Сайт о телевидении

Сайт о телевидении

» » Подавитель импульсных помех для винила. Подавление помех от импульсных источников питания

Подавитель импульсных помех для винила. Подавление помех от импульсных источников питания

Под импульсными наводками понимаются различные виды помех, создаваемых скачками постоянного или переменного напряжения или тока, происходящими в любых цепях и приборах. К импульсным наводкам относятся:

непосредственная наводка видеоимпульсов;

ударноевозбуждениевысокочастотных устройстввидеоимпульсами или прохождение через них спектра частотвидеоимпульсов, получающихсявспециальныхгенераторах, подсобных цепях различных устройстви телевизорах;

ударноевозбуждениевысокочастотных устройств, возникающее при работе коллекторных моторов, реле, выключателей, телефонных аппаратови другой контактнойаппаратуры;

ударноевозбуждениевысокочастотных устройстввидеоимпульсами, получающимися в результате детектирования импульсов высокой

частоты в перегруженных усилительных каскадах и в других нелинейных сопротивлениях.

Источники и пути прохождения таких наводок были рассмотрены в § 1-7, 1-8, 1-9, 1-10, 1-11, 1-12.

Первым этапом работы по подавлению импульсных наводок является выяснение конкретных их источников и путей связи с приемником наводок.

Для этого необходимо:

а) Поочередно выключать всевозможные цепи и части устройств до полного исчезновения помехи или ее уменьшения.

б) Уменьшать крутизну скачков, подключая сглаживающие фильтры к различным точкам, в которых наблюдаются скачки, добиваясь этим уменьшения наводки и измененияформынаводимогоимпульса.

в) Увеличивать длительность импульсов в различных цепях, наблюдая, как они искажаются на выходе приемника наводки с тем, чтобы выяснить, не происходит ли их дифференцирование или интегрирование (если они поступают непосредственно на видеоусилитель) или разделение на два (если они проходят через усилитель высокой или промежуточной частоты и де-

тектор), рис. 1-18 и1-29.

г) Выключать в приемнике наводки последовательно, начиная от входа (антенны), различные каскады и другие цепи, добиваясь исчезновения наводки.

д) Шунтировать конденсатором большой емкости с короткими выводами различные цепи, по которым может передаваться наводка, и добиваться ее

уменьшения.

В результате первого этапа работы должна быть составлена четкая схема, хотя бы одного канала связи, по которому проходит помеха. При этом должны быть известны источник наводки, его выход, цепи связи, вход приемника, цепииметодыпрохожденияимпульсавприемникенаводки.

Вторым этапом работы является внесение в прибор изменений, необходимых для подавления наводки. При этом нужно иметь в виду, что в зависимости от характера импульсных наводок они подавляются следующими способами.

Для подавления наводки от видеоимпульсов и других скачков постоянного напряжения, поступающих непосредственно на видеоусилители, усилители низкой частоты и другие устройства без резонансных усилителей высокой частоты по одной из схем рис. 1-28, необходимо ввести дополнительные детали, ослабляющиесвязьмеждуисточником и приемником наводки

2. Наводка от стробирующих видеоимпульсов, подаваемых на усилители высокой частоты для управления усилением, получается вследствие резких скачков анодного тока управляемых ламп, приводящих к ударному возбуждению контуров усилителя. Для подавления такой наводки необходимо снижать крутизну краев стробирующих импульсов. Если такое сглаживание управляющего импульса недопустимо, то единственным способом подавления наводки будет применение в управляемых каскадах усилителя высокой частоты двухтактных схем сподачей стробимпульсанасреднюю точку сеточнойобмоткитрансформатора.

3. Все другие виды ударного возбуждения усилителей высокой частоты (радиоприемников) видеоимпульсами и любыми скачками постоянного напряжения возникают большей частью путем проникновения помех на входные цепи усилителя (антенну) вместе с полезными сигналами. Подавление таких наводок производится у источника в первую очередь включением фильтров в цепи питания источника наводки и экранированием в

нем сети питания, как разобрано в предыдущем параграфе.

В редких случаях близкого расположения источника подобной наводки с ее приемником (на расстояниях 1 м и менее), кроме фильтров, может понадобиться полное экранирование источника помещением его в металлический кожух (например, экранирование реле, находящегося у антенного ввода радиоприемника) или частичное экранирование внутренних элементов источника (например, экранирование графитового покрытия электроннолучевой трубки в телевизорах, рекомендуемое в литературе

туре.

4. При подавлении наводки высокочастотных импульсов, поступающих на усилитель высокой частоты, не настроенный на несущую частоту импульсов, необходимо, чтобы в элементах приемника наводки не происходило детектирования мешающих импульсов, т. е. чтобы приемник наводки не перегружался и работал в линейном режиме. Для этого нужно снижать напряжение помехи в цепи, находящейся перед первым нелинейным элементом приемника (лампой или полупроводниковым детектором). Избирательность преселектора, состоящего из одного или двух контуров, оказывается недостаточной при подаче на него высокочастотных импульсов большоймощности.

Если радиоприемник заново проектируется для совместной работы с мощными импульсными генераторами высокой частоты, то он должен быть снабжен специальным многоконтурным преселектром, обеспечивающим большое ослабление сигналов любых частот, кроме входящих в полосу пропускания приемника. Если же требуется приспособить готовый радиоприемник дляуказанной цели, то можно получить хороший результат, если добавить в вод антенны одноили двухячеечный фильтр, рассчитанный на ослабление несущей частоты мешающих импульсов.

