Сайт о телевидении

Сайт о телевидении

» » Основные принципы построения локальных сетей. Тема. Сетевые информационные технологии

Основные принципы построения локальных сетей. Тема. Сетевые информационные технологии

ЭК, ПМ – 2

  1. ОБЩИЕ ПРИНЦИПЫ ПОСТРОЕНИЯ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ
  2. ИСТОРИЯ И ЭВОЛЮЦИЯ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ
  3. ОСНОВНЫЕ АППАРАТНЫЕ И ПРОГРАММНЫЕ КОМПОНЕНТЫ СЕТИ.
  4. ПРИНЦИПЫ РАБОТЫ СЕТЕВОГО ОБОРУДОВАНИЯ
  5. ТЕХНОЛОГИИ ETHERNET И FAST ETHERNET.
  6. СЕТЕВЫЕ ТЕХНОЛОГИИ: TOKEN RING, FDDI И 100VG-ANYLAN
  7. ГЛОБОЛЬНЫЕ КОМПЬЮТЕРНЫЕ СЕТИ
  8. МОДЕЛЬ OSI
  9. РЕАЛИЗАЦИЯ МЕЖСЕТЕВОГО ВЗАИМОДЕЙСТВИЯ СРЕДСТВАМИ TCP/IP
  10. АДРЕСАЦИЯ В IP-СЕТЯХ
  11. ПОРЯДОК РАСПРЕДЕЛЕНИЯ IP-АДРЕСОВ
  12. ОТОБРАЖЕНИЕ ДОМЕННЫХ ИМЕН НА IP-АДРЕСА
  13. ИНТЕРФЕЙС WINDOWS SOCKETS
  14. ПРИНЦИПЫ МАРШРУТИЗАЦИИ
  15. ПРОТОКОЛЫ МАРШРУТИЗАЦИИ
  16. ГЛОБАЛЬНАЯ КОМПЬЮТЕРНАЯ СЕТЬ INTERNET
  17. СЕРВИСЫ И СЛУЖБЫ INTERNET.
  18. СРЕДСТВА АНАЛИЗА И ОПТИМИЗАЦИИ ЛОКАЛЬНЫХ СЕТЕЙ
  19. БЕЗОПАСНОСТЬ И ЗАЩИТА ИНФОРМАЦИИ В КОМПЬЮТЕРНЫХ СЕТЯХ
  20. ПРИНЦИПЫ СОЗДАНИЯ ЗАЩИЩЕННЫХ СИСТЕМ СВЯЗИ В РАСПРЕДЕЛЕННЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМАХ

ОБЩИЕ ПРИНЦИПЫ ПОСТРОЕНИЯ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ

Определение и назначение компьютерных сетей

В настоящее время наиболее важным применением компьютеров становится со­здание сетей, обеспечивающих единое информационное пространство для многих пользователей. Особенно наглядно этот процесс проявляется па примере всемир­ной компьютерной сети Internet.

Компьютерной сетью называется совокупность взаимосвязанных через каналы передачи данных компьютеров, обеспечивающих пользо­вателей средствами обмена информацией и коллективного использо­вания ресурсов сети: аппаратных, программных и информационных.

Объединение компьютеров в сеть позволяет совместно использовать дорогостоя­щее оборудование - диски большой емкости, принтеры, основную память, иметь общие программные средства и данные. Глобальные сети предоставляют возмож­ность использовать аппаратные ресурсы удаленных компьютеров. Глобальные сети, охватывая миллионы людей, полностью изменили процесс распространения и вос­приятия информации, сделали обмен информацией через электронную почту са­мой распространенной услугой сети, а основным ресурсом - информацию.

Основным назначением сети является обеспечение простого, удобного и надеж­ного доступа пользователя к распределенным общесетевым ресурсам и организа­ция их коллективного использования при надежной защите от несанкционирован­ного доступа, а также обеспечение удобных и надежных средств передачи данных между пользователями сети. С помощью сетей эти проблемы решаются независи­мо от территориального расположения пользователей. В эпоху всеобщей инфор­матизации большие объемы информации хранятся, обрабатываются и передаются в локальных и глобальных компьютерных сетях. В локальных сетях создаются общие базы данных для работы пользователей. В глобальных сетях осуществля­ется формирование единого научного, экономического, социального и культурно­го информационного пространства.


Существует множество задач, нуждающихся в централизованных общих данных, удаленном доступе к базам данных, передаче данных на расстояние и их распре­деленной обработке. Примерами являются банковские и другие финансовые структуры; коммерческие системы, отражающие состояние рынка («спрос-пред­ложение»); системы социального обеспечения; налоговые службы; дистанционное компьютерное обучение; системы резервирования авиабилетов; дистанционная медицинская диагностика; избирательные системы. Во всех этих приложениях необходимо, чтобы в сети осуществлялся сбор, хранение и доступ к данным, гаран­тировалась защита данных от искажений и несанкционированного доступа.

Помимо научной, деловой, образовательной, общественной и культурной сфер жиз­ни, глобальная сеть охватила и сделала доступным для миллионов людей новый вид отдыха и развлечений. Сеть превратилась в инструмент ежедневной работы и организации досуга людей самого разного круга.

Классификация сетей

Компьютерные сети можно классифицировать по ряду признаков, в том числе по степени территориальной распределенности. При этом различают: глобальные, региональные и локальные сети.

Глобальные сети объединяют пользователей, расположенных по всему миру, и часто используют спутниковые каналы связи, позволяющие соединять узлы сети связи и ЭВМ, находящиеся на расстоянии 10-15 тыс, км друг от друга.

Региональные сети объединяют пользователей города, области, небольших стран. В качестве каналов связи чаще всего используются телефонные линии. Расстояния между узлами сети составляют 10-1000 км.

Локальные сети ЭВМ связывают абонентов одного или нескольких близле­жащих зданий одного предприятия, учреждения. Локальные сети получили очень широкое распространение, так как 80-90% информации циркулирует вблизи мест ее появления и только 10-20% связано с внешними взаимодействиями. Локаль­ные сети могут иметь любую структуру, но чаще всего компьютеры в локальной сети связаны единым высокоскоростным каналом передачи данных. Единый для всех компьютеров высокоскоростной канал передачи данных - главная отличи­тельная особенность локальных сетей. В качестве канала передачи данных ис­пользуются: витая пара, коаксиальный кабель, оптический кабель и др. В оптичес­ком канале световод сделан из кварцевого стекла толщиной в человеческий волос. Это наиболее высокоскоростной, надежный, но и дорогостоящий кабель. Расстоя­ния между ЭВМ в локальной сети небольшие - до 10 км. При использовании радиоканалов связи - до 20 км. Каналы в локальных сетях являются собствен­ностью организаций и это упрощает их эксплуатацию.

Сетевое программное обеспечение

Функциональные возможности сети определяются теми услугами, которые она предоставляет пользователю. Для реализации каждой из услуг сети и доступа пользователя к этой услуге разрабатывается программное обеспечение.

Программное обеспечение, предназначенное для работы в сети, должно быть ори­ентированным на одновременное использование многими пользователями. В на­стоящее время получили распространение две основные концепции построения такого программного обеспечения.

В первой концепции сетевое программное обеспечение ориентировано на предо­ставление многим пользователям ресурсов некоторого общедоступного главного компьютера сети, называемогофайловым сервером. Это название он полу­чил потому, что основным ресурсом главного компьютера являются файлы. Это могут быть файлы, содержащие программные модули или данные. Файловый сервер - самый общий тип сервера. Очевидно, емкость дисков файлового серве­ра должна быть больше, чем на обычном компьютере, так как он используется многими компьютерами. В сети может быть несколько файловых серверов. Мож­но назвать и другие ресурсы файлового сервера, предоставляемые в совместное использование пользователям сети, например принтер, модем, устройство для фак­симильной связи. Сетевое программное обеспечение, управляющее ресурсами фай­лового сервера и предоставляющее к ним доступ многим пользователям сети, называется сетевойоперационной системой . Ее основная часть размеща­ется на файловом сервере; на рабочих станциях устанавливается только неболь­шая оболочка, выполняющая роль интерфейса между программами, обращающи­мися за ресурсом, и файловым сервером.

Программные системы, ориентированные на работу в рамках этой концепции, позволяют пользователю использовать ресурсы файлового сервера. Как пра­вило, сами эти программные системы также могут храниться на файловом сервере и использоваться всеми пользователями одновременно, но для вы­полнения модули этих программ по мере необходимости переносятся на компьютер пользователя -рабочую станцию и там выполняют работу, для которой они предназначены. При этом вся обработка данных, даже если они являются общим ресурсом и хранятся на файловом сервере, производит­ся на компьютере пользователя. Очевидно, что для этого файлы, в которых хранятся данные, должны быть перемешены на компьютер пользователя,

Во второй концепции, называемойархитектурой “клиент-сервера”, про­граммное обеспечение ориентировано не только на коллективное использова­ние ресурсов, но и на их обработку в месте размещения ресурса по запросам пользователей. Программные системы архитектуры клиент-сервер состоят из двух частей: программного обеспечения сервера и программного обеспе­чения пользователя-клиента. Работа этих систем организуется следующим образом: программы-клиенты выполняются на компьютере пользователя и посылают запросы к программе-серверу, которая работает на компьютере об­щего доступа. Основная обработка данных производится мощным сервером, а на компьютер пользователя посылаются только результаты выполнения запроса. Так, например, сервер баз данных используется в мощных СУБД, таких как Microsoft SQL Server, Oracle и др., работающих с распределенными базами дан­ных. Серверы баз данных рассчитаны на работу с большими объемами данных (десятки гигабайт и более) и большое число пользователей и обеспечивают при этом высокую производительность, надежность и защищенность. В приложениях глобальных сетей архитектура клиент-сервер (в определенном смысле) является основной. Широко известны Web-серверы, обеспечивающие хранение и обработ­ку гипертекстовых страниц, FTP-серверы, серверы электронной почты и множе­ство других. Клиентские программы перечисленных служб позволяют сформули­ровать запрос на получение услуги со стороны этих серверов и принять от них ответ.

