Сайт о телевидении

Сайт о телевидении

» » Параллельная коммутация. Схемы устройств малопроводной связи и коммутации

Параллельная коммутация. Схемы устройств малопроводной связи и коммутации

При появлении в конце 80-х начале 90-х годов быстрых протоколов, производительных персональных компьютеров, мультимедийной информации и разделении сети на большое количество сегментов классические мосты перестали справляться с работой. Обслужи вание потоков кадров между теперь уже несколькими портами с помощью одного процессорного блока требовало значительного повышения быстродействия процессора, а это довольно дорогостоящее решение.

Более эффективным оказалось решение, которое и «породило» коммутаторы: для обслуживания потока, поступающего на каждый порт, в устройство ставился отдельный специализированный процессор, который реализовывал алгоритм прозрачного моста. По сути, коммутатор - это мультипроцессорный мост, способный параллельно продвигать кадры сразу между всеми парами своих портов. Но если при добавлении процессорных блоков компьютер не перестали называть компьютером, а добавили только прилагательное «мультипроцессорный», то с мультипроцессорными мостами произошла метаморфоза - во многом по маркетинговым причинам они превратились в коммутаторы. Нужно отметить, что помимо процессоров портов коммутатор имеет центральный процессор, который координирует работу портов, отвечая за построение общей таблицы продвижения, а также поддерживая функции конфигурирования и управления коммутатором.

Со временем коммутаторы вытеснили из локальных сетей классические однопроцессорные мосты. Основная причина этого - существенно более высокая производительность, с которой коммутаторы передают кадры между сегментами сети. Если мосты могли даже замедлять работу сети, то коммутаторы всегда выпускаются с процессорами портов, способными передавать кадры с той максимальной скоростью, на которую рассчитан протокол. Ну а добавление к этому возможности параллельной передачи кадров между портами предопределило судьбу и мостов, и коммутаторов.

Производительность коммутаторов на несколько порядков выше, чем мостов - коммутаторы могут передавать до нескольких десятков, а иногда и сотен миллионов кадров в секунду, в то время как мосты обычно обрабатывали 3-5 тысяч кадров в секунду.

За время своего существования уже без конкурентов-мостов коммутаторы вобрали в себя многие дополнительные функции, родившиеся в результате естественного развития сетевых технологий. К этим функциям относятся, например, поддержка виртуальных сетей (VLAN), агрегирование линий связи, приоритезация трафика и т. п. Развитие технологии производства заказных микросхем также способствовало успеху коммутаторов, в результате процессоры портов сегодня обладают такой вычислительной мощностью, которая позволяет им быстро реализовывать весьма сложные алгоритмы обработки трафика, например выполнять его классификацию и профилирование.

Технология коммутации сегментов Ethernet была предложена небольшой компанией Kalpana в 1990 году в ответ на растущие потребности в повышении пропускной способности связей высокопроизводительных серверов с сегментами рабочих станций. У коммутатора компании Kalpana при свободном в момент приема кадра состоянии выходного порта задержка между получением первого байта кадра и появлением этого же байта на выходе порта адреса назначения составляла всего 40 мкс, что было гораздо ниже задержки кадра при его передаче мостом.

Структурная схема коммутатора EtherSwitch, предложенного фирмой Kalpana, представлена на рис. 1.

Рис. 1 Структура коммутатора EtherSwitch компании Kolpana

Каждый из 8 портов 10Base-T обслуживается одним процессором пакетов Ethernet (Ethernet Packet Processor, EPP). Кроме того, коммутатор имеет системный модуль, который координирует работу всех процессоров ЕРР, в частности ведет общую адресную таблицу коммутатора. Для передачи кадров между портами используется коммутационная матрица. Она функционирует по принципу коммутации каналов, соединяя порты коммутатора. Для 8 портов матрица может одновременно обеспечить 8 внутренних каналов при полудуплексном режиме работы портов и 16 - при дуплексном, когда передатчик и приемник каждого порта работают независимо друг от друга.

При поступлении кадра в какой-либо порт соответствующий процессор ЕРР буферизует несколько первых байтов кадра, чтобы прочитать адрес назначения. После получения адреса назначения процессор сразу же приступает к обработке кадра, не дожидаясь прихода остальных его байтов.

1. Процессор ЕРР просматривает свой кэш адресной таблицы, и если не находит там нужного адреса, обращается к системному модулю, который работает в многозадачном режиме, параллельно обслуживая запросы всех процессоров ЕРР. Системный модуль производит просмотр общей адресной таблицы и возвращает процессору найденную строку, которую тот буферизует в своем кэше для последующего использования.

2. Если адрес назначенля найден в адресной таблице и кадр нужно отфильтровать, процессор просто прекращает записывать в буфер байты кадра, очищает буфер и ждет поступления нового кадра.

3. Если же адрес найден и кадр нужно передать на другой порт, процессор, продолжая прием кадра в буфер, обращается к коммутационной матрице, пытаясь установить в ней путь, связывающий его порт с портом, через который идет маршрут к адресу назначения. Коммутационная матрица способна помочь только в том случае, если порт адреса назначения в этот момент свободен, то есть не соединен с другим портом данного коммутатора.