Трудности в разработке такого фильтра заключаются в том, что он должен одновременно удовлетворять двум требованиям: не ухудшать показатели приемника и давать достаточно большое ослабление помехи. Если мешающие импульсы имеют весьма высокую несущую частоту, то достаточно незначительной емкостной связи внутри приемника между любыми проводами, входящими в приемник извне, и деталями высокочастотной части приемника, чтобы мешающий импульс поступил помимо преселектора или ан-

тенного фильтра. Поэтомув приемниках, работающих в таких условиях, необходимо иметь фильтрующие ячейки в местах ввода любых проводов, включая телефонный шнур в приемнике радиосвязи.

5. Уровень ударного возбуждения высокочастными импульсами весьма невысок (§ 1-10 и 1-11). Поэтому такая помеха поступает на приемник наводки только через антенный ввод на тех же частотах, что и полезные сигналы. Единственным способом подавления этой наводки является ограничение спектра частот, излучаемого импульсным генератором высокой частоты.

4-9. ПРИМЕНЕНИЕ ДВОЙНЫХ ЛАМП

Среди собранных в одном баллоне двойных ламп имеется большое число триодов (буква Н на втором месте условного обозначения) и несколько типов триод-пентодов (букваФ на втором месте условного обозначения). Конструкции отдельных типов двойных ламп выполнены различно. В некоторых типах ламп между частями лампы имеется экран с отдельным выводом, в других конструкциях экран соединен с одним из катодови

в третьих - экран отсутствует вовсе.

В технических условиях на двойные лампы большей частью оговаривается емкость между анодами или между анодом одной половины и сеткой другой половины. Величина этих емкостей колеблется в пределах 0,02- 0,5 пф в зависимости от типа лампы. Они являются звеном, связывающим цепи, в которые включены различные половины одной лампы. В технических условиях на некоторые типы двойных ламп величины связывающих емкостей не оговорены вовсе. При этом они могут быть довольно велики и могут изменяться от экземпляра к экземпляру в широких пределах.

Кроме емкостной связи, между отдельными частями двойной лампы может существовать связь за счет электронного потока, проникающего через щели и отверстия в конструкции лампы из одной половины на электроды другой половины. Этот вид связи техническими условиями не предусмотрен, хотя иногда и может оказаться недопустимым.

В результате разбора влияния обоих видов связи можно дать следующие рекомендации по применению двойных ламп. Лучше всего такие лампы работают в схемах с сильной связью обеих частей друг с другом: мультивибраторы, кипп-реле, триггеры, блокинг-генераторы с пусковой лампой, двухфазные и двухтактные усилители, преобразователи частоты, состоящие из смесителя и гетеродина, и т. д. Хорошо работают двойные лампы в двух соседних усилительных каскадах на не очень высоких частотах. При ис-

Применение двойных ламп в двух разных каналах радиоприбора в принципе нежелательно и к нему следует прибегать только в случаях крайней необходимости. При этом следует сравнить уровни переменных напряжений и мощностей в обоих совмещаемых элементах. Чем меньше отличаются друг от друга эти уровни, тем более вероятно, что применение двойной лампыпройдет безболезненно.

ными проводами также представляет собой СВЧ резонансный контур, настроенный емкостью сетка- катод.

Оба контура связаны через емкость сетка - экранирующая сетка Сg1,2 , играющую здесь роль проходной емкости.

Таким образом, схема цепей катода, эк- Рис. 4-23. Генерация усилительного ранирующей и управляющей сеток экви-каскада на СВЧ.

валентна схеме генератора на триоде со связью через внутриламповую проходную емкость. При благоприятном (с

возникаетгенерация.

Возникнув в промежуточных каскадах, эта генерация может явно не проявиться, а повлиять на такие обычно редко контролируемые параметры, как анодный ток отдельных ламп, линейность амплитудной характеристики т. д. Иногда эта же генерация, изменяя режим работы усилителя, может послужить причиной обратных связей по основной частоте. С уничтожением такой генерации одновременно пропадет искажение частотных характеристик усилителя.

Подобная

генерация

особенно

возникает в выходных каскадах усилителей

видеоусилителей,

собираемых

на мощных

пентодах или

родах при параллельном соединении двух и

с анодной

катодной

нагрузкой.

Здесь (рис. 4-24)

соединительные провода между управляющими

и экранирующими сетками обеих ламп пред-

Рис. 4-24. Генерация усили-ставляют собой

симметричной

тельного каскада на СВЧ при нии,

включенной

по двухтактной схеме,

параллельномсоединенииламп.

применяемой обычно в генераторах ультрако-

роткихволн.

Такую же схему двухтактного генератора СВЧ легко увидеть в схеме катодного повторителя с параллельным выключением ламп, если учесть индуктивности и емкости соединительных проводов между анодами и между сетками.