Любой компьютер сети, имеющий разделяемый ресурс, может быть назван серве­ром. Так, компьютер с разделяемым модемом, к которому имеют доступ пользо­ватели с других компьютеров, - этомодемный иликоммуникационный сервер.

Преимущества вычислительных сетей

При появлении вычислительных сетей естественным образом возник вопрос: в каких случаях их развертывание предпочтительнее использованию автономных компьютеров или многомашинных систем? Какие новые возможности открываются с появлением вычислительной сети? И, наконец, всегда ли нужна сеть?

Если не вдаваться в частности, то конечной целью использования вычисли­тельных сетей является повышение эффективности работы, которое может выражаться, например, в увеличении прибыли предприятия. Дей­ствительно, если благодаря компьютеризации снизились затраты на производство уже существующего продукта, сократились сроки разработки новой модели или ускорилось обслуживание заказов потребителей - это означает, что сеть действительно была нужна.

Более обстоятельно отвечая на вопрос, зачем нужна сеть, начнем с рас­смотрения тех принципиальных преимуществ сетей, которые вытекают из их при­надлежности к распределенным системам.

Концептуальным преимуществом распределенных систем (а значит и сетей) пе­ред централизованными системами является их способность выполнять параллель­ные вычисления. За счет этого в системе с несколькими обрабатывающими узлами в принципе может быть достигнута производительность, превышающая максимально возможную на данный момент производительность любого отдельного, сколь угодно мощного процессора. Распределенные системы потенциально имеют лучшее соотно­шение производительность-стоимость, чем централизованные системы.

Еще одно очевидное и важное достоинство распределенных систем - это их принципиально более высокая отказоустойчивость. Под отказоустойчивостью по­нимается способность системы выполнять свои функции (может быть, не в пол­ном объеме) при отказах отдельных элементов аппаратуры и неполной доступности данных. Основой повышенной отказоустойчивости распределенных систем явля­ется избыточность. Избыточность обрабатывающих узлов (процессоров в много­процессорных системах или компьютеров в сетях) позволяет при отказе одного узла переназначать приписанные ему задачи на другие узлы. С этой целью в распределенной системе могут быть предусмотрены процедуры динамической или статической реконфигурации. В вычислительных сетях некоторые наборы дан­ных могут дублироваться на внешних запоминающих устройствах нескольких компьютеров сети, так что при отказе одного их них данные остаются доступ­ными.

Использование территориально распределенных вычислительных систем боль­ше соответствует распределенному характеру прикладных задач в некоторых предметных областях, таких как автоматизация технологических процессов, бан­ковская деятельность и т. п. Во всех этих случаях имеются рассредоточенные по некоторой территории отдельные потребители информации – сотрудники, органи­зации или технологические установки. Эти потребители достаточно автономно решают свои задачи, поэтому рациональнее предоставлять им собственные вычис­лительные средства, но в то же время, поскольку решаемые ими задачи тесно вза­имосвязаны, их вычислительные средства должны быть объединены в единую систему. Адекватным решением в такой ситуации является использование вычис­лительной сети.

Для пользователя, кроме выше названных, распределенные системы дают еще и такие преимущества, как возможность совместного использования данных и устройств, а также возможность гибкого распределения работ по всей системе. Такое разделение дорогостоящих периферийных устройств – таких как дисковые масси­вы большой емкости, цветные принтеры, графопостроители, модемы, оптические диски – во многих случаях является основной причиной развертывания сети на предприятии. Пользователь современной вычислительной сети работает за своим компьютером, часто не отдавая себе отчета в том, что при этом он пользуется дан­ными другого мощного компьютера, находящегося за сотни километров от него. Он отправляет электронную почту через модем, подключенный к коммуникацион­ному серверу, общему для нескольких отделов его предприятия. У пользователя создается иллюзия, что эти ресурсы подключены непосредственно к его компьюте­ру или же «почти» подключены, так как для их использования нужны незначи­тельные дополнительные действия по сравнению с использованием действительно собственных ресурсов. Такое свойство называется прозрачностью сети.

В последнее время стал преобладать другой побудительный мотив развертыва­ния сетей, гораздо более важный в современных условиях, чем экономия средств за счет разделения между сотрудниками корпорации дорогой аппаратуры или про­грамм. Этим мотивом стало стремление обеспечить сотрудникам оперативный до­ступ к обширной корпоративной информации. Чтобы такая работа была возможна, необходимо не только наличие быстрых и надежных связей в корпоративной сети, но и наличие структурированной информации на серверах организации, а также возможность эффективного поиска нужных данных. Этот аспект сетевой работы всегда был узким местом в органи­зации доставки информации сотрудникам, даже при существовании мощных СУБД информация в них попадала не самая «свежая» и не в том объеме, кото­рый был нужен. В последнее время в этой области наметился некоторый про­гресс, связанный с использованием гипертекстовой информационной службы WWW – так называемой технологии Intranet. Эта технология поддерживает дос­таточно простой способ представления текстовой и графической информации в виде гипертекстовых страниц, что позволяет быстро поместить самую свежую ин­формацию на WWW-серверы корпорации. Кроме того, она унифицирует просмотр информации с помощью стандартных программ - WEB-броузеров, работа с кото­рыми несложна даже для неспециалиста. Сейчас многие крупные корпорации уже перенесли огромные кипы своих документов на страницы WWW-серверов, и со­трудники этих фирм, разбросанные по всему миру, используют информацию этих серверов через Internet. Получая легкий и более полный доступ к информации, сотрудники принимают решение быстрее, и качество этого решения, как правило, выше.

Использование сети приводит к совершенствованию коммуникаций, то есть к улучшению процесса обмена информацией и взаимодействия между сотрудника­ми предприятия, а также его клиентами и поставщиками. Сети снижают потреб­ность предприятий в других формах передачи информации, таких как телефон или обычная почта. Зачастую именно возможность организации электронной по­чты является основной причиной и экономическим обоснованием развертывания на предприятии вычислительной сети. Все большее распространение получают новые технологии, которые позволяют передавать по сетевым каналам связи не только компьютерные данные, но голосовую и видеоинформацию. Корпоративная сеть, которая интегрирует данные и мультимедийную информацию, может использо­ваться для организации аудио и видеоконференций, кроме того, на ее основе мо­жет быть создана собственная внутренняя телефонная сеть.

Проблемы построения и использования вычислительных сетей

Конечно, вычислительные сети имеют и свои проблемы. Эти проблемы в основ­ном связаны с организацией эффективного взаимодействия отдельных частей распределенной системы.

Во-первых, это сложности, связанные с программным обеспечением – операционными системами и приложениями. Программирование для распределенных систем принципиально отличается от программирования для централизованных систем. Так, сетевая операционная система, выполняя в общем случае все функции по управлению локальными ресурсами компьютера, сверх того решает многочис­ленные задачи по предоставлению сетевых служб. Разработка сетевых приложений осложняется из-за необходимости организовать совместную работу их частей, вы­полняющихся на разных машинах. Много забот доставляет обеспечение совмести­мости программного обеспечения.

Во-вторых, много проблем связано с транспортировкой сообщений по каналам связи между компьютерами. Основные задачи здесь – обеспечение надежности (чтобы передаваемые данные не терялись и не искажались) и производительности (чтобы обмен данными происходил с приемлемыми задержками). В структуре общих затрат на вычислительную сеть расходы на решение «транспортных вопросов» составляют существенную часть, в то время как в централизованных системах эти проблемы полностью отсутствуют.

В-третьих, это вопросы, связанные с обеспечением безопасности, которые го­раздо сложнее решаются в вычислительной сети, чем в централизованной системе. В некоторых случаях, когда безопасность особенно важна, от использования сети лучше вообще отказаться.

Можно приводить еще много «за» и «против» использования сетей, но главным доказательством эффективности является бесспорный факт их повсеместного рас­пространения. Трудно найти сколь-нибудь крупное предприятие, на котором не было хотя бы односегментной сети персональных компьютеров; все больше и боль­ше появляется крупных сетей с сотнями рабочих станций и десятками серверов, некоторые большие организации и предприятия обзаводятся частными глобаль­ными сетями, объединяющими их филиалы, удаленные на тысячи километров. В каждом конкретном случае для создания сети были свои резоны, но верно и общее утверждение: что-то в этих сетях все-таки есть.

Вычислительные сети явились результатом эволюции компьютерных технологий.

Вычислительная сеть – это совокупность компьютеров, соединенных линиями связи.