4. Если же порт занят, то, как и в любом устройстве с коммутацией каналов, матрица в соединении отказывает. В этом случае кадр полностью буферизуется процессором входного порта, после чего процессор ожидает освобождения выходного порта и образования коммутационной матрицей нужного пути.

5. После того как нужный путь установлен, в него направляются буферизованные байты кадра, которые принимаются процессором выходного порта. Как только процессор выходного порта получает доступ к подключенному к нему сегменту Ethernet по алгоритму CSMA/CD1, байты кадра сразу же начинают передаваться в сеть. Процессор входного порта постоянно хранит несколько байтов принимаемого кадра в своем буфере, что позволяет ему независимо и асинхронно принимать и передавать байты кадра (рис. 2).

Рис 2. Передача кадра через коммутационную матрицу

Описанный пособ передачи кадра без его полной буферизации получил название коммутации «на лету» (on-the-fly), или «напролет» (cut-through). Этот способ представляет собой, по сути, конвейерную обработку кадра, когда частично совмещаются во времени несколько этапов его передачи.

1. Прием первых байтов кадра процессором входного порта, включая прием байтов адреса назначения.

2. Поиск адреса назначения в адресной таблице коммутатора (в кэше процессора или в общей таблице системного модуля).

3. Коммутация матрицы.

4. Прием остальных байтов кадра процессором входного порта.

5. Прием байтов кадра (включая первые) процессором выходного порта через коммутационную матрицу.

6. Получение доступа к среде процессором выходного порта.

7. Передача байтов кадра процессором выходного порта в сеть.

На рис. 3 подставлены два режима обработки кадра: режим коммутации «на лету» с частичным совмещением во времени нескольких этапов и режим полной буферизации кадра с последовательным выполнением всех этапов. (Заметим, что этапы 2 и 3 совместить во времени нельзя, так как без знания номера выходного порта операция коммутации матрицы не имеет смысла.)

Рис. 3. Экономия времени при конвейерной обработке кадра: a - конвейерная обработка,
б - обычная обработка с полной буферизацией

Как показывает схема, экономия от конвейеризации получается ощутимой. Однако главной причиной повышения производительности сети при использовании коммутатора является параллельная обработка нескольких кадров.

Этот эффект иллюстрирует рис. 4, на котором показана идеальная в отношении производительности ситуация, когда четыре порта из восьми передают данные с максимальной для протокола Ethernet скоростью в 10 Мбит/с. Причем они передают эти данные на остальные четыре порта коммутатора не конфликтуя: потоки данных между узлами сети распределились так, что для каждого принимающего кадры порта есть свой выходной порт.

Если коммутатор успевает обрабатывать входной трафик при максимальной интенсивности поступления кадров на входные порты, то общая производительность коммутатора в приведенном примере составит 4 х 10 = 40 Мбит/с, а при обобщении примера для Депортов - (N/2) х 10 Мбит/с. В таком случае говорят, что коммутатор предоставляет каждой станции или сегменту, подключенному к его портам, выделенную пропускную способность протокола.

Рис. 4. Параллельная передача кадров коммутатором

Естественно, что в сети не всегда складывается описанная ситуация. Если двум станциям, например станциям, подключенным к портам 3 и 4, одновременно нужно записывать данные на один и тот же сервер, подключенный к порту 8, то коммутатор не сможет выделить каждой станции по 10 Мбит/с, так как порт 8 не в состоянии передавать данные со скоростью 20 Мбит/с. Кадры станций будут ожидать во внутренних очередях входных портов 3 и 4, когда освободится порт 8 для передачи очередного кадра. Очевидно, хорошим решением для такого распределения потоков данных было бы подключение сервера к более высокоскоростному порту, например Fast Ethernet или Gigabit Ethernet.

Коммутатор - это электронный компонент для обеспечения работы бесконтактной системы зажигания. Она является переходной между контактной и микропроцессорной. Последняя, наиболее совершенная, позволяет управлять моментом при помощи данных, считываемых с датчиков - кислорода, скорости, оборотов двигателя и других. Но на дорогах все еще немало автомобилей, в которых установлены и контактные прерыватели, и бесконтактные. Поэтому для обслуживания и диагностики нужно знать назначение всех элементов, а также методы поиска неисправностей и их основные признаки. Перед тем как проверить коммутатор, внимательно изучите все детали.

Бесконтактная система зажигания

Всего существует три огромные группы систем - контактная, бесконтактная, микропроцессорная. Первая делится на две подгруппы - контактная и с применением транзистора, работающего в режиме ключа. В конструкции бесконтактной системы зажигания тоже применяются транзисторы. Использоваться активно такая схема стала в начале 80-х годов прошлого века. И она имеет ряд преимуществ, о которых будет рассказано несколько ниже. Схема коммутатора несложная, она может быть реализована как на транзисторах, так и на контроллере.

Но у бесконтактной системы зажигания имеется и много недостатков, если сравнивать ее с микропроцессорной. Последняя позволяет контролировать практически все параметры двигателя. БСЗ делать это не позволяет, также не может она нормально использоваться на инжекторных моторах. Причина устаревания бесконтактной системы заключается не только в развитии электроники и автомобилестроения, но и в принятии жестких мер по обеспечению экологичности двигателей внутреннего сгорания. К сожалению, уменьшить количество вредных веществ в выхлопе позволяет только микропроцессорное управление.