Несколько легче обнаруживается генерация на СВЧ в мощных усилительных каскадах низкой частоты по свечению неоновой лампы. Для проведения такого эксперимента лампочку небольших размеров прикрепляют к

Импульсные источники питания, тиристорные регуляторы, коммутаторы, мощные радиопередатчики, электродвигатели, подстанции, любые электроразряды вблизи линии электропередач (молнии, сварочные аппараты, и т.д.) генерируют узкополосные и широкополосные помехи различной природы и спектрального состава. Это затрудняет функционирование слаботочной чувствительной аппаратуры, вносит искажения в результаты измерений, вызывает сбои и даже выход из строя как узлов приборов, так и целых комплексов оборудования.

В симметричных электрических цепях (незаземленные цепи и цепи с заземленной средней точкой) противофазная помеха проявляется в виде симметричных напряжений (на нагрузке) и называется симметричной, в иностранной литературе она называется «помехой дифференциального типа» (differential mode interference). Синфазная помеха в симметричной цепи называется асимметричной или «помехой общего типа» (common mode interference).

Симметричные помехи в линии обычно преобладают на частотах до нескольких сотен кГц. На частотах же выше 1 МГц преобладают асимметричные помехи.

Довольно простым случаем являются узкополосные помехи, устранение которых сводится к фильтрации основной (несущей) частоты помехи и ее гармоник. Гораздо более сложный случай — высокочастотные импульсные помехи, спектр которых занимает диапазон до десятков МГц. Борьба с такими помехами представляет собой довольно сложную задачу.

Устранить сильные комплексные помехи поможет только системный подход, включающий в себя перечень мер по подавлению нежелательных составляющих питающего напряжения и сигнальных цепей: экранирование, заземление, правильный монтаж питающих и сигнальных линий и, конечно же, фильтрацию. Огромное количество фильтрующих устройств различных конструкций, добротности, области применения и т.д. выпускаются и используются во всем мире.

В зависимости от типа помех и области применения, различаются и конструкции фильтров. Но, как правило, устройство представляет собой комбинацию LC-цепей, образующих фильтрующие каскады и фильтры П-типа.

Важной характеристикой сетевого фильтра является максимальный ток утечки. В силовых приложениях этот ток может достигать опасной для человека величины. Исходя из значений тока утечки, фильтры классифицируются по уровням безопасности: применения, допускающие контакт человека с корпусом устройства и применения, где контакт с корпусом нежелателен. Важно помнить, что корпус фильтра требует обязательного заземления.

Компания TE-Connectivity, основываясь на более чем 50-летнем опыте компании Corcom в проектировании и разработке электромагнитных и радиочастотных фильтров, предлагает широчайший спектр устройств для применения в различных отраслях промышленности и узлах аппаратуры. На российском рынке представлен ряд популярных серий от этого производителя.

Фильтры общего назначения серии B

Фильтры серии В (рисунок 1) — надежные и компактные фильтры по доступной цене. Большой диапазон рабочих токов, хорошая добротность и богатый выбор типов присоединения обеспечивают широкую область применения этих устройств.

Рис. 1.

Серия B включает в себя две модификации — VB и EB, технические характеристики которых приведены в таблице 1.

Таблица 1. Основные технические характеристики сетевых фильтров серии B

Наименование Максимальный
ток утечки, мА
Рабочий диапазон частот, МГц Номинальное напряжение, В Номинальный ток, А
~120 В 60 Гц ~250 В 50 Гц «проводник-корпус» «проводник-проводник»
VB 0,4 0,7 0,1…30 2250 1450 ~250 1…30
EB 0,21 0,36

Электрическая схема фильтра приведена на рисунке 2.

Рис. 2.

Ослабление сигнала помехи в дБ приведено на рисунке 3.

Рис. 3.

Фильтры серии T

Фильтры этой серии (рисунок 4) — высокопроизводительные радиочастотные фильтры для силовых цепей импульсных источников питания. Преимуществами серии являются превосходное подавление противофазных и синфазных помех, компактные размеры. Малые токи утечки позволяют применять серию T в устройствах с низким энергопотреблением.

Рис. 4.

Серия включает две модификации — ET и VT, технические характеристики которых приведены в таблице 2.

Таблица 2. Основные технические характеристики сетевых фильтров серии T

Наименование Максимальный
ток утечки, мА
Рабочий диапазон частот, МГц Электрическая прочность изоляции (в течение 1 минуты), В Номинальное напряжение, В Номинальный ток, А
«проводник-корпус» «проводник-проводник»
ET 0,3 0,5 0,01…30 2250 1450 ~250 3…20
VT 0,75 (1,2) 1,2 (2,0)

Электрическая схема фильтра серии T приведена на рисунке 5.

Рис. 5.

Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 6.

Рис. 6.

Фильтры серии К

Фильтры серии К (рисунок 7) — силовые фильтры радиочастотного диапазона общего назначения. Они ориентированы на применение в силовых цепях с высокоомной нагрузкой. Отлично подходят для случаев, когда на линию наводится импульсная, непрерывная и/или пульсирующая помеха радиочастотного диапазона. Модели с индексом EK соответствуют требованиям стандартов для применения в портативных устройствах, медицинском оборудовании.

Рис. 7.

Фильтры с индексом С оснащены дросселем между корпусом и заземляющим проводом. Основные электрические параметры сетевых фильтров серии К приведены в таблице 3.