Линии связи образованы кабелями, сетевыми адаптерами и другими ком­муникационными устройствами.

Все сетевое оборудование работает под управ­лением системного и прикладного программного обеспечения.

Основная цель сети – обеспечить пользователям сети потенциальную возмож­ность совместного использования ресурсов всех компьютеров.

Вычислительная сеть – это одна из разновидностей распределенных систем, достоинством которых является возможность распараллеливания вычислений, за счет чего может быть достигнуто повышение производительности и отказо­устойчивости системы.

Важнейший этап в развитии сетей – появление стандартных сетевых техноло­гий типа Ethernet, позволяющих быстро и эффективно объединять компьюте­ры различных типов.

Использование вычислительных сетей дает предприятию следующие возмож­ности:

Разделение дорогостоящих ресурсов;

Совершенствование коммуникаций;

Улучшение доступа к информации;

Быстрое и качественное принятие решений;

Свобода в территориальном размещении компьютеров.

Современные темпы развития сетевых технологий требуют постоянного совершенствования и обновления существующих решений и методов организации взаимодействия распределенных компьютерных систем.

Существует ряд принципов построения ЛВС на основе выше рассмот­ренных компонентов. Такие принципы еще называют - топологиями.

Топологии вычислительной сети

Топология типа звезда

Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с пе­риферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте RELCOM. Вся информация между двумя периферийными рабочими мес­тами проходит через центральный узел вычислительной сети.

рис.1 Топология типа звезда

Пропускная способность сети определяется вычислительной мощно­стью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.

Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других тополо­гиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким ме­стом вычислительной сети. В случае выхода из строя центрального узла на­рушается работа всей сети.

Центральный узел управления - файловый сервер мотает реализо­вать оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

Кольцевая топология.

При кольцевой топологии сети рабочие станции связаны одна с дру­гой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3

рис.2 Кольцевая топология

с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).

Сообщения циркулируют регулярно по кругу. Рабочая станция посы­лает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффектив­ной, так как большинство сообщений можно отправлять “в дорогу” по ка­бельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличи­вается пропорционально количеству рабочих станций, входящих в вычисли­тельную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информа­ции, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограниче­ния на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

рис.3 Структура логической кольцевой цепи

Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топо­логий. Отдельные звезды включаются с помощью специальных коммутато­ров (англ. Hub -концентратор), которые по-русски также иногда называют “хаб”. В зависимости от числа рабочих станций и длины кабеля между рабо­чими станциями применяют активные или пассивные концентраторы. Актив­ные концентраторы дополнительно содержат усилитель для подключения от 4 до 16 рабочих станций. Пассивный концентратор является исключи­тельно разветвительным устройством (максимум на три рабочие станции). Управление отдельной рабочей станцией в логической кольцевой сети про­исходит так же, как и в обычной кольцевой сети. Каждой рабочей станции присваивается соответствующий ей адрес, по которому передается управ­ление (от старшего к младшему и от самого младшего к самому старшему). Разрыв соединения происходит только для нижерасположенного (ближайшего) узла вычислительной сети, так что лишь в редких случаях мо­жет нарушаться работа всей сети.

Шинная топология.

При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут не­посредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

рис.4 Шинная топология

Рабочие станции в любое время, без прерывания работы всей вычис­лительной сети, могут быть подключены к ней или отключены. Функциони­рование вычислительной сети не зависит от состояния отдельной рабочей станции.

В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet-кaбeль с тройниковым соединителем. Выклю­чение и особенно подключение к такой сети требуют разрыва шины, что вы­зывает нарушение циркулирующего потока информации и зависание сис­темы.

Новые технологии предлагают пассивные штепсельные коробки, че­рез которые можно отключать и / или включать рабочие станции во время работы вычислительной сети.

Благодаря тому, что рабочие станции можно включать без прерыва­ния сетевых процессов и коммуникационной среды, очень легко прослуши­вать информацию, т.е. ответвлять информацию из коммуникационной среды.

В ЛВС с прямой (не модулируемой) передачей информации всегда может существовать только одна станция, передающая информацию. Для предот­вращения коллизий в большинстве случаев применяется временной метод разделения, согласно которому для каждой подключенной рабочей станции в определенные моменты времени предоставляется исключительное право на использование канала передачи данных. Поэтому требования к пропуск­ной способности вычислительной сети при повышенной нагрузке снижа­ются, например, при вводе новых рабочих станций. Рабочие станции при­соединяются к шине посредством устройств ТАР (англ. Terminal Access Point - точка подключения терминала). ТАР представляет собой специальный тип подсоединения к коаксиальному кабелю. Зонд игольчатой формы внедря­ется через наружную оболочку внешнего проводника и слой диэлектрика к внутреннему проводнику и присоединяется к нему.

В ЛВС с модулированной широкополосной передачей информации различные рабочие станции получают, по мере надобности, частоту, на ко­торой эти рабочие станции могут отправлять и получать информацию. Пе­ресылаемые данные модулируются на соответствующих несущих частотах, т.е. между средой передачи информации и рабочими станциями находятся соответственно модемы для модуляции и демодуляции. Техника широкопо­лосных сообщений позволяет одновременно транспортировать в коммуни­кационной среде довольно большой объем информации. Для дальнейшего развития дискретной транспортировки данных не играет роли, какая перво­начальная информация подана в модем (аналоговая или цифровая), так как она все равно в дальнейшем будет преобразована.

Характеристики топологий вычислительных сетей приведены в таб­лице.

Характери­стики

Топология

Звезда

Кольцо

Шина

Стоимость расширения

Незначительная

Присоединение абонентов

Пассивное

Активное

Пассивное

Защита от от­казов

Незначительная

Незначительная

Размеры сис­темы

Ограниченны

Защищенность от прослуши­вания

Незначительная

Стоимость подключения

Незначительная

Незначительная

Поведение системы при высоких на­грузках

Удовлетворитель­ное

Возможность работы в ре­альном режиме времени

Очень хорошая

Разводка ка­беля

Удовлетворитель­ная

Обслуживание

Очень хорошее

Древовидная структура ЛВС.

рис.5 Древовидная структура ЛВС

На ряду с известными топологиями вычислительных сетей кольцо, звезда и шина, на практике применяется и комбинированная, на пример древовидна структура. Она образуется в основном в виде комбинаций вы­шеназванных топологий вычислительных сетей. Основание дерева вычис­лительной сети располагается в точке (корень), в которой собираются ком­муникационные линии информации (ветви дерева).

Вычислительные сети с древовидной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде. Для подключения большого числа рабочих станций соответст­венно адаптерным платам применяют сетевые усилители и / или коммута­торы. Коммутатор, обладающий одновременно и функциями усилителя, на­зывают активным концентратором.

На практике применяют две их разновидности, обеспечивающие под­ключение соответственно восьми или шестнадцати линий.

Устройство к которому можно присоединить максимум три станции, называют пассивным концентратором. Пассивный концентратор обычно ис­пользуют как разветвитель. Он не нуждается в усилителе. Предпосылкой для подключения пассивного концентратора является то, что максимальное возможное расстояние до рабочей станции не должно превышать несколь­ких десятков метров.

Типы построения сетей по методам передачи информации

Локальная сеть Token Ring

Этот стандарт разработан фирмой IBM. В качестве передающей среды применяется неэкранированная или экранированная витая пара (UPT или SPT) или оптоволокно. Скорость передачи данных 4 Мбит/с или 16Мбит/с. В качестве метода управле­ния доступом станций к передающей среде используется метод - маркерное кольцо (Тоken Ring). Основные положения этого метода:

    устройства подключаются к сети по топологии кольцо;

    все устройства, подключенные к сети, могут передавать данные, только получив разрешение на передачу (маркер);

    в любой момент времени только одна станция в сети обладает таким правом.

Типы пакетов

В IВМ Тоkеn Ring используются три основных типа пакетов:

    пакет управление/данные (Data/Соmmand Frame);

    маркер (Token);

    пакет сброса (Аbort).

Пакет Управление/Данные. С помощью такого пакета выполняется

передача данных или команд управления работой сети.

Маркер. Станция может начать передачу данных только после получения такого пакета, В одном кольце может быть только один маркер и, соответственно, только одна станция с правом передачи данных.

Пакет Сброса. Посылка такого пакета называет прекращение любых передач.

В сети можно подключать компьютеры по топологии звезда или кольцо.

Локальная сеть Arknet

Arknet (Attached Resource Computer NETWork) - простая, недорогая, надежная и достаточно гибкая архитектура локальной сети. Разработана корпорацией Datapoint в 1977 году. Впоследствии лицензию на Аrcnet приобрела корпорация SМС (Standard Microsistem Corporation), которая стала основным разработчиком и производителем оборудования для сетей Аrcnet. В качестве передающей среды используются витая пара, коаксиальный кабель (RG-62) с волновым сопротивлением 93 Ом и оптоволоконный кабель. Скорость передачи данных - 2,5 Мбит/с. При подключении устройств в Аrcnet применяют топологии шина и звезда. Метод управления доступом станций к передающей среде - маркерная шина (Тоken Bus). Этот метод предусматривает следующие правила:

    Все устройства, подключенные к сети, могут передавать данные

    только получив разрешение на передачу (маркер);

    В любой момент времени только одна станция в сети обладает таким правом;

    Данные, передаваемые одной станцией, доступны всем станциям сети.