Основные элементы системы

Конечно, первыми стоит указать свечи зажигания. Они установлены в головке блока цилиндров, электроды выходят с внутренней части. Это те элементы, которые позволяют воспламенить топливовоздушную смесь. Но с помощью одних только свечей двигатель работать не сможет. Необходимо контролировать положение коленчатого вала, чтобы знать, в каком положении находятся поршни в цилиндрах.

Для этой цели используется индуктивный датчик, работающий на эффекте Холла. Он входит в конструкцию другого элемента - распределителя зажигания. Датчик выдает импульс, который поступает на коммутатор. Это устройство позволяет слабый сигнал усилить до напряжения в 12 Вольт, чтобы затем подать его на катушку. Катушка - не что иное, как простой трансформатор (повышающий). У него вторичная обмотка имеет большее число витков, нежели первичная. За счет этого происходит повышение напряжения и уменьшение силы тока. Напряжение в БСЗ на свечи подается при значении 30-35 кВ (в зависимости от модели автомобиля).

Чем БСЗ лучше контактной?

Внимательно прочитав предыдущий раздел, можно увидеть, что в системе применен индуктивный бесконтактный датчик Холла. Преимущество очевидно - нет трения и коммутации. Для сравнения обратите внимание на контактную систему. В ней прерыватель коммутирует напряжение, величина которого равна 12 Вольт. Как ни крути, но металлические контакты все время соприкасаются друг с другом, постепенно стираются, покрываются нагаром.

По этим причинам необходимо постоянно следить за прерывателем, регулировать зазор, проводить своевременную замену. БСЗ лишена этих недостатков, поэтому без стороннего вмешательства система работает значительно дольше. Датчик Холла выходит из строя очень редко, как и коммутатор. Это повышает надежность системы, но требуется и соблюдать меры предосторожности, в частности, соединение коммутатора с кузовом должно быть максимально плотным, чтобы обеспечить эффективный теплообмен. Кроме того, БСЗ позволяет улучшить работу двигателя, увеличить, хоть и незначительно, его мощность, наряду с повышением надежности.

Как работает коммутатор

По сути, коммутатор - это простой усилитель сигнала. Можно сравнить даже со сборкой Дарлингтона, которая используется в микроконтроллерной технике для преобразования слабого сигнала с порта выхода до необходимого уровня. Основа этой сборки - полевые транзисторы, работающие в режиме ключа. На них подается рабочее напряжение, на управляющий вывод поступает сигнал, который усиливается и снимается с коллектора.

Коммутатор зажигания имеет практически аналогичную схему работы. Только используется сигнал с датчика Холла. Он имеет три вывода - управление, общий, плюс питания. При появлении в области датчика металлической пластины происходит генерация тока, который подается на вход коммутатора. Далее происходит усиление сигнала, а также подача его на первичную обмотку катушки. Питание всей системы происходит только лишь после включения зажигания (после поворота ключа).

Основные элементы коммутатора

Схема коммутатора достаточно простая, но самостоятельное изготовление этого блока бессмысленно, так как готовый вариант купить окажется намного проще. Монтаж должен выполняться максимально грамотно, иначе работа устройства окажется неправильной. Кроме того, при использовании транзисторов нужно тщательно выбирать их по параметрам, а для этого необходимо иметь качественную измерительную аппаратуру. К сожалению, у двух одинаковых полупроводников разброс характеристик может быть очень большим. А это влияет на работу устройства.

Коммутатор ВАЗ, имеющий обозначение 76.3734, состоит из одного основного элемента - контроллера L497. Он создан специально для использования в бесконтактных системах зажигания. Отечественный аналог этого контроллера - КР1055ХП2. Параметры у них практически идентичные, что позволяет использовать любой из контроллеров. Кроме того, эта микросхема позволяет провести подключение тахометра, расположенного на приборной панели автомобиля. Но можно применить и более простую схему, которая представляет собой усилительный блок из двух каскадов. Правда, надежность такого устройства на порядок ниже.

Подключение коммутатора

Случаи бывают разными, не исключено, что придется вам менять проводку. Поэтому потребуется принимать во внимание назначение всех выводов на штекере коммутатора. Это позволит правильно провести подключение, причем риска вывести его из строя не будет. Первый вывод коммутатора - это выход. Другими словами, с него снимается усиленный сигнал. Его нужно соединять с выводом катушки «К». Второй контакт соединяется с массой - минусом аккумуляторной батареи.

Все три провода от датчика Холла идут на коммутатор ВАЗ. Причем сигнальный провод соединяется с шестым выводом коммутатора. Пятый - это вывод для питания (на нем напряжение стабильно 12 Вольт). Третий вывод коммутатора - масса (минус питания). Третий соединен внутри блока со вторым. А вот между четвертым, на который подается питание от АКБ, и пятым имеется постоянное сопротивление и стабилизатор напряжения.

Как осуществить проверку

Ничего сложного нет в этой процедуре. Самый простой способ - это использовать заведомо исправный узел, так как проверить коммутатор таким образом можно буквально за считанные минуты. Но если такового нет, а нужно определить точно, неисправность в катушке либо же в коммутаторе, разумнее использовать другие способы. Потребуется простая лампа накаливания. Если не знаете, где взять ее, то выкрутите из плафона освещения салона либо же из габаритных огней.