Таблица 3. Основные электрические параметры сетевых фильтров серии К

Наименование Максимальный
ток утечки, мА
Рабочий диапазон частот, МГц Электрическая прочность изоляции (в течение 1 минуты), В Номинальное напряжение, В Номинальный ток, А
~120 В 60 Гц ~250 В 50 Гц «проводник-корпус» «проводник-проводник»
VK 0,5 1,0 0,1…30 2250 1450 ~250 1…60
EK 0,21 0,36

Электрическая схема фильтра серии К приведена на рисунке 8.

Рис. 8.

Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 9.

Рис. 9.

Фильтры серии EMC

Фильтры этой серии (рисунок 10) — компактные и эффективные двухступенчатые силовые фильтры радиочастотного диапазона. Обладают рядом преимуществ: высоким коэффициентом ослабления синфазных помех в области низких частот, высоким коэффициентом ослабления противофазных помех, компактными размерами. Серия EMC ориентирована на применение в устройствах с импульсными источниками питания.

Рис. 10.

Основные технические характеристики приведены в таблице 4.

Таблица 4. Основные электрические параметры сетевых фильтров серии EMC

Номинальные токи фильтра, А Максимальный
ток утечки, мА
Рабочий диапазон частот, МГц Электрическая прочность изоляции (в течение 1 минуты), В Номинальное напряжение, В Номинальный ток, А
~120 В 60 Гц для токов 3; 6; 10 А (15; 20 А) ~250 В 50 Гц для токов 3; 6; 10 А (15; 20 А) «проводник-корпус» «проводник-проводник»
3; 6; 10 0,21 0,43 0,1…30 2250 1450 ~250 3…30
15; 20; 30 0,73 1,52

Электрическая схема фильтра серии EMC приведена на рисунке 11.

Рис. 11.

Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 12.

Рис. 12.

Фильтры серии EDP

2. Corcom Product Guide, General purpose RFI filters for high impedance loads at low current B Series, TE Connectivity, 1654001, 06/2011, p. 15

3. Corcom Product Guide, PC board mountable general purpose RFI filters EBP, EDP & EOP series, TE Connectivity, 1654001, 06/2011, p. 21

4. Corcom Product Guide, Compact and cost-effective dual stage RFI power line filters EMC Series, TE Connectivity, 1654001, 06/2011, p. 24

5. Corcom Product Guide, Single phase power line filter for frequency converters FC Series, 1654001, 06/2011, p. 30

6. Corcom Product Guide, General purpose RFI power line filters — ideal for high-impedance loads K Series, 1654001, 06/2011, p. 49

7. Corcom Product Guide, High performance RFI power line filters for switching power supplies T Series, 1654001, 06/2011, p. 80

8. Corcom Product Guide, Compact low-current 3-phase WYE RFI filters AYO Series, 1654001, 06/2011, p. 111.

Получение технической информации, заказ образцов, поставка — e-mail:

Сетевые и сигнальные EMI/RFI-фильтры от TE Connectivity. От платы до промышленной установки

Компания TE Connectivity занимает лидирующие позиции в мире по разработке и производству сетевых фильтров для эффективного подавления электромагнитных и радиочастотных помех в электронике и промышленности. Модельный ряд включает в себя более 70 серий устройств для фильтрации как цепей питания от внешних и внутренних источников, так и сигнальных цепей в широчайшей сфере применений.

Фильтры имеют следующие варианты конструктивного исполнения: миниатюрные для установки на печатную плату; корпусные различных размеров и типов присоединения питающих линий и линий нагрузки; в виде готовых разъемов питания и коммуникационных разъемов сетевого и телефонного оборудования; индустриальные, выполненные в виде готовых промышленных шкафов.

Сетевые фильтры выпускаются для AC и DC приложений, одно- и трехфазных сетей, перекрывают диапазон рабочих токов 1…1200 А и напряжений 120/250/480 VAC, 48…130 VDC. Все устройства характеризуются низким падением напряжения — не более 1% от рабочего. Ток утечки, в зависимости от мощности и конструкции фильтра, составляет 0,2…8,0 мА. Усредненный частотный диапазон по сериям — 10 кГц…30 МГц. Серия AQ рассчитана на более широкий диапазон частот: 10 кГц…1 ГГц. Расширяя области применения своих устройств, TE Connectivity выпускает фильтры для цепей нагрузки с низким и высоким импедансом. Например, высокоимпедансные фильтры серий EP, H, Q, R и V для низкоимпедансных нагрузок и низкоимпедансные серии B, EC, ED, EF, G, K, N, Q, S, SK, T, W, X, Y и Z для высокоимпедансных нагрузок.

Коммуникационные разъемы со встроенными сигнальными фильтрами выпускаются в экранированном, спаренном и низкопрофильном исполнении.

Каждый фильтр производства TE Connectivity подвергается двойному тестированию: на этапе сборки и уже в виде готового изделия. Вся продукция соответствуют международным стандартам качества и безопасности.

В настоящее время в большинстве электронных устройств источников постоянного напряжения используются встроенные или внешние импульсные блоки питания (ИБП). Основной принцип работы (ИБП) заключается в том, что сетевое переменное напряжение сначала выпрямляется, далее преобразуется в переменное высокочастотное напряжение прямоугольной формы, которое затем понижается или повышается трансформатором до необходимых значений, далее выпрямляется, фильтруется и стабилизируется посредством обратной связи (ОС).