Основные принципы работы

Передача каждого байта в Аrcnet выполняется специальной посылкой ISU(Information Symbol Unit - единица передачи информации), состоящей из трех служебных старт/стоповых битов и восьми битов данных. В начале каждого пакета передается начальный разделитель АВ (Аlегt Вurst), который состоит из шести служебных битов. Начальный разделитель выполняет функции преамбулы пакета.

В Аrcnet определены 5 типов пакетов:

    Пакет IТТ (Information To Transmit) - приглашение к передаче. Эта посылка передает управление от одного узла сети другому. Станция, принявшая этот пакет, получает право на передачу данных.

    Пакет FBE (Free Buffeг Еnquiries) - запрос о готовности к приему данных. Этим пакетом проверяется готовность узла к приему данных.

    Пакет данных. С помощью этой посылки производиться передача данных.

    Пакет АСК (ACKnowledgments) - подтверждение приема. Подтверждение готовности к приему данных или подтверждение приема пакета данных без ошибок, т.е. в ответ на FBE и пакет данных.

    Пакет NAK (Negative AcKnowledgments) - неготовность к приему. Неготовность узла к приему данных (ответ на FBE) или принят пакет с ошибкой.

В сети Arknet можно использовать две топологии: звезда и шина.

Локальная сеть Ethernet

Спецификацию Ethernet в конце семидесятых годов предложила компания Xerox Corporation. Позднее к этому проекту присоединились компании Digital Equipment Corporation (DEC) и Intel Corporation. В 1982 году была опубликована спецификация на Ethernet версии 2.0. На базе Ethernet институтом IEEE был разработан стандарт IEEE 802.3. Различия между ними незначительные.

Основные принципы работы.

На логическом уровне в Ethernet применяется топология шина:

    все устройства, подключенные к сети, равноправны, т.е. любая станция может начать передачу в любой момент времени(если передающая среда свободна);

    данные, передаваемые одной станцией, доступны всем станциям сети.

Стандартные стеки коммуникационных протоколов

Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком коммуникационных протоколов.

Важнейшим направлением стандартизации в области вычислительных сетей явля­ется стандартизация коммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наибо­лее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSI. Все эти стеки, кроме SNA на нижних уровнях - физическом и канальном, - используют одни и же хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и некоторые другие, которые позволяют использовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим собственным протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни. В частости, функции сеансового и представи­тельного уровня, как правило, объединены с прикладным уровнем. Такое несоот­ветствие связано с тем, что модель OSI появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.

Стек OSI

Следует четко различать модель OSI и стек OSI. В то время как модель OSI явля­ется концептуальной схемой взаимодействия открытия систем, стек OSI представ­ляет собой набор вполне конкретных спецификаций протоколов. В отличие от других стеков протоколов стек OSI полностью соответствует модели OSI, он включает спецификации протоколов для всех семи уровней взаимодействия, определенных в этой модели. На нижних уровнях стек OSI поддерживает Ethernet, Token Ring, FDDI, протоколы глобальных сетей, Х.25 и ISDN, - то есть использует разработанные вне стека протоколы нижних уровней, как и все другие стеки. Протоколы сетевого, транспортного и сеансового уровней стека OSI специфицированы и реа­лизованы различными производителями, но распространены пока мало.Наиболее популярными протоколами стека OSI являются прикладные протоколы. К ним относится: протокол передачи файлов FTAM, протокол эмуляции терминала VTP, протоколы справочной службы Х.500, злектронной почты Х-400 и ряд других. Протоколы стека OSI отличает большая сложность и неоднозначность специ­фикаций. Эти свойства явились результатом общей политики разработчиков стека, стремившихся учесть в своих протоколах все случаи жизни и все существующие и появляющиеся технологии. К этому нужно еще добавить и последствия большого количества политических компромиссов, неизбежных при принятии международных стандартов по такому злободневному вопросу, как построение открытых вы­числительных сетей.

Из-за своей сложности протоколы OSI требуют больших затрат вычислительной мощности центрального процессора, что делает их наиболее подходящими для мощных машин, а не для сетей персональных компьютеров.

Стек OSI - международный, независимый от производителей стандарт. Его поддерживает правительство США в своей программе GOSIP, в соответствии с которой все компьютерные сети, устанавливаемые в правительственных учрежде­ниях США после 1990 года, должны или непосредственно поддерживать стек OSI, или обеспечивать средства для перехода на этот стек в будущем. Тем не менее стек OSI более популярен в Европе, чем в США, так как в Европе осталось меньше старых сетей, работающих по своим собственным протоколам. Большинство организаций пока только планируют, переход к стеку OSI, и очень немногие приступи­ли к созданию пилотных проектов. Из тех, кто работает в этом направлении, можно назвать Военно-морское ведомство США и сеть NFSNET. Одним из крупнейших производителей, поддерживающих OSI, является компания AT&T, ее сеть Stargroup полностью базируется на этом стеке.

Стек TCP/IP

Стек TCP/IP был разработан по инициативе Министерства обороны США более 20 лет назад для связи экспериментальной сети ARPAnet с другими сетями как набор общих протоколов для разнородной вычислительной среды. Большой вклад в развитие стека TCP/IP, который получил свое название по популярным протоко­лам IP и TCP, внес университет Беркли, реализовав протоколы стека в своей вер­сии ОС UNIX. Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров всемирной информационной сети Internet, а также в огромном числе корпоративных сетей.

Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - это Ethernet, Token Ring, FDDI, для глобальных - протоколы работы на аналоговых коммутируемых и вы­деленных линиях SLIP, РРР, протоколы территориальных сетей Х.25 и ISDN.

Основными протоколами стека, давшими ему название, являются протоколы IP и TCP. Эти протоколы в терминологии модели OSI относятся к сетевому и транспортному уровням соответственно. IP обеспечивает продвижение пакета по составной сети, a TCP гарантирует надежность его доставки.

За долгие годы использования в сетях различных стран и организаций стек TCP/IP вобрал в себя большое количество протоколов прикладного уровня. К ним относятся такие популярные протоколы, как протокол пересылки файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы службы WWW и многие другие. Сегодня стек TCP/IP представляет собой один из самых распространенных стеков транспортных протоколов вычислительных сетей. Действительно, только в сети Internet объединено около 10 миллионов компьютеров по всему миру, кото­рые взаимодействуют друг с другом с помощью стека протоколов TCP/IP.

Стремительный рост популярности Internet привел и к изменениям в расста­новке сил в мире коммуникационных протоколов - протоколы TCP/IP, на кото­рых построен Internet, стали быстро теснить бесспорного лидера прошлых лет - стек IPX/SPX компании Novell. Сегодня в мире общее количество компьютеров, на которых установлен стек TCP/IP, сравнялось с общим количеством компьюте­ров, на которых работает стек IPX/SPX, и это говорит о резком переломе в от­ношении администраторов локальных сетей к протоколам, используемым на настольных компьютерах, так как именно они составляют подавляющее число ми­рового компьютерного парка и именно на них раньше почти везде работали прото­колы компании Novell, необходимые для доступа к файловым серверам NetWare. Процесс становления стека TCP/IP в качестве стека номер один в любых типах сетей продолжается, и сейчас любая промышленная операционная система обя­зательно включает программную реализацию этого стека в своем комплекте по­ставки.

Хотя протоколы TCP/IP неразрывно связаны с Internet и каждый из много­миллионной армады компьютеров Internet работает на основе этого стека, суще­ствует большое количество локальных, корпоративных и территориальных сетей, непосредственно не являющихся частями Internet, в которых также используют протоколы TCP/IP. Чтобы отличать их от Internet, эти сети называют сетями TCP/IP или просто IP-сетями.

Поскольку стек TCP/IP изначально создавался для глобальной сети Internet, он имеет много особенностей, дающих ему преимущество перед другими протоколами, когда речь заходит о построении сетей, включающих глобальные связи. В част­ности, очень полезным свойством, делающим возможным применение этого протокола в больших сетях, является его способность фрагментировать пакеты. Действительно, большая составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть установлена собственная величина максимальной длины единицы передаваемых данных (кад­ра). В таком случае при переходе из одной сети, имеющей большую максимальную длину, в сеть с меньшей максимальной длиной может возникнуть необходимость деления передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эф­фективно решает эту задачу.

Другой особенностью технологии TCP/IP является гибкая система адресации, позволяющая более просто по сравнению с другими протоколами аналогич­ного назначения включать в интерсеть сети других технологий. Это свойство также способствует применению стека TCP/IP для построения больших гетеро­генных сетей.

В стеке TCP/IP очень экономно используются возможности широковещатель­ных рассылок. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей. Однако, как и всегда, за получаемые преимущества надо платить, и платой здесь оказываются высокие требования к ресурсам и сложность администрирования IP сетей. Мощные функциональные возможности протоколов стека TCP/IP требуют для своей реализации высоких вычислительных затрат. Гибкая система адресации и отказ от широковещательных рассылок приводят к наличию в IP-сети различных централизованных служб типа DNS, DHCP и т. п. Каждая из этих служб на правлена на облегчение администрирования сети, в том числе и на облегчение кон­фигурирования оборудования, но в то же время сама требует пристального внима­ния со стороны администраторов.