Один вывод лампы соединяете с минусом аккумуляторной батареи. Второй подключаете к выводу «1» коммутатора. Это тот самый вывод, с которого снимается усиленный сигнал. Если лампа загорается, то устройство исправно. Более совершенный метод проверки осуществляется при помощи осциллографа. На экране можно видеть величину и форму сигнала, а также сравнить его с эталонным.

Настройка зажигания

При настройке зажигания вам потребуется сделать самое главное - установить валы по меткам, чтобы газораспределение функционировало синхронно с работой поршневой группы. Это первое, что следует сделать перед тем как начать регулировку зажигания. Стоит заметить, что особых трудностей при настройке возникнуть не должно, особенно на автомобилях ВАЗ 2108-21099. Все дело в том, что распределитель зажигания на двигатели этих машин установить можно только в одном положении. Причем коммутатор зажигания при данной процедуре не подвергается никаким настройкам, так как их у него нет.

Корпус трамблера вращается вокруг своей оси, чтобы производить более точную регулировку. И этого оказывается достаточно. Чтобы точно установить момент, можно использовать простейшую схему, в качестве индикатора используется в ней простой светодиод. Датчик Холла отключается от системы, на его минусовой вывод подается плюс питания. Между «+» и сигнальным включается светодиод, для снижения напряжения последовательно с ним включается сопротивление 2 кОм. А вот плюс датчика Холла соединяется с массой. Теперь остается только медленно вращать корпус распределителя. Момент, когда засветится диод, будет являться искомым.

Выводы

Много преимуществ дает такой простой узел в бесконтактной системе зажигания, как коммутатор. Это и повышение мощности, пусть даже незначительное, и уменьшение расхода топлива, и значительное улучшение двигателя с точки зрения надежности. А главное - отпадает необходимость в постоянном контроле и своевременной настройке системы. Современному водителю не хочется заниматься ремонтом автомобиля, ему нужно средство передвижения. Причем надежное, которое не подведет в самый ответственный момент. Независимо от того, какой коммутатор используется в БСЗ, эффективность у него намного выше, нежели у контактного прерывателя.

В различных технических текстах можно встретить термин «коммутатор». Что это такое? В самом общем смысле - это устройство для переключения электрических цепей (сигналов), которое может быть электронным, электронно-лучевым или электромеханическим.

В узком смысле так обычно называют коммутатор зажигания, которым оснащаются любые транспортные средства с бензиновыми двигателями. Этой разновидности коммутаторов, в основном автомобильных, и посвящена данная статья.

Предыстория систем зажигания

Как известно, в каждом цикле работы бензинового существует этап приготовления топливно-воздушной горючей смеси и этап ее сгорания. Но чтобы смесь сгорела, ее нужно чем-то поджечь.

Первым решением, применявшимся в самых ранних автомобильных ДВС, было зажигание смеси от калильной трубки, вставленной в цилиндр и разогреваемой предварительно перед запуском двигателя. При его работе температура этой трубки постоянно поддерживалась за счет сгорающей в каждом цикле работы смеси.

Интересно, что система искрового зажигания от магнето применялась параллельно с калильным зажиганием автодвигателей, но поначалу только для промышленных газовых ДВС. Этот принцип был быстро перенят и автопроизводителями, а после изобретения Р. Бошем в 1902 году привычной свечи зажигания искровая система стала общепринятой.

Принцип искрового зажигания

В настоящее время наиболее распространена батарейная система зажигания, содержащая источник тока в виде автомобильного аккумулятора при пуске и автомобильного генератора при работающем двигателе, катушку зажигания, представляющую собой трансформатор с высоковольтной вторичной обмоткой, к которой присоединена искрообразующая свеча зажигания, а также распределитель (коммутатор) зажигания. Работа коммутатора заключается в периодическом прерывании цепи тока первичной обмотки катушки зажигания. При каждом таком прерывании тока его магнитное поле, существующее в точках пространства, занятых проводами вторичной обмотки катушки зажигания, очень быстро уменьшается. При этом в соответствии с законом электромагнитной индукции в тех же точках пространства возникает весьма большое напряженность которого создает высокую (до 25 кВ) ЭДС во вторичной обмотке катушки зажигания, разорванной электродами свечи. Напряжение между ними быстро достигает величины, достаточной для пробоя воздушного промежутка, и тогда проскакивает электрическая искра, поджигающая топливно-воздушную смесь.

Что коммутируется в системе зажигания?

Итак, автомобильный коммутатор. Что это такое и зачем он нужен? Коротко говоря, это устройство, задачей которого является разрыв цепи тока в первичной обмотке катушки зажигания в наиболее выгодный для этого момент.

В четырехтактном ДВС этот момент наступает в конце такта сжатия (2-го такта работы ДВС), незадолго до достижения поршнем так называемой верхней мертвой точки (ВМТ), в которой расстояние от любой точки поршня до оси вращения коленвала ДВС является максимальным. Поскольку коленвал совершает круговое то момент прерывания тока привязывают к некоторому его положению перед достижением им и поршнем положения ВМТ. Угол между этим положением коленвала и вертикальной плоскостью называют углом опережения зажигания. Он варьируется в диапазоне от 1 до 30 градусов.