Широкое распространение (ИБП) обусловлено несколькими причинами: небольшим весом, малыми габаритами, высоким КПД, низкой стоимостью, широким диапазоном питающего сетевого напряжения и частоты, высокой степенью стабилизации выходного напряжения и т.д.

К недостаткам (ИБП) можно отнести то, что все они без исключения являются источниками интенсивных электромагнитных помех (ЭПМ), это связано с принципом работы схемы преобразователя, т.к. сигналы в (ИБП) представляют собой периодическую последовательность импульсов. Спектры таких сигналов занимают диапазон частот шириной до нескольких мегагерц. Помехи могут распространяться в виде токов, текущих в проводящих элементах, контуре заземления и самой земле (кондуктивные помехи ) и в виде электромагнитных полей в непроводящих средах (индуктивные помехи ).

Так же сами (ИБП) довольно восприимчивы к влиянию внешних (ЭПМ). В этой связи возникает необходимость, как подавлять помехи, которые они генерируют и наводят в питающую сеть, так и защищать их от внешних помех, проникающих из питающей сети. Для этой цели (ИБП) в обязательном порядке должен иметь сетевой фильтр подавления (ЭПМ), или как его еще называют EMI - фильтр (рис. 1).

Рис.1 Встроенный сетевой фильтр подавления электромагнитных помех.

Надо отметить, что такой фильтр будет работать как в прямом, так и в обратном направлении, т.е. ослабит как входящие, так и исходящие помехи.

Кондуктивная помеха по питающей сети имеет две составляющих – противофазную и синфазную.

Это напряжение помехи между шинами питания, фазой (L ) и нулем (N ) питающей сети. Ток противофазной помехи, наведенный на оба провода питающей сети, протекает по ним в противоположных направлениях (рис.2).

Противофазные напряжения помех непосредственно накладываются на напряжение питания питающей сети, воздействуют на линейную изоляцию между проводами и могут быть восприняты как управляющие сигналы в устройствах, и тем самым вызывать ложное срабатывание.

Синфазная (асимметричная, несимметричная) составляющая помехи - это напряжение помехи между шинами питания питающей сети и корпусом устройства (заземлением), т.е. между фазой (L) и землей (GND ) , нулем (N) и землей (GND ) . Ток синфазной помехи протекает по шинам питающей сети в одном направлении (рис.3).

Синфазные помехи обусловлены главным образом разностью потенциалов в цепях заземления устройства, вызванной токами в земле (аварийными, при замыканиях высоковольтных линий на землю, рабочими или токами молнии), а так же магнитными полями. Синфазные напряжения помех воздействуют на изоляцию проводов относительно земли и могут вести к электрическим пробоям. Так же может происходить частичное или полное преобразование синфазной помехи в противофазную.

Кроме сетевого фильтра входные цепи (ИБП) должны иметь защиту от короткого замыкания (Предохранитель ), импульсных бросков напряжения в питающей сети (Варистор и Супрессор ), ограничитель броска тока при включении (ИБП) в питающую сеть (Термистор ), а так же иметь защиту от внешних воздействий, например грозы или высоковольтного электрического пробоя (). На (рис. 4) показана схема многозвенного сетевого фильтра, обеспечивающего качественное подавление синфазных и дифференциальных помех с элементами защиты входных цепей (ИБП).

Рис.4 Схема многозвенного сетевого фильтра подавления (ЭПМ), с элементами защиты входных цепей (ИБП).

Схема фильтра реализована на основе двух фильтров нижних частот (ФНЧ) путем каскадного соединения (Г-образных) или (Т-образных) звеньев. Назначение элементов схемы сетевого фильтра следующее:

С Y 1, CY 2 - конденсаторы Y типа предназначены для подавления синфазной составляющей помехи. Выбор величины емкости конденсаторов CY, в первую очередь, определяется значением безопасного для человека тока заземления, величина которого для оборудования общего назначения составляет не более 2мА, а для медицинского не более 0,1мА. Емкость СY конденсаторов варьируется от 470пФ до 10000пФ, на рабочее напряжение 3кВ. Какая бы не была емкость СY конденсаторов, полностью убрать помехи невозможно, можно только их уменьшить. Для однофазной питающей сети с номинальным напряжением до 250В используются конденсаторы класса Y2 , которые выдерживают импульсы до 5кВ. Увеличение емкости конденсаторов CY улучшает фильтрацию синфазных помех, но увеличивает ток утечки.

С X 1, CX 2, CX 3-к онденсаторы X типа предназначены для подавления противофазной составляющей помехи. Задача СХ конденсаторов не пропускать помехи из внешней питающей сети в (ИБП), а так же не выпускать помехи, созданные самим (ИБП) во внешнюю питающую сеть.

Сопротивление конденсаторов CX уменьшается с ростом частоты, следовательно, помехи и резкие скачки напряжения шунтируются (закорачиваются) на входе и выходе сетевого фильтра. Емкость СX конденсаторов варьируется от 0,1мкФ до 1мкФ и зависит от мощности (ИБП). Какая бы не была емкость СХ конденсаторов, полностью убрать помехи невозможно, можно только их уменьшить. Для однофазной питающей сети с номинальным напряжением до 250В используются конденсаторы класса Х2 , которые выдерживают импульсы до 2,5кВ. К конденсаторам типа СХ предъявляются высокие требования по безопасности. Они должны выдерживать максимально возможные всплески напряжения в питающей сети, не должны загораться и поддерживать горение. Увеличение емкости конденсатора CX улучшает фильтрацию дифференциальных помех, но приводит к увеличению реактивного тока.