Можно приводить и другие доводы за и против стека протоколов Internet, од­нако факт остается фактом - сегодня это самый популярный стек протоколов, широко используемый как в глобальных, так и локальных сетях.

Стек IPX / SPX

Этот стек является оригинальным стеком протоколов фирмы Novell, разработанным для сетевой операционной системы NetWare еще в начале 80-х годов. Прото­колы сетевого и сеансового уровней Internetwork Packet Exchange (IPX) и Sequenced Packet Exchange (SPX), которые дали название стеку, являются прямой адаптаци­ей протоколов XNS фирмы Xerox, распространенных в гораздо меньшей степени, чем стек IPX/SPX. Популярность стека IPX/SPX непосредственно связана с опе­рационной системой Novell NetWare, которая еще сохраняет мировое лидерство по числу установленных систем, хотя в последнее время ее популярность несколько снизилась и по темпам роста она отстает от Microsoft Windows NT.Многие особенности стека IPX/SPX обусловлены ориентацией ранних версий ОС NetWare (до версии 4.0) на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Понятно, что для таких компьютеров компании Novell нужны были протоколы, на реализацию которых требовалось бы минимальное количество оперативной памяти (ограниченной в IBM-совместимых компьютерах под управлением MS-DOS объемом 640 Кбайт) и которые бы быстро работали на процессорах небольшой вычисли­тельной мощности. В результате протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень - в больших корпоративных сетях, так как они слишком перегружали медленные глобальные связи широковещатель­ными пакетами, которые интенсивно используются несколькими протоколами этого стека (например, для установления связи между клиентами и серверами). Это об­стоятельство, а также тот факт, что стек IPX/SPX является собственностью фир­мы Novell и на его реализацию нужно получать лицензию (то есть открытые спецификации не поддерживались), долгое время ограничивали распространен­ность его только сетями NetWare. Однако с момента выпуска версии NetWare 4.0 Novell внесла и продолжает вносить в свои протоколы серьезные изменения, на­правленные на их адаптацию для работы в корпоративных сетях. Сейчас стек IPX/ SPX реализован не только в NetWare, но и в нескольких других популярных сете­вых ОС, например SCO UNIX, Sun Solaris, Microsoft Windows NT.

Далее приводятся краткие сведения об организациях, наиболее активно и успешно занимающихся разработкой стандартов в области вычислительных сетей.

  • Международная организация по стандартизации (International Organization/or Standardization, ISO , часто называемая также International Standards Organization) представляет собой ассоциацию ведущих национальных организаций по стандартизации разных стран. Главным достижением ISO явилась модель взаимодействия открытых систем OSI, которая в настоящее время является концептуальной основой стандартизации в области вычислительных сетей. В соответствии с моделью OSI этой организацией был разработан стандартный стек коммуникационных протоколов OSI.

  • Международный союз электросвязи (International Telecommunications Union, JTU) - организация, являющаяся в настоящее время специализированным органом Организации Объединенных Наций. Наиболее значительную роль в стандартизации вычислительных сетей играет постоянно действующий в рамках этой организации Международный консультативный комитет по телефонии и телеграфии (МККТТ) (Consultative Committee on International Telegraphy and Telephony, CCITT). В результате проведенной в 1993 году реорганизации ITU CCITT несколько изменил направление своей деятельности и сменил название - теперь он называется сектором телекоммуникационной стандартизации ITU (ITU Telecommunication Standardization Sector, ITU-T), Основу деятельности ITU-T составляет разработка международных стандартов в области телефонии, телематических служб (электронной почты, факсимильной связи, телетекста, телекса и т. д.), передачи данных, аудио- и видеосигналов. За годы своей деятельности ITU-T выпустил огромное число рекомендаций-стандартов. Свою работу ITU-T строит на изучении опыта сторонних организаций, а также на результатах собственных исследований. Раз в четыре года издаются труды ITU-T в виде так называемой «Книги», которая на самом деле представляет собой целый набор обычных книг, сгруппированных в выпуски, которые, в свою очередь, объединяются в тома. Каждый том и выпуск содержат логически взаимосвязанные рекомендации. Например, том III Синей Книги содержит рекомендации для цифровых сетей с интеграцией услуг (ISDN), а весь том VIII (за исключением выпуска VIII. 1, который содержит рекомендации серии V для передачи данных по телефонной сети) посвящен рекомендациям серии X: Х.25 для сетей с коммутацией пакетов, Х.400 для систем электронной почты, Х.500 для глобальной справочной службы и многим другим.
  • Институт инженеров по электротехнике и радиоэлектронике - Institute of Electrical and Electronics Engineers, IEEE) - национальная организация США, определяющая сетевые стандарты. В 1981 году рабочая группа 802 этого института сформулировала основные требования, которым должны удовлетворять локальные вычислительные сети. Группа 802 определила множество стандартов, из них самыми известными являются стандарты 802.1,802.2,802.3 и 802.5, которые описывают общие понятия, используемые в области локальных сетей, а также стандарты на два нижних уровня сетей Ethernet и Token Ring.
  • Европейская ассоциация производителей компьютеров (European Computer Manufacturers Association, ЕСМА) - некоммерческая организация, активно сотрудничающая с ITU-T и ISO, занимается разработкой стандартов и технических обзоров, относящихся к компьютерной и коммуникационной технологиям. Известна своим стандартом ЕСМА-101, используемым при передаче отформатированного текста и графических изображений с сохранением оригинального формата.
  • Ассоциация производителей компьютеров и оргтехники (Computer and Business Equipment Manufacturers Association, CBEMA) - организация американских фирм-производителей аппаратного обеспечения; аналогична европейской ассоциации ЕКМА; участвует в разработке стандартов на обработку информации и соответствующее оборудование.
  • Ассоциация электронной промышленности (Electronic Industries Association, EIA) - промышленно-торговая группа производителей электронного и сетевого оборудования; является национальной коммерческой ассоциацией США; проявляет значительную активность в разработке стандартов для проводов, коннекторов и других сетевых компонентов. Ее наиболее известный стандарт - RS-232C.
  • Министерство обороны США (Department of Defense, DoD) имеет многочисленные подразделения, занимающиеся созданием стандартов для компьютерных систем. Одной из самых известных разработок DoD является стек транспортных протоколов TCP/IP.
  • Американский национальный институт стандартов (American National Standards Institute, ANSI) - эта организация представляет США в Международной организации по стандартизации ISO. Комитеты ANSI ведут работу по разработке стандартов в различных областях вычислительной техники. Так, комитет ANSI ХЗТ9.5 совместно с фирмой IBM занимается стандартизацией локальных сетей крупных ЭВМ (архитектура сетей SNA). Известный стандарт FDDI также является результатом деятельности этого комитета ANSI. В области микрокомпьютеров ANSI разрабатывает стандарты на языки программирования, интерфейс SCSI. ANSI разработал рекомендации по переносимости для языков С, FORTRAN, COBOL.
  • Основой для создания сети передачи данных является первичная сеть, которая представляет собой совокупность сетевых узлов, сетевых станций и линий передачи, образующую сеть типовых каналов передачи и типовых групповых трактов.

    Каналом передачи называется совокупность технических средств и среды распространения, обеспечивающая передачу сигналов электросвязи или в определенной полосе частот, или с определенной

    скоростью между двумя станциями или узлами. Канал с нормированными параметрами называется типовым.

    Групповой тракт - это совокупность технических средств, обеспечивающая передачу сигналов электросвязи или в полосе частот, или со скоростью передачи нормированной группы каналов. Если параметры группового тракта нормированы, то тракт называется типовым. Групповые тракты строятся на основе линий передачи.

    Линия передачи первичной сети - это совокупность физических цепей, линейных трактов однотипных и разнотипных систем передачи, имеющих общие среду распространения, линейные сооружения и устройства их обслуживания. Линии передачи различаются в зависимости от первичной сети, к которым они принадлежат, и от среды распространения. В настоящее время наибольшее распространение получили радиорелейные, тропосферные, проводные и спутниковые линии передачи.

    Сетевым узлом (СУ) первичной сети называется комплекс технических средств, обеспечивающий:

    организацию и транзит типовых групповых трактов и типовых каналов передачи первичной сети;

    переключение указанных трактов и каналов, принадлежащих различным линиям передачи;

    предоставление необходимого числа каналов и групповых трактов для образования вторичных сетей.

    Сетевые станции первичной сети обеспечивают организацию типовых каналов и трактов, предоставление их для образования вторичных сетей и соединения каналов и групповых трактов различных вторичных сетей между собой.

    Фрагмент первичной сети с различными линиями передачи изображен на рис. 1.6.

    Первичные сети подразделяются на местные, внутренние, зоновые и магистральные.

    Часть первичной сети, ограниченная территорией города или сельского района, называется местной первичной сетью.

    Внутризоновая первичная сеть - это часть первичной сети, ограниченная территорией, совпадающей с зоной нумерации, и обеспечивающая соединение между собой типовых групповых трактов и типовых каналов передачи разных местных первичных сетей этой зоны. Зона нумерации, как правило, совпадает с административными границами области.

    Совокупность внутризоновой первичной и местных первичных сетей на территории, совпадающей с зоной нумерации, образует зоновую первичную сеть.