Учитывая историю, на вопрос: «Автомобильный коммутатор: что это такое?» - следует отвечать, что это сначала механический, а позже, по мере развития техники, электронный прерыватель тока в катушке зажигания.

Механический предшественник коммутатора зажигания

Собственно, коммутатором это устройство стали называть лишь в последние годы, после того как оно стало полностью электронным. А прежде, начиная с 1910 года, когда на автомобилях «кадиллак» впервые появилась автоматическая система зажигания, его функцию наряду с другими задачами выполнял прерыватель-распределитель (трамблер). Такая двойственность наименования возникла из-за двоякой функции его в системе зажигания. С одной стороны, ток в первичной обмотке катушки зажигания нужно прерывать - отсюда возникает «прерыватель». С другой стороны, напряжение высоковольтной обмотки катушки зажигания нужно поочередно распределять по свечам всех цилиндров, причем с нужным углом опережения. Отсюда вторая половина названия - «распределитель».

Как работали трамблеры?

Прерыватель-распределитель имеет приводимый во вращение от коленвала внутренний вал, на котором закреплен диэлектрический ротор-бегунок с вращающейся токоразносной пластиной на его торце. По пластине скользит подпружиненная угольная щетка, соединенная с высоковольтным центральным контактом в крышке распределителя, который, в свою очередь, соединен с вторичной обмоткой катушки зажигания. Токоразносная пластина периодически приближается к расположенным в крышке трамблера контактам высоковольтных проводов, идущих к свечам цилиндров. В этот момент во вторичной обмотке катушки возникает которое пробивает два воздушных промежутка: между токоразностной пластиной и контактом провода к данной свече и между электродами свечи.

На том же валу установлены кулачки, число которых равно числу цилиндров, а выступы каждого кулачка размыкают одновременно с подключением конкретной свечи контакты прерывателя тока, включенные в цепь первичной обмотки катушки зажигания.

Чтобы между контактами прерывателя не возникало искры при размыкании, параллельно им подключен конденсатор большой емкости. При размыкании контактов прерывателя ЭДС индукции в первичной обмотке вызывает ток заряда конденсатора, но вследствие его большой емкости напряжение на нем, а следовательно и между разомкнутыми контактами, не достигает величины пробоя воздуха.

А как же с углом опережения?

Как известно, при уменьшении частоты вращения коленвала смесь в цилиндрах нужно поджигать в такте ее сжатия попозже, прямо перед самой ВМТ, т.е. угол опережения зажигания следует уменьшать. Наоборот, при увеличении частоты вращения смесь в такте сжатия нужно поджигать пораньше, т.е. угол опережения увеличивать. В трамблерах эту функцию выполнял центробежный регулятор, механически связанный с кулачками прерывателя тока. Он поворачивал их на валу распределителя таким образом, чтобы они пораньше или попозже в такте сжатия смеси размыкали контакты прерывателя.

Изменять угол опережения необходимо и при неизменной частоте, когда меняется нагрузка на двигатель. Эту работу выполняло специальное устройство - вакуумный регулятор зажигания.

Появление первых коммутаторов

К концу 70-х годов прошлого века стало ясно, что самым слабым узлом трамблера являются контакты прерывателя, через которые протекал полный ток первичной обмотки. Они постоянно подгорали и выходили из строя. Поэтому первым решением стала специальная электронная схема коммутатора для прерывания тока в катушке. В ее входную слаботочную цепь включались провода от выводов традиционного контактного прерывателя трамблера. Однако теперь его контакты прерывали не полный ток катушки зажигания, а небольшой ток во входной цепи коммутатора.

Собственно же электронный коммутатор был конструктивно выполнен в отдельном блоке и подключался (по желанию водителя) к классическому трамблеру. Такая система зажигания получила название контактной электронной. Она была весьма популярной в 80-е годы прошлого века. И в наше время еще можно встретить оснащенные ею автомобили.

Схема коммутатора контактной электронной системы собиралась на транзисторах.

Следующий шаг - отказ от контактного прерывателя

Контактный прерыватель тока даже в слаботочном варианте, применяемом в контактной электронной системе зажигания, оставался весьма ненадежным узлом. Поэтому автомобилестроители предпринимали немалые усилия для его исключения. Эти усилия увенчались успехом после создания бесконтактного датчика-распределителя на основе датчика Холла.

Теперь вместо нескольких кулачков на валу распределителя стали устанавливать цилиндрический полый экран с прорезями и шторками между ними, причем число шторок и прорезей равно числу цилиндров двигателя. Шторки и прорези экрана движутся в магнитном поле, создаваемом постоянным магнитом, мимо миниатюрного датчика Холла. Пока мимо него движется шторка экрана, выходное напряжение датчика Холла отсутствует. Когда же шторка сменяется прорезью, с датчика Холла электронной схемой снимается фронт импульса напряжения, свидетельствующий о необходимости прервать ток в первичной обмотке катушки зажигания. Этот импульс напряжения передается по проводам в блок коммутатора тока в катушке зажигания, где он предварительно усиливается и далее используется для управления основным силовым коммутирующим каскадом.