L Y 1- синфазный дроссель используются для подавления синфазных помех. Он выполнен на тороидальном ферритовом сердечнике с достаточно высокой магнитной проницаемостью (μ) и имеет две идентичные обмотки (рис. 5).

Рис.5 Схема синфазного дросселя.

В случае появления синфазных токов помех, магнитные потоки обоих обмоток складываются, т.к. обмотки дросселя оказываются включенными последовательно с шинами питания фазой (L) и нулем (N) питающей сети. Входной импеданс увеличивается, что приводит к подавлению синфазных токов помех и значительному снижению амплитуды шумового сигнала. Индуктивное сопротивление XL растет с увеличением частоты синфазных помех: XL=2πfL, f-частота помех, L-индуктивность включенных последовательно обмоток дросселя.

Когда через обмотки протекают дифференциальные токи помех, они индуцируют низкочастотные магнитные поля, которые при таком включении имеют противоположные направления и взаимно компенсируют друг друга.

Таким образом, обмотки дросселя для синфазной составляющей помехи имеют большое индуктивное сопротивление, поскольку для синфазного тока они включены согласно. В то же время для противофазной составляющей помехи индуктивное сопротивление обмоток минимально, так как для противофазного тока они включены встречно.

Индуктивность синфазного дросселя LY определяется многими параметрами и лежит в диапазоне от 10мГн до 0,47мГн при токе потребления от 1A до 10A . Начальная магнитная проницаемость сердечника μ i = 6000-10000. Размеры ферритового сердечника и диаметр провода обмоток зависят от мощности (ИБП) с учетом пусковых токов. Увеличение индуктивности синфазного дросселя улучшает фильтрацию, но приводит к увеличению активного сопротивления обмоток.

L X 1- Z –образный дроссель предназначен для подавления противофазных (дифференциальных) помех. Дроссель имеет две одинаковые обмотки намотанных сонаправленно, на тороидальном ферритовом сердечнике с зазором или магнитодиэлектрическом сердечнике из распыленного железа (Iron powder core) (рис. 6).

Рис.6 Схема Z –образного дросселя.

Индуктивность Z-образного дросселя LX зависит от многих параметров и лежит в диапазоне от 270мкГн до 47мкГн при токе потребления от 1А до 10A. Сердечник из распыленного железа может быть серии DT68-DT106. Размеры сердечника и диаметр провода обмоток зависят от мощности (ИБП) с учетом пусковых токов.

L1, L 2 - ВЧ дроссели обеспечивают дальнейшее ослабление высокочастотных помех. Включаются последовательно с шинами питания фазой (L) и нулем (N) питающей сети на выходе сетевого фильтра. Содержат мало витков и выполняются на ферритовых кольцах с малым значением магнитной проницаемости μ. Их применение позволяет расширить диапазон частот эффективного подавления помех фильтром до 50-60МГц. Индуктивность ВЧ дросселей лежит в диапазоне 5-10 µH и зависит от частоты ослабления ВЧ помех. Размеры сердечника и диаметр провода обмоток зависят от мощности (ИБП) с учетом пусковых токов.

R2, R 3 - резисторы уменьшают добротность L1, L2 для устранения резонансных явлений.

RK 1 – терморезистор (NTC термистор) предназначен для ограничения броска тока при включении (ИБП) в питающую сеть. Термистор - полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры. Термисторы бывают двух типов: с положительным и отрицательным температурным коэффициентом. У термистора с положительным коэффициентом при повышении температуры сопротивление возрастает, а с отрицательным коэффициентом - уменьшается. Их сокращённые названия на английском языке: PTC (positive temperature coefficient ) и NTC (negative temperature coefficient ).

Термистор включается последовательно с одной из шин питания фазой (L) или нулем (N) питающей сети. NTC термистор, при температуре окружающей среды, имеет сопротивление в несколько Ом. В момент включения (ИБП) в питающую сеть, конденсатор выпрямителя заряжается, поэтому представляет собой короткозамкнутую нагрузку. В цепи питания происходит бросок тока, но термистор поглощает его, превращая в тепло. Далее термистор разогревается, его сопротивление падает почти до десятых долей Ома и он не влияет на работу устройства. Происходит так называемый мягкий пуск.

Термистор является инерционным элементом. Фактически при кратковременном отключении питания и повторном пуске, термистор не работает как элемент защиты, т.к. полностью восстанавливает свои свойства только через 5-10 мин. Температура термистора в рабочем состоянии, когда его сопротивления близкого к нулю, может доходить до 250 градусов.

R1 резистор обеспечивает быстрый разряд конденсаторов СX при отключении сетевого кабеля от питающей сети и необходим для безопасного обращения с устройством.