    Часть первичной сети, соединяющая между собой типовые групповые тракты, а также типовые каналы передачи внутризоновых первичных сетей на всей территории страны, образует магистральную первичную сеть.

    Сетевым узлам и линиям передачи присваиваются наименования в соответствии с тем, какой первичной сети они принадлежат.

    Важным понятием, относящимся к первичным сетям, является система передачи, под которой понимается совокупность линейного тракта, типовых групповых трактов и каналов передачи первичной сети. Система передачи включает станции системы передачи и среду распространения.

    АГО - аппаратура группообразования; АУ - аппаратура уплотнения; УДК - устройство долговременной коммутации; СУ - сетевой узел; ТКП - типовой канал передачи

    В системах передачи с частотным разделением каналов (ЧРК) для передачи сигналов по каждому из каналов выделяется определенная полоса частот. Системы передачи, в которых для передачи сигналов по каждому из каналов в линейном тракте отводятся определенные интервалы времени, называются системами с временным разделением каналов (ВРК).

    На современном этапе в магистральных первичных сетях большее распространение имеют системы с частотным разделением каналов. Системы с временным делением внедряются преимущественно в местных первичных сетях.

    Основными характеристиками первичных сетей независимо от используемых систем передачи являются:

    структура, определяющая взаимное расположение сетевых узлов станций и линий передачи без учета их положения на местности;

    топология - структура с учетом реального положения на местности;

    мощность, определяемая числом типовых каналов или суммарной шириной спектра частот всех каналов связи в линии передачи;

    живучесть, которая определяет устойчивость линий передачи и узлов первичной сети к повреждениям.

    Устойчивость от повреждений определяется технической надежностью оборудования, устойчивостью от стихийных бедствий и рядом других факторов.

    Вторичные сети. Технические комплексы сетей передачи данных

    Первичные сети служат основой для создания различного рода вторичных сетей. Вторичные сети, создаваемые для различных ведомств, называются ведомственными. В этом случае на первичной сети выделяются группы каналов, по которым передаются все виды информации в интересах системы управления, относящейся к,какому-либо ведомству. Например, на общегосударственной первичной сети может быть организована вторичная сеть, обеспечивающая управление некоторой отраслью народного хозяйства. Каналы такой вторичной сети используются для передачи всех видов информации .

    По виду передаваемой информации различают, например, вторичные сети телеграфной связи, передачи данных, автоматической междугородной телефонной связи .

    Ведомственные вторичные сети в ряде случаев также разделяются по виду передаваемой информации.

    На рис. 1.7 показан возможный вариант образования ведомственных вторичных сетей.

    На базе каналов общегосударственной сети Министерства связи СССР и каналов, образованных подвижными и стационарными средствами ведомства, создается первичная сеть для системы управления этого ведомства. Данная первичная сеть служит основой для создания вторичных сетей по видам передаваемой информации. Таким образом, сеть передачи данных является вторичной сетью первичной сети соответствующего ведомства.

    Иногда совокупность вторичных сетей по видам передаваемой информации называют информационной сетью системы управления ведомства.

    Сеть передачи данных включает ряд технических комплексов, к одному из которых относится совокупность средств, образующих каналы связи первичной сети, выделенные для создания сети ПД. Выделенные каналы первичной сети обеспечивают лишь потенциальную возможность передачи информации, однако для ее реализации в соответствии с потребностями АСУ необходимо введение ряда дополнительных комплексов. К ним относятся:

    1. Комплекс средств, обеспечивающих образование каналов ПД на основе каналов первичной сети. Данный комплекс реализуется в виде совокупности отдельных образцов аппаратуры передачи данных (АПД), каждый из которых обеспечивает образование одного канала ПД и работает по фиксированному алгоритму. Такая реализация называется аппаратурной.

    В ряде случаев используется программно-аппаратурная реализация, при которой часть функции АПД выполняется программными методами в специализированных или универсальных ЭВМ.

    2. Комплекс технических средств, обеспечивающий целенаправленную передачу сообщений между абонентами сети при выполнении требований АСУ к вероятностно-временным характеристикам задержки. Этот комплекс реализуется как совокупность коммутационных станций и узлов коммутации каналов и сообщений вместе с их программным обеспечением.

    3. Комплекс средств контроля состояния технических средств и управления сетью ПД, представляющий собой совокупность организационных и технических служб, а также технических и программных средств, обеспечивающих функционирование сети ПД в изменяющихся условиях.

    4. Комплекс средств сопряжения ПД, представляющий собой совокупность устройств и алгоритмов, обеспечивающих электрическое, логическое, кодовое и алгоритмическое согласования различных элементов сети ПД, а также элементов сети с техническими средствами источников и потребителей информации.

    Элементы перечисленных комплексов рассредоточены в сети и условно могут быть объединены в проблемно-ориентированные модули (рис. 1.8), каждый из которых выполняет строго определенные задачи по передаче данных и взаимодействию с другими модулями, вычислительной системой, банком данных и терминалами. Независимо от выполняемых функций модули называются функциональными единицами сети (ФЕС).

    Модуль связи вычислительной системы (или банка данных) с сетью (СВС) осуществляет взаимодействие между разнородными ЭВМ и сетью ПД. Модуль связи терминала с сетью (СТС) обеспечивает взаимодействие между различными группами терминалов и другими элементами сети. Модуль коммуникационных функций сети (КФС), представляющий собой совокупность узлов

    коммутации, обеспечивает доставку информации от отправителя к получателю по каналам первичной сети.

    Технические и программные средства ФЕС вместе с их взаимосвязями образуют архитектуру модуля, определяющим для которой является реализованный в сети способ коммутации. В настоящее время ряд модификаций способов коммутации каналов и коммутации сообщений (рис. 1.9) рассматривается в качестве самостоятельных.

    Любая из версий коммутации каналов предусматривает два этапа. На первом этапе образуется цепочка из последовательно соединенных каналов связи между абонентами. На втором этапе осуществляется передача информации.

    В зависимости от типа каналов, используемых при построении цепочки, можно выделить коммутацию: непрерывных каналов, образованных системами с частотным уплотнением; цифровых каналов, образованных системами с временным уплотнением, и каналов ПД.

    При коммутации сообщений реального соединения абонентов не происходит, а информация в виде формализованных сообщений

    передается по маршрутам, состоящим из последовательных трактов ПД. Если на некотором этапе тракт занят или находится в состоянии отказа, то сообщение ожидает момента, когда он освободится или будет восстановлен.

    Коммутация сообщений реализуется либо в чистом виде, либо как коммутация пакетов. Различают два режима коммутации пакетов: датаграммный и виртуальных соединений.

    В сетях с коммутацией датаграмм сообщение, поступая от источника на первый же узел коммутации, разбивается на блоки, к каждому из которых добавляется необходимая служебная информация для передачи по сети. Получаемые таким образом блоки называются пакетами, кодограммами или датаграммами, имеют статус самостоятельных сообщений в сети и передаются по ней независимо друг от друга, возможно, по различным маршрутам.

    В узле коммутации (УК), к которому подключен получатель, пакеты одного сообщения накапливаются в общем случае произвольно, что делает необходимым их упорядоченную сшивку перед выдачей абоненту-получателю. При этом возможны так называемые компоновочные блокировки памяти узла, при которых его запоминающие устройства оказываются занятыми несобранными сообщениями и соответственно не могут освободиться, а недостающие пакеты не могут из-за этого быть приняты.

    В сетях с виртуальными соединениями перед передачей сообщения между абонентами устанавливается фиксированный маршрут. С этой целью абонентом-отправителем в сопряженный узел коммутации дается заявка на организацию соединения. Сопряженный узел определяет маршрут передачи и выдает команды во все промежуточные центры. Команды содержат номер соединения и номер исходящего тракта для этого соединения. Одновременно по одному и тому же каналу сети организуется несколько соединений с выделением для передачи в каждом направлении определенных временных позиций - виртуального канала, который закрепляется либо жестко, либо по методу статистического уплотнения.

    Между соседними УК непрерывно передаются кадры, содержащие пакеты сообщений, сопровождаемые номером соединения. Размеры пакетов могут быть различными. Если в какой-либо момент времени нет очередного пакета для передачи по некоторому виртуальному каналу, то его временная позиция может заниматься пакетом другого сообщения, где пакеты в избытке. В каждом узле коммутации производится разборка пакетов информации для их перераспределения по исходящим виртуальным каналам в соответствии с номерами этих каналов.

    При использовании виртуальных соединений пакеты, принадлежащие одному сообщению, поступают последовательно, что снимает проблему их упорядоченной сшивки и опасность компоновочной блокировки.

    Ряд исследований, проведенных в последние годы с целью сравнения способов коммутации, а также опыт эксплуатации

    сетей ПД позволяют сформулировать следующие наиболее общие рекомендации:

    1. С точки зрения эффективности использования каналов коммутация сообщений предпочтительнее, чем коммутация пакетов, которая в свою очередь предпочтительнее коммутации каналов. Преимущество коммутации сообщений по сравнению с коммутацией каналов проявляется значительнее в случае интенсивных потоков сообщений небольшого объема. Исходя из этого коммутация сообщений и коммутация пакетов используются в сетях при высоких интенсивностях! потоков сравнительно коротких сообщений. Коммутация каналов применяется при незначительных интенсивностях потоков сообщений большого объема.