Другим вариантом бесконтактного датчика-распределителя является узел с оптическим датчиком, у которого вместо датчика Холла используется фототранзистор, а вместо постоянного магнита - светодиод. имеет такой же вращающийся экран с прорезями и шторками.

Появление коммутатора как такового

Итак, в бесконтактной системе зажигания вместо одного контактного трамблера появились два отдельных узла: бесконтактный (но только по низкому напряжению) датчик-распределитель и электронный коммутатор. Функцию же распределения высоковольтного напряжения по свечам зажигания в датчике-распределителе по-прежнему выполняет механический ротор-бегунок с токоразносной пластиной.

А как же с регулированием угла зажигания? Эти задачи по-прежнему выполняют центробежный и вакуумный регуляторы в составе датчика-распределителя. Первый из них теперь поворачивает на валу не кулачки, а сдвигает шторки экрана, изменяя тем самым угол зажигания. Вакуумный же регулятор имеет возможность сдвигать датчик Холла с его опорной пластиной, также регулируя данный угол.

Учитывая вышеизложенное, на вопрос: «Современный автомобильный коммутатор: что это такое?» - следует давать ответ, что это конструктивно обособленный электронный блок бесконтактной системы зажигания.

Отказ от распределения высокого напряжения

Дольше всего в коммутаторе сохранялся механический распределитель высоковольтного напряжения по свечам цилиндров. Самое интересное, что этот узел был достаточно надежен и не вызывал больших нареканий. Однако время не стоит на месте, и в начале нашего столетия схема подключения коммутатора претерпела очередные крупные изменения.

В современных автомобилях вообще отсутствует распределение высоковольтного напряжения от одной катушки по разным свечам. Наоборот, в них «размножились» сами катушки и стали принадлежностью свечи каждого цилиндра. Теперь вместо контактной коммутации свечей по высокому напряжению выполняется бесконтактная коммутация их катушек по низкому напряжению. Конечно, это усложняет схему коммутатора, но и возможности современной схемотехники гораздо шире.

В современных автомобилях с инжекторными двигателями управление коммутатором осуществляет либо автономный двигателем, либо бортовой компьютер автомобиля. Эти устройства управления анализируют не только скорость вращения коленвала, но множество других параметров, характеризующих топливо и охлаждающую жидкость, температуру различных узлов и окружающей среды. На основании их анализа в режиме реального времени меняются и настройки угла опережения зажигания.

Неисправности коммутатора

Наиболее часто встречающейся неисправностью механического трамблера является подгорание его контактов: как подвижных, так и высоковольтных контактов свечей. Чтобы этого не случилось (по крайней мере, не слишком быстро), нужно регулярно осматривать их, и если на них образовался нагар, то его следует снять надфилем или мелкой шкуркой.

Если вышел из строя конденсатор, включенный параллельно контактам прерывателя, или резистор в цепи центрального высоковольтного электрода, то их можно заменить.

Неисправности коммутатора электронного, вызванные выходом из строя усилителя импульсов датчика Холла или коммутатора тока катушки, обычно не подлежат устранению, так как такой коммутатор является неразборным. В этом случае, как правило, неисправный блок просто заменяется новым.

Как проверить коммутатор?

Если обороты двигателя на холостом ходу «плавают», или он глохнет на ходу, или вообще не запускается, то следует проверить наличие искры на подключенных к распределителю зажигания с датчиком Холла свечах. Для этого нужно выкрутить их, надеть наконечники бронепроводов, положить свечи на «массу» и «крутануть» коленвал стартером. Если искры нет или она слабая, нужно переходить к коммутатору.

Но как проверить коммутатор? Следует включить зажигание и оценить, как отклоняется стрелка вольтметра. Если коммутатор исправен, то она должна отклоняться в два этапа. Сначала стрелка занимает некоторое промежуточное положение, в котором остается 2-3 секунды, а затем переходит в конечное (штатное) положение. Если стрелка сразу занимает конечное положение, то можно пробовать заменять коммутатор.

Подключение коммутатора

Как подключить коммутатор к бесконтактной системе зажигания? Следует помнить, что его клеммная колодка подключается двумя проводами к клеммам «Б» и «К» катушки зажигания, трехпроводным жгутом с разъемом - к датчику Холла на датчике-распределителе и одним проводом - к «массе». С выводом «+» аккумулятора схема коммутатора соединяется на клемме «Б» катушки.

Подстанции - это наиболее распространённый тип электроустановок. Одновременно в энергосистемах сооружается или реконструируется их большое количество. Поэтому при проектировании в качестве важной задачи считают унификацию схемных и конструктивных решений в целях снижения затрат на сооружение и эксплуатацию подстанций. Их схемы на высшем (35 кВ и более) и низшем (6-10 кВ) напряжении имеют отличия. Рассмотрим их особенности.

Схемы высшего напряжения. Схемы коммутации подстанций зависят от структуры электрических сетей, в которых выделяют источники питания: шины электростанций, а также вторичные стороны подстанций более высокого напряжения. Кроме того, в схемах учитывается количество питающих и нагрузочных узлов, присоединений к узлу, их взаимное расположение и т.д.