FV 1-разрядник предназначен для ограничения перенапряжений в электротехнических установках и электрических сетях . Разрядник состоит из электродов с искровым промежутком между ними и дугогасительного устройства. Один из электродов присоединяется к защищаемой цепи, другой - заземляется. Когда к такому устройству прикладывается высокое импульсное напряжение со скоростью около 1 кВ/мкс, возникает разряд. Чем меньше скорость нарастания фронта, тем выше должно быть напряжение, "зажигающее" разряд. Через такое устройство может проходить импульсный ток до 100кА. Несмотря на отличную способность снижать напряжение, разрядник имеет время реакции от сотен наносекунд до единиц микросекунд, что в десятки раз медленнее по сравнению с варисторами. Применение данных устройств актуально, где есть опасность прямого удара молнии в провода питающей сети или высоковольтных источниках питания, где есть вероятность попадания высокого напряжения на шины (L) или (N) питающей сети.

RU 1 - варистор защищает цепи от импульсных бросков напряжения или увеличивает скорость срабатывания плавкого предохранителя. Варистор – это полупроводниковый резистор, сопротивление которого резко изменяется при изменении приложенного напряжения выше номинального.

Варистор включается на входе сетевого фильтра параллельно входному сетевому напряжению 220В и фактически постоянно находится под этим напряжением, однако ток в этом состоянии через варистор очень мал т.к. его сопротивление в этом случае сотни МОм. В случае возникновения высоковольтного импульса напряжения способного вывести из строя (ИБП), варистор практически мгновенно изменяет своё сопротивление до десятков Ом, то есть шунтирует (закорачивает) цепь питания, ток в этом состоянии может достигать нескольких тысяч ампер, а поглощённая энергия рассеивается в виде тепла. Варистор не обладает инерцией, поэтому после поглощения импульса он мгновенно восстанавливает свои свойства.

Одного варистора может быть не достаточно в случае аварии на линии электроснабжения, когда вместо фазы и нуля по обоим проводам подали фазу. Для защиты от такого рода аварий целесообразно включать в схему нескольких варисторов, как показано на (рис.7).

Рис.7 Схема защитного треугольника на варисторах.

Эта схема из трех варисторов на входе сетевого фильтра надёжно блокирует проникновение импульса не только по фазовой цепи (L), но и по цепи нуля (N). Варистор RU1 подключается между фазой и нулевым проводником. Он осуществляет основную защиту. Два других RU2 и RU3 подключаются между фазой (L) и землей (Gnd), а так же между нулем (N) и землей (Gnd). Принцип работы RU2 аналогичен, описанному выше RU1. Варистор RU3 контролирует напряжение между нулем (N) и землей (Gnd). Если всё нормально, напряжения быть не должно или оно крайне мало (единицы вольт). В случае появления большого напряжения на проводе (N), как правило, фазы (L), варистор RU2 благополучно зашунтирует защищаемый блок.

VD 1-защитный диод TVS (Transient Voltage Suppressor) или супрессор обеспечивает подфильтровку остаточных перенапряжений, которые пройдут через варисторы, без заметных выбросов на шину заземления. Так как емкость варисторов составляет не менее 1000пФ, то они не позволяют фильтровать высокочастотные выбросы выше 100МГц. В таких случаях лучшим решением является применение быстродействующего супрессор-диода. Принцип работы супрессора основан на ярко выраженной нелинейной вольтамперной характеристике. Если амплитуда электрического импульса превысит паспортное напряжение для конкретного типа, то он перейдет в режим лавинного пробоя, т.е. импульс напряжения будет ограничен до нормальной величины, а излишки уйдут на землю (GND). Отличительной чертой супрессоров является очень короткое время реакции на превышение напряжения, скорость переключения лежит в пикосекундном диапазоне. Супрессоры выпускаются как несимметричные (однонаправленные), так и симметричные (двунаправленные). Симметричные могут работать в цепях с двухполярным напряжением, а несимметричные только с напряжением одной полярности. В маркировке супрессора 1.5КЕ400СА зашифрованы основные его характеристики. 1,5- Мощность 1500Вт; 400-напряжение пробоя 440В; С-двунаправленный (без буквы однонаправленный); А- допустимое отклонение напряжения 5%. Симметричный защитный диод 1.5КЕ440СА можно заменить двумя такими же однополярными (без индекса СА), включенным встречно. Для надежной защиты сетевого фильтра и входных цепей (ИБП) супрессоры включаются по схеме защитного треугольника, как и варисторы (рис. 7).

Для защиты от внешних индуктивных помех применяют экранирование, как всего (ИБП), так и отдельно сетевого фильтра. Экранирование выполняется за счет использования металлического корпуса, с обязательным соединением с шиной заземления . Это препятствует распространению излучаемых электромагнитных помех за пределы корпуса (ИБП), а так же подавляет внешние электромагнитные помехи, воздействующие на (ИБП).

Применение высокоэффективных индуктивно-емкостных помехоподавляющих фильтров позволяет обезопасить оборудование от вредного влияния входящих помех, а так же снизить исходящие помехи, которые генерируются внутри самого оборудования. Использование фильтров подавления (ЭПМ) - одно из основных требований по электромагнитной совместимости современного оборудования.

Компания Лазер-блок является производителем высоковольтных блоков питания для лазерных станков с СО2 излучателями. В выпускаемых нами блоках питания для лазерных станков , или как их еще называют, блоки розжига для лазера , мы используем только высококачественные электронные компоненты, которые закупаем со всего мира, а так же используем и отечественные аналоги, которые славятся своим запасом прочности. Наши инженеры постоянно проводят исследования в лаборатории, внося корректировки в схемы.

