд из плавающего затвора стекает в объем полупроводника, и транзистор запоминающей ячейки переходит в закрытое состояние. Время стирания микросхемы РПЗУ колеблется в пределах 10 ... 30 минут.