Так, в распределительных сетях 110-220 кВ преимущественно применяются радиальные или радиально-узловые схемы (рис. 3.5). Радиальные схемы бывают с односторонним (рис. 3.5, а) или двусторонним (рис. 3.5, б-г) питанием и подключением подстанций по двум линиям. Так же применяются радиально-узловые схемы (рис. 3.5, д-е). В них хотя бы один нагрузочный узел подключен к сети более чем по двум линиям.

Рис. 3.5 Фрагменты топологических схем электрических сетей.

Рис.3.6. Схемы присоединения подстанций.

По способу присоединения к электрической сети различают тупиковые (рис. 3.6, а), ответвительные (рис. 3.6, б), проходные (рис. 3.6, в) и узловые (рис. 3.6, г) подстанции.

Тупиковые подстанции питаются по радиальным линиям.

Ответвительные подстанции присоединяются к проходящим линиям на ответвлении.

Проходные подстанции подключаются к сети заходом одной линии с двусторонним питанием.

Узловыми именуют подстанции, присоединяемые к сети по трем и более линиям электропередачи.

В основных сетях напряжением 500 кВ и выше применяются кольцевые схемы, так как распределительные и основные сети выполняют различные функции. В начальные этапы развития сети высшего напряжения были предназначены для максимального охвата обширных регионов электроснабжения в целях реализации межсистемного эффекта. Продолжительные нагрузки линий электропередачи были относительно невелики. При этом более предпочтительные технико-экономические показатели имели не радиальные, а кольцевые схемы. Сети 330 кВ занимают промежуточное положение, все более приобретая функции распределительных сетей.

Радиальные схемы сети позволяют максимально унифицировать схемы коммутации подстанций; каждая из них имеет четыре присоединения: две линии электропередачи и два автотрансформатора). В зависимости от конфигурации сети применяются упрощенные схемы. С учетом рис. 3.4 и 3.6 установим соответствие схемы присоединения подстанции ее схеме коммутации:

    тупиковые подстанции (рис. 3.6, а) - два блока (рис. 3.4, а или б), два блока с выключателями и неавтоматической перемычкой со стороны линий (рис. 3.4, в );

    ответвительные подстанции (рис. 3.6, б) - ответвления от проходящих линий (рис. 3.4, г, д), являющиеся комбинацией блочных схем;

- проходные подстанции (рис. 3.6, в) - мостик с выключателями в цепях линий и ремонтной перемычкой со стороны линий (рис. 3.4, е), мостик с выключателями в цепях трансформаторов и ремонтной перемычкой со стороны трансформаторов

В последней схеме, сохраняется режим секционирования сети при ремонте в ней любого выключателя. Схема на рис. 3.4, е таким важным с позиций надежности свойством не обладает. Однако отключение линии производится одним выключателем, в то время как в альтернативной схеме - двумя. Как известно, линейные выключатели наиболее часто подвергаются отказам.

Для узловых подстанций используются другие схемы (см. табл. 3.4), в которых применяется большее количество выключателей. Среди этих схем следует выделить схемы с двумя системами шин с обходной (рис. 3.7, а) и с одной секционированной системой шин с обходной (рис. 3.7, б).

В нормальном режиме схема с двумя системами шин с обходной имеет фиксированные присоединения. Они распределяются между системами шин по возможности симметрично; шиносоединительный выключатель нормально включен и секционирует электроустановку (рис. 3.7, в). Тот же вид в нормальном режиме имеет схема с одной секционированной системой шин с обходной (рис. 3.7, г).

При выводе из работы в схеме на рис. 3.7, а одной системы шин, все присоединения группируются на второй системе. Такой возможности в схеме на рис. 3.7, б нет.

Рис.3.7. К сравнению схем с двумя системами шин с обходной со схемой с одной секционированной системой шин с обходной

1 – 4 – присоединения.

Рис. 3.8. Фрагменты главных схем:

а - блок с разъединителем; б - то же, но с выключателем; в - два блока с выключателями и неавтоматической перемычкой со стороны линий; г - мостик с выключателями в цепях трансформаторов и ремонтной перемычкой со стороны трансформаторов; д - то же, но в цепях линий и ремонтной перемычкой со стороны линий; е - заход-выход

Рис. 3.8. Окончание.

Рис. 3.9. Фрагменты главных схем:

а - схема с одной секционированной системой шин с обходной; б - схема с двумя системами шин с обходной

Рис. 3.10. Фрагменты схем РУ:

а – четырехугольник; б – схема 3/2.

Рис. 3.11. Фрагменты схем РУ:

а – трансформатор – шины с подключением линий по схеме 3/2; б - трансформатор – шины.

На рис. 3.12 и 3.13 изображены фрагменты главных схем подстанций на стороне 6-10 кВ . При выборе понижающего трансформатора с расщепленными обмотками

Рис. 3.12. Фрагменты РУ на стороне НН с одинарными реакторами:

а – п/ст с постоянным оперативным током; б – п/ст с переменным оперативным током.

Рис. 3.13. Фрагменты РУ со сдвоенными реакторами на п/ст с постоянным оперативным током.

6-10 кВ количество секций будет так же равно четырем (как на рис. 3.13). Если в его цепях установить еще сдвоенные реакторы, то на двухтрансформаторной подстанции количество секций достигнет восьми.