    2. При выборе между коммутацией пакетов и коммутацией сообщений следует исходить из того, что в сетях с коммутацией пакетов могут быть достигнуты значения задержки сообщений, в несколько раз меньшие, чем в сетях с коммутацией сообщений.

    3. Коммутация пакетов или коммутация сообщений должна использоваться в сетях передачи данных при необходимости обеспечения многоадресных передач, приоритетного обслуживания сообщений, а также при высоких требованиях к надежности и верности доставки. Последнее объясняется наличием в таких сетях контроля и защиты от ошибок на всех этапах передвижения сообщений по сети. При этом следует учитывать, что приоритетное обслуживание и многоадресные передачи реализуемы только в датаграммном режиме сетей с пакетной (коммутацией.

    Вопрос об использовании сетей ПД с коммутацией каналов в настоящее время достаточно не изучен, однако можно предположить, что такой режим окажется эффективным для передачи очень больших объемов информации при высоких требованиях к верности. В сетях с коммутацией первичных каналов обеспечить высокую верность достаточно сложно ввиду низкого качества составных каналов.

    Если абоненты предъявляют различные требования к процессу передачи информации и потоки передаваемых ими сообщений имеют различные интенсивности и объемы, то может оказаться целесообразным совместное использование различных способов коммутации. При этом обычно предусматривается единый узел коммутации с предоставлением абонентам возможности самостоятельного выбора способа коммутации.

    ЛОКАЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ (ЛКС)

    ГЛОБАЛЬНЫЕ КОМПЬЮТЕРНЫЕ СЕТИ

    ВВЕДЕНИЕ

    На сегодняшний день в мире существует более 130 миллионов компьютеров и более 80 % из них объединены в различные информационно-вычислительные сети от малых локальных сетей в офисах до глобальных сетей типа Internet, FidoNet, FREEnet и т.д. Всемирная тенденция к объединению компьютеров в сети обусловлена рядом важных причин, таких как ускорение передачи информационных сообщений, возможность быстрого обмена информацией между пользователями, получение и передача сообщений (факсов, E–Mail писем, электронных конференций и т.д.) не отходя от рабочего места, возможность мгновенного получения любой информации из любой точки земного шара, а так же обмен информацией между компьютерами разных фирм производителей работающих под разным программным обеспечением.

    Такие огромные потенциальные возможности, которые несет в себе вычислительная сеть и тот новый потенциальный подъем, который при этом испытывает информационный комплекс, а так же значительное ускорение производственного процесса не дают нам право игнорировать и не применять их на практике.

    Зачастую возникает необходимость в разработке принципиального решения вопроса по организации ИВС (информационно–вычислительной сети) на базе уже существующего компьютерного парка и программного комплекса, отвечающей современным научно–техническим требованиям с учетом возрастающих потребностей и возможностью дальнейшего постепенного развития сети в связи с появлением новых технических и программных решений.

    ПРИНЦИП ПОСТРОЕНИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ

    Компьютерная сеть – это совокупность компьютеров и различных устройств, обеспечивающих информационный обмен между компьютерами в сети без использования каких-либо промежуточных носителей информации.

    Все многообразие компьютерных сетей можно классифицировать по группе признаков:

    1) Территориальная распространенность;

    2) Ведомственная принадлежность;

    3) Скорость передачи информации;

    4) Тип среды передачи;

    По территориальной распространенности сети могут быть локальными, глобальными, и региональными. Локальные – это сети, перекрывающие территорию не более 10 м 2 , региональные – расположенные на территории города или области, глобальные на территории государства или группы государств, например, всемирная сеть Internet.

    По принадлежности различают ведомственные и государственные сети. Ведомственные принадлежат одной организации и располагаются на ее территории. Государственные сети – сети, используемые в государственных структурах.

    По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные.

    По типу среды передачи разделяются на сети коаксиальные, на витой паре, оптоволоконные, с передачей информации по радиоканалам, в инфракрасном диапазоне.

    Компьютеры могут соединяться кабелями, образуя различную топологию сети (звездная, шинная, кольцевая и др.).

    Следует различать компьютерные сети и сети терминалов (терминальные сети). Компьютерные сети связывают компьютеры, каждый из которых может работать и автономно. Терминальные сети обычно связывают мощные компьютеры (майнфреймы), а в отдельных случаях и ПК с устройствами (терминалами), которые могут быть достаточно сложны, но вне сети их работа или невозможна, или вообще теряет смысл. Например, сеть банкоматов или касс по продажи авиабилетов. Строятся они на совершенно иных, чем компьютерные сети, принципах и даже на другой вычислительной технике.

    В классификации сетей существует два основных термина: LAN и WAN.

    LAN (Local Area Network) – локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин «LAN» может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров. Зарубежные источники дают даже близкую оценку – около шести миль (10 км) в радиусе; использование высокоскоростных каналов.

    WAN (Wide Area Network) – глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Пример WAN – сети с коммутацией пакетов (Frame Relay), через которую могут «разговаривать» между собой различные компьютерные сети.

    Термин «корпоративная сеть» также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

    Рассмотренные выше виды сетей являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью. Глобальные сети ориентированы на обслуживание любых пользователей.

    На рисунке 1, рассмотрим способы коммутации компьютеров и виды сетей.

    Рисунок 1 - Способы коммутации компьютеров и виды сетей.

    ЛОКАЛЬНЫЕ КОМПЬЮТЕРНЫЕ СЕТИ (ЛКС)

    Классификация ЛКС

    Локальные вычислительные сети подразделяются на два кардинально различающихся класса: одноранговые (одноуровневые или Peer to Peer) сети и иерархические (многоуровневые).

    Одноранговые сети.

    Одноранговая сеть представляет собой сеть равноправных компьютеров, каждый из которых имеет уникальное имя (имя компьютера) и обычно пароль для входа в него во время загрузки ОС. Имя и пароль входа назначаются владельцем ПК средствами ОС. Одноранговые сети могут быть организованы с помощью таких операционных систем, как LANtastic, Windows’3.11, Novell NetWare Lite. Указанные программы работают как с DOS, так и с Windows. Одноранговые сети могут быть организованы также на базе всех современных 32-разрядных операционных систем – Windows’95 OSR2, Windows NT Workstation версии, OS/2) и некоторых других.

    Иерархические сети.

    В иерархических локальных сетях имеется один или несколько специальных компьютеров – серверов, на которых хранится информация, совместно используемая различными пользователями.

    Сервер в иерархических сетях – это постоянное хранилище разделяемых ресурсов. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Поэтому иерархические сети иногда называются сетями с выделенным сервером. Серверы обычно представляют собой высокопроизводительные компьютеры, возможно, с несколькими параллельно работающими процессорами, с винчестерами большой емкости, с высокоскоростной сетевой картой (100 Мбит/с и более). Компьютеры, с которых осуществляется доступ к информации на сервере, называются станциями или клиентами.

    ЛКС классифицируются по назначению:

    · Сети терминального обслуживания. В них включается ЭВМ и периферийное оборудование, используемое в монопольном режиме компьютером, к которому оно подключается, или быть общесетевым ресурсом.

    · Сети, на базе которых построены системы управления производством и учрежденческой деятельности. Они объединяются группой стандартов МАР/ТОР. В МАР описываются стандарты, используемые в промышленности. ТОР описывают стандарты для сетей, применяемых в офисных сетях.

    · Сети, которые объединяют системы автоматизации, проектирования. Рабочие станции таких сетей обычно базируются на достаточно мощных персональных ЭВМ, например фирмы Sun Microsystems.

    · Сети, на базе которых построены распределенные вычислительные системы.

    По классификационному признаку локальные компьютерные сети делятся на кольцевые, шинные, звездообразные, древовидные;

    по признаку скорости – на низкоскоростные (до 10 Мбит/с), среднескоростные (до 100 Мбит/с), высокоскоростные (свыше 100 Мбит/с);

    по типу метода доступа – на случайные, пропорциональные, гибридные;

    по типу физической среды передачи – на витую пару, коаксиальный или оптоволоконный кабель, инфракрасный канал, радиоканал.

    Структура ЛКС

    Способ соединения компьютеров называется структурой или топологией сети. Сети Ethernet могут иметь топологию «шина» и «звезда». В первом случае все компьютеры подключены к одному общему кабелю (шине), во втором - имеется специальное центральное устройство (хаб), от которого идут «лучи» к каждому компьютеру, т.е. каждый компьютер подключен к своему кабелю.

    Структура типа «шина», рисунок 2(а), проще и экономичнее, так как для нее не требуется дополнительное устройство и расходуется меньше кабеля. Но она очень чувствительна к неисправностям кабельной системы. Если кабель поврежден хотя бы в одном месте, то возникают проблемы для всей сети. Место неисправности трудно обнаружить.

    В этом смысле «звезда», рисунок 2(б), более устойчива. Поврежденный кабель – проблема для одного конкретного компьютера, на работе сети в целом это не сказывается. Не требуется усилий по локализации неисправности.

    В сети, имеющей структуру типа «кольцо», рисунок 2(в), информация передается между станциями по кольцу с переприемом в каждом сетевом контроллере. Переприем производится через буферные накопители, выполненные на базе оперативных запоминающих устройств, поэтому при выходе их строя одного сетевого контроллера может нарушиться работа всего кольца.