Импульсные блоки питания (ИБП), построенные на основе преобразователей постоянного (выпрямленного сетевого) напряжения в переменное, генерируют нежелательные помехи. На коллекторах (стоках) силовых ключей контролеров ИБП присутствует напряжение, близкое по форме к прямоугольному, размахом, достигающим 600...700В. Кроме того, в ИБП существуют замкнутые цепи, по которым циркулируют импульсные токи с достаточно крутыми фронтами и спадами (0,1... 1 мкс) и амплитудой до 3...5А и более.

Вообще говоря, ШИМ-преобразователи, которые работают с постоянной частотой переключений, генерируют помехи в известной полосе частот, что облегчает задачу их подавления и является одной из причин их широкого применения в схемах импульсных БП бытовой техники .

Однако, импульсные блоки питания , независимо от типа применяемого ШИМ-преобразователя, должны быть оснащены схемами подавления двух основных видов помех. Этими помехами являются входная несимметричная (дифференциальная) и входная симметричная (синфазная) помехи.

Механизмы возникновения, распространения и методы борьбы в импульсных блоках питания с данными помехами рассмотрим на примере соответствующих эквивалентных схем преобразователей.

Рис.1 Возникновение несимметричной помехи

Входная несимметричная помеха является шумовым током, протекание которого обусловлено разностью напряжений Vin между двумя входными проводниками (рис. 1). Ключевой транзистор преобразователя представлен на рисунке в виде переключателя Fs, который последовательно включается и выключается с частотой пдэекточения преобразователя. Нагрузка изображена в виде переменного резистора R L , сопротивление которого изменяется в зависимости от тока нагрузки. Пассивные элементы L и С соответствуют входному фильтру, встроенному в преобразователь. Кроме того, практически все преобразователи оснащены входным конденсатором Cь, а некоторые также имеют, по крайней мере, небольшую последовательную индуктивность (дроссель), учитываемую в импедансе источника Zs (в Zs также учтена собственная индуктивность сглаживающего электролитического конденсатора сетевого выпрямителя).

Эффективное подавление несимметричной помехи достигается посредством шунтирующего действия конденсатора Сь, который должен иметь высокое качество и характеризоваться малыми эквивалентными последовательными индуктивностью (ЭПИ) и сопротивлением (ЭПС) в соответствующем диапазоне частот (обычно в области частот переключения и выше). В реальных схемах Сь обычно представляет собой конденсатор постоянной емкости 0,1... 1,0 мкф, шунтирующий электролитический конденсатор сетевого выпрямителя. В выпрямителе одновременно стремятся применять высококачественные, как правило, танталовые, электролитические конденсаторы с малыми ЭПИ и ЭПС.

Симметричная помеха подавляется с помощью симметрирующего трансформатора, который представляет собой катушку индуктивности с двумя обмотками, имеющими одинаковое число витков. Она обладает высоким импедансом для симметричного тока, но практически нулевым для несимметричного.

Несимметричный ток (включающий потребляемый ток) втекает в верхнюю обмотку трансформатора и вытекает из нижней. Поскольку токи через эти обмотки равны по величине и противоположны по направлению, а число витков в обмотках одинаково, результирующий магнитный поток в сердечнике, обусловленный несимметричным током, оказывается равным нулю, хотя величина потребляемого тока может быть очень велика. Благодаря этому в симметрирующем трансформаторе обычно используют сердечник с высокой магнитной проницаемостью без воздушного зазора. Причем он имеет достаточно высокую индуктивность для симметричного тока при использовании обмоток всего в несколько витков. Значительно меньший по величине ток симметричной помехи протекает в основном через нижнюю обмотку, а также и через верхнюю в одном и том же направлении. Следовательно, симметрирующий трансформатор обладает высоким импедансом для токов симметричной помехи.

В качестве дополнительных мер подавления помех в импульсных БП применяются следующие :

Перечисленных мер, как правило, оказывается достаточно, и поэтому в бытовой аппаратуре импульсные БП обычно применяются без экранирующих кожухов.

Рис.3 Типовая схема сетевого фильтра и выпрямителя

Некоторые из рассмотренных способов борьбы с помехами в ИБП иллюстрируются на примере типовой схемы сетевого выпрямителя (рис. 3), применяемого в конструкциях ВМ и ТВ. Конденсаторы С5...С8, установленные параллельно диодам Д1...Д4 мостового выпрямителя сетевого напряжения служат для подавления несимметричных помех. Эту же роль выполняют конденсаторы С1,2, которые симметрируют потенциалы сетевого провода относительно шасси радиоэлектронной технике.

Фильтр подавления электромагнитных помех (10+)

Фильтр высокочастотных электромагнитных помех

Причина возникновения высокочастотных импульсных помех банальна. Скорость света не бесконечна, и электромагнитное поле распространяется со скоростью света. Когда у нас есть устройство, как-то преобразующее сетевое напряжение путем частых переключений, мы ожидаем, что в проводах питания, идущих к сети, будут возникать пульсации токов, направленных навстречу друг другу. По одному проводу ток втекает в прибор, по другому - вытекает. Но все совсем не так. За счет конечности скорости распространения поля импульс втекающего тока сдвинут по фазе относительно вытекающего. Таким образом, на некоторой частоте высокочастотные токи в сетевых проводах текут сонаправленно, синфазно.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!