При наличии на подстанции аккумуляторной батареи (т.е. при постоянном оперативном токе) трансформаторы СН 6-10/0,4 кВ подключаются к секциям 6- 10 кВ наряду с другими присоединениями (см. рис. 3.12, а). Если аккумуляторная батарея отсутствует, то на подстанции используется переменный или выпрямленный оперативный ток, и надежность электроснабжения СН повышают подключением трансформаторов СН до вводного выключателя (см. рис. 3.12, б). Конструктивно это более сложное решение. Оно требует дополнительных токопроводов наружной установки.

На рис. 3.14 приведён вариант ввода 6-10 кВ при оснащении подстанции линейными регулировочными трансформаторами. На рис. 3.15 даны схемы подключения источников реактивной мощности. Крупные синхронные компенсаторы устанавливают на мощных узловых подстанциях напряжением 500-750 кВ и подключают к третичным обмоткам понижающих автотрансформаторов. Синхронные компенсаторы небольшой мощности (до 15 Мвар) включаются в сеть прямым пуском. При мощности 50 Мвар и более используется реакторный пуск (рис. 3.15, а).

Рис. 3.14. Ввод на секцию с линейным регулировочным трансформатором.

Рис. 3.15. Подключение источников реактивной мощности:

а – синхронный компенсатор мощностью 50 – 100 МВАр; б – конденсаторной батареи 110 кВ; в - конденсаторной батареи 6 – 10 кВ.

Источниками реактивной мощности являются так же батареи шунтирующих конденсаторов. Они могут подключаться к шинам 110 кВ (рис. 3.15, б). Схема на рис. 3.15, б позволяет осуществлять форсировку мощности батареи шунтированием выключателем части последовательных рядов конденсаторов в фазе. В нулевых выводах батарей ставятся заградительные реакторы, ограничивающие броски тока при форсировке. На зажимах батареи устанавливаются измерительные трансформаторы напряжением 110 кВ, а на зажимах шунтируемой части - трансформаторы 35 кВ. Последние выполняют функции разрядных сопротивлений.

Схемы включения конденсаторных батарей 6-10 кВ разнообразны. На рис. 3.15, в дана схема регулируемой батареи. За счёт коммутации выключателями ее мощность ступенчато варьируется от 25 до 100 %.

Многие устройства имеют в своем составе цепи управления (коммутации) нагрузкой, которые обеспечивают их включение/выключение и задают яркость свечения ламп и т.д.. Такие цепи обычно строятся на основе тиристоров или симисторов, реже применяют транзисторы, оптотиристоры или электромагнитные реле. Используя современные тиристоры и симисторы можно коммутировать мощные лампы с напряжением питания свыше 220 В. В маломощных светоизлучающих системах с этой же целью могут использоваться мощные транзисторы, которые управляют лампами с низким напряжением питания (возможные пределы зависят от параметров применяемых транзисторов). Ниже приводятся схемы нескольких простейших узлов коммутации нагрузки.

Очень часто в качестве коммутирующих элементов используются тиристоры серии КУ202 и симисторы серии. КУ208. Эти компоненты выдерживают напряжения 25...480 В (зависит от конкретного типа элемента) и обеспечивают ток в открытом состоянии до 5...10 А. Если же необходимо коммутировать светоизлучатели большей мощности, то могут применяться тиристоры серий Т106-10-4, Т122-20-2, Т131-40-3. В общем случае применение симисторов в качестве коммутирующих элементов несколько упрощает схемы вследствие того, что они могут коммутировать переменное напряжение, т.е. отсутствует необходимость во включении диодного моста на входе силовой цепи (повышается КПД и уменьшаются габариты устройства в целом). Кроме этого, имеется принципиальная возможность применения оптотиристоров, которые обеспечивают гальваническую развязку между силовыми цепями и схемой управления.


Puc.1

На рис.1 приведена типовая схема включения тиристора в качестве элемента коммутации обычных ламп накаливания. Управляющий сигнал с амплитудой 3...7В подается непосредственно на управляющий электрод тиристора VS1. Схема управления должна обеспечивать ток до 200 мА на этом входе. Диодный мост VD1-VD4 обеспечивает подачу на тиристор постоянного напряжения (в случае применения симистора диодный мост можно удалить).


Puc.2

На рис. 2 схема коммутации дополнена эмитгерным повторителем. Слаботочный управляющий сигнал подается на базу транзистора VT1. Ток коммутации протекает через транзистор, то-коограничивающий резистор R1 и управляющий электрод тиристора VS1. В этом случае входное управляющее напряжение может иметь амплитуду немногим более 1 В.


Puc.3

С помощью оптронного тиристора (рис. 3) можно гальванически развязать управляющий сигнал и силовые цепи. В этом случае управляющие импульсы поступают на тиристор уже с оптрона.


Puc.4

Схема на рис. 4 позволяет реализовать гальваническую развязку с помощью импульсного трансформатора. На элементах D1.1 и D1.2 собран высокочастотный генератор с частотой 25 кГц. В исходном состоянии генератор заперт низким уровнем на входе 2 элемента D 1.1. При появлении на входе 2 высокого уровня генератор, запускается и высокочастотные импульсы открывают тиристор VS1 (лампа зажигается).


Puc.5

На рисунке 5 приведены другие часто встречающиеся схемы.