    Достоинство кольцевой структуры – простота реализации устройств, а недостаток – низкая надежность.

    Все рассмотренные структуры – иерархические. Однако, благодаря использованию мостов, специальных устройств, объединяющих локальные сети с разной структурой, из вышеперечисленных типов структур могут быть построены сети со сложной иерархической структурой.

    а) б) в)

    Рисунок 2 – структура построения (а) шина, (б) кольцо, (в) звезда
    Физическая среда передачи в локальных сетях

    Весьма важный момент – учет факторов, влияющих на выбор физической среды передачи (кабельной системы). Среди них можно перечислить следующие:

    1) Требуемая пропускная способность, скорость передачи в сети;

    2) Размер сети;

    3) Требуемый набор служб (передача данных, речи, мультимедиа и т.д.), который необходимо организовать.

    4) Требования к уровню шумов и помехозащищенности;

    5) Общая стоимость проекта, включающая покупку оборудования, монтаж и последующую эксплуатацию.

    Основная среда передачи данных ЛКС – неэкранированная витая пара, коаксиальный кабель, многомодовое оптоволокно. При примерно одинаковой стоимости одномодового и многомодового оптоволокна, оконечное оборудование для одномодового значительно дороже, хотя и обеспечивает большие расстояния. Поэтому в ЛКС используют, в основном, многомодовую оптику.

    Основные технологии ЛКС: Ethernet, ATM. Технологии FDDI (2 кольца), применявшаяся ранее для опорных сетей и имеющая хорошие характеристики по расстоянию, скорости и отказоустойчивости, сейчас мало используется, в основном, из-за высокой стоимости, как, впрочем, и кольцевая технология Token Ring, хотя обе они до сих пор поддерживаются на высоком уровне всеми ведущими вендорами, а в отдельных случаях (например, применение FDDI для опорной сети масштаба города, где необходима высокая отказоустойчивость и гарантированная доставка пакетов) использование этих технологий все еще может быть оправданным.

    Типы ЛКС

    Ethernet – изначально коллизионная технология, основанная на общей шине, к которой компьютеры подключаются и «борются» между собой за право передачи пакета. Основной протокол – CSMA/CD (множественный доступ с чувствительностью несущей и обнаружению коллизий). Дело в том, что если две станции одновременно начнут передачу, то возникает ситуация коллизии, и сеть некоторое время «ждет», пока «улягутся» переходные процессы и опять наступит «тишина». Существует еще один метод доступа – CSMA/CA (Collision Avoidance) – то же, но с исключением коллизий. Этот метод применяется в беспроводной технологии Radio Ethernet или Apple Local Talk – перед отправкой любого пакета в сети пробегает анонс о том, что сейчас будет происходить передача, и станции уже не пытаются ее инициировать.

    Ethernet бывает полудуплексный (Half Duplex), по всем средам передачи: источник и приемник «говорит по очереди» (классическая коллизионная технология) и полнодуплексный (Full Duplex), когда две пары приемника и передатчика на устройствах говорят одновременно. Этот механизм работает только на витой паре (одна пара на передачу, одна пара на прием) и на оптоволокне (одна пара на передачу, одна пара на прием).

    Ethernet различается по скоростям и методам кодирования для различной физической среды, а также по типу пакетов (Ethernet II, 802.3, RAW, 802.2 (LLC), SNAP).

    Ethernet различается по скоростям: 10 Мбит/с, 100 Мбит/с, 1000 Мбит/с (Гигабит). Поскольку недавно ратифицирован стандарт Gigabit Ethernet для витой пары категории 5, можно сказать, что для любой сети Ethernet могут быть использованы витая пара, одномодовое (SMF) или многомодовое (MMF) оптоволокно. В зависимости от этого существуют различные спецификации:

    · 10 Мбит/с Ethernet: 10BaseT, 10BaseFL, (10Base2 и 10Base5 существуют для коаксиального кабеля и уже не применяются);

    · 100 Мбит/с Ethernet: 100BaseTX, 100BaseFX, 100BaseT4, 100BaseT2;

    · Gigabit Ethernet: 1000BaseLX, 1000BaseSX (по оптике) и 1000BaseTX (для витой пары)

    Существуют два варианта реализации Ethernet на коаксиальном кабеле, называемые «тонкий» и «толстый» Ethernet (Ethernet на тонком кабеле 0,2 дюйма и Ethernet на толстом кабеле 0,4 дюйма).

    Тонкий Ethernet использует кабель типа RG-58A/V (диаметром 0,2 дюйма). Для маленькой сети используется кабель с сопротивлением 50 Ом. Коаксиальный кабель прокладывается от компьютера к компьютеру. У каждого компьютера оставляют небольшой запас кабеля на случай возможности его перемещения. Длина сегмента 185 м, количество компьютеров, подключенных к шине – до 30.

    После присоединения всех отрезков кабеля с BNC-коннекторами (Bayonel-Neill-Concelnan) к Т-коннекторам (название обусловлено формой разъема, похожей на букву «Т») получится единый кабельный сегмент. На его обоих концах устанавливаются терминаторы («заглушки»). Терминатор конструктивно представляет собой BNC-коннектор (он также надевается на Т-коннектор) с впаянным сопротивлением. Значение этого сопротивления должно соответствовать значению волнового сопротивления кабеля, т.е. для Ethernet нужны терминаторы с сопротивлением 50 Ом.

    Толстый Ethernet – сеть на толстом коаксиальном кабеле, имеющем диаметр 0,4 дюйма и волновое сопротивление 50 Ом. Максимальная длина кабельного сегмента – 500 м.

    Прокладка самого кабеля почти одинакова для всех типов коаксиального кабеля.

    Для подключения компьютера к толстому кабелю используется дополнительное устройство, называемое трансивером. Трансивер подсоединен непосредственно к сетевому кабелю. От него к компьютеру идет специальный трансиверный кабель, максимальная длина которого 50 м. На обоих его концах находятся 15-контактные DIX-разъемы (Digital, Intel и Xerox). С помощью одного разъема осуществляется подключение к трансиверу, с помощью другого – к сетевой плате компьютера.

    Трансиверы освобождают от необходимости подводить кабель к каждому компьютеру. Расстояние от компьютера до сетевого кабеля определяется длиной трансиверного кабеля.

    Создание сети при помощи трансивера очень удобно. Он может в любом месте в буквальном смысле «пропускать» кабель. Эта простая процедура занимает мало времени, а получаемое соединение оказывается очень надежным.

    Кабель не режется на куски, его можно прокладывать, не заботясь о точном месторасположении компьютеров, а затем устанавливать трансиверы в нужных местах. Крепятся трансиверы, как правило, на стенах, что предусмотрено их конструкцией.

    При необходимости охватить локальной сетью площадь большую, чем это позволяют рассматриваемые кабельные системы, применяется дополнительные устройства – репитеры (повторители). Репитер имеет 2-портовое исполнение, т.е. он может объединить 2 сегмента по 185 м. Сегмент подключается к репитеру через Т-коннектор. К одному концу Т-коннектора подключается сегмент, а на другом ставится терминатор.

    В сети может быть не больше четырех репитеров. Это позволяет получить сеть максимальной протяженностью 925 м.

    Существуют 4-портовые репитеры. К одному такому репитеру можно подключить сразу 4 сегмента.

    Длина сегмента для Ethernet на толстом кабеле составляет 500 м, к одному сегменту можно подключить до 100 станций. При наличии трансиверных кабелей до 50 м длиной, толстый Ethernet может одним сегментом охватить значительно большую площадь, чем тонкий. Эти репитеры имеют DIX-разъемы и могут подключаться трансиверами, как к концу сегмента, так и в любом другом месте.

    Очень удобны совмещенные репитеры, т.е. подходящие и для тонкого и для толстого кабеля. Каждый порт имеет пару разъемов: DIX и BNC, но он не могут быть задействованы одновременно. Если необходимо объединять сегменты на разном кабеле, то тонкий сегмент подключается к BNC-разъему одного порта репитера, а толстый – к DIX-разъему другого порта.

    Репитеры очень полезны, но злоупотреблять ими не стоит, так как они приводят к замедлению работы в сети.

    Ethernet на витой паре.

    Витая пара – это два изолированных провода, скрученных между собой. Для Ethernet используется 8-жильный кабель, состоящий из четырех витых пар. Для защиты от воздействия окружающей среды кабель имеет внешнее изолирующее покрытие.

    Основной узел на витой паре – hub (в переводе называется накопителем, концентратором или просто хаб). Каждый компьютер должен быть подключен к нему с помощью своего сегмента кабеля. Длина каждого сегмента не должна превышать 100 м. На концах кабельных сегментов устанавливаются разъемы RJ-45. Одним разъемом кабель подключается к хабу, другим – к сетевой плате. Разъемы RJ-45 очень компактны, имеют пластмассовый корпус и восемь миниатюрных площадок.

    Хаб – центральное устройство в сети на витой паре, от него зависит ее работоспособность. Располагать его надо в легкодоступном месте, чтобы можно было легко подключать кабель и следить за индикацией портов.

    Хабы выпускаются на разное количество портов – 8, 12, 16 или 24. Соответственно к нему можно подключить такое же количество компьютеров.