Сайт о телевидении

Сайт о телевидении

» » Определители n го порядка их вычисление. Методы вычисления определителей n-ого порядка

Определители n го порядка их вычисление. Методы вычисления определителей n-ого порядка

Основываясь на понятиях определителей второго и третьего порядков, можно аналогично ввести понятие определителя порядка n . Определители порядка выше третьего вычисляются, как правило, с использованием свойств определителей, сформулированных в п. 1.3., которые справедливы для определителей любого порядка.

Используя свойство определителей номер 9 0 введем определение определителя 4-го порядка:

Пример 2. Вычислить, используя подходящее разложение.

Аналогично вводится понятие определителя 5-го, 6-го и т.д. порядка. Значит определитель порядка n:

.

Все свойства определителей 2-го и 3-го порядков, рассмотренные раннее, справедливы и для определителей n-го порядка.

Рассмотрим основные методы вычисления определителей n -го порядка.


Замечание: прежде чем применять этот метод, полезно, используя основные свойства определителей, обратить в нуль все, кроме одного, элементы его некоторой строки или столбца. (Метод эффективного понижения порядка)

    Метод приведения к треугольному виду заключается в таком преобразовании определителя, когда все его элементы, лежащие по одну сторону от главной диагонали, становятся равными нулю. В этом случае определитель равен произведению элементов его главной диагонали.

Пример 3. Вычислить, приведением к треугольному виду.

Пример 4. Вычислить, используя метод эффективного понижения порядка

.

Решение: по свойству 4 0 определителей из первой строки вынесем множитель 10, а затем будем последовательно умножать вторую строку на 2, на 2, на 1 и складывать соответственно с первой, с третьей и четвертой строками (свойство 8 0).

.

Полученный определитель можно разложить по элементам первого столбца. Он будет сведен к определителю третьего порядка, который вычисляется по правилу Саррюса (треугольника).

Пример 5. Вычислить определитель, приведением к треугольному виду.

.

Пример 3. Вычислить, используя рекуррентные соотношения.


.

.

Лекция 4. Обратная матрица. Ранг матрицы.

1. Понятие обратной матрицы

Определение 1. Квадратная матрица А порядка n называется невырожденной, если ее определитель |A | ≠ 0. В случае, когда | A | = 0, матрица А называется вырожденной.

Только для квадратных невырожденных матриц А вводится понятие обратной матрицы А -1 .

Определение 2 . Матрица А -1 называется обратной для квадратной невырожденной матрицыА, если А -1 А = АА -1 = Е, где Е – единичная матрица порядка n .

Определение 3 . Матрица называетсяприсоединенной, ее элементами являются алгебраические дополнения транспонированной матрицы
.

Алгоритм вычисления обратной матрицы методом присоединенной матрицы.


, где
.

    Проверяем правильность вычисления А -1 А = АА -1 = Е. (Е – единичная матрица)

Матрицы А и А -1 взаимообратные. Если | A | = 0, то обратная матрица не существует.

Пример 1. Дана матрица А. Убедиться, что она невырожденная, и найти обратную матрицу
.

Решение:
. Следовательно матрица невырожденная.

Найдем обратную матрицу. Составим алгебраические дополнения элементов матрицы А.







Получаем

.

Определитель n-го порядка

Определителем или детерминантом n-го порядка называется число записываемое в виде

И вычисляемым по данным числам (действительным или комплексным) - элементам определителя

Схемы вычисления определителей 2-ого и 3-его порядков

Теорема Крамера.

Пусть (дельта)-определитель матрицы системы А,а (дельта)i-определитель матрицы,получается из матрицы А заменой j-го столбца столбцов свободных чисел.Тогда,если (дельта) не равна 0,то система имеет единственное решение,определяемое во формуле:

1.Определитель 2-го порядка вычисляется по формуле

2. Определитель третьего порядка вычисляется по формуле

Существует удобная схема для вычисления определителя третьего порядка (см. рис. 1 и рис. 2).

Свойство определителей

1.Если какая-либо строка (столбец) матрицы состоит из одних нулей,то её определитель равен 0.

2.Если все элементы какой-либо строки (столбца) матрицы умножить на чило (лямбда),то её определитель умножится на это число (лямбда).

3.При транспонировании матрицы её определитель не изменяется.

Транспонирование -в математике,это преобразование квадратной матрицы-замена столбцов на строки или наоборот.

4.При перестановки двух строк (столбцов) матрицы её определитель меняет знак на противоположный.

5.Если квадратная матрица содержит две одинаковые строки (столбца),то её определитель равен 0

6.Если элементы двух строк (столбцов)матрицы пропорциональны,то её определитель равен 0

7.Сумма произведений элементов какой-либо строки (столбца)матрицы на алгебраические дополнения элементов другой строки (столбца) этой матрицы равно 0

8.Определитель матрицы не изменяется,если к элементам какой-либо строки (столбца) матрицы прибавить элементы другой строки (столбца),предварительно умноженные на одно и то же число.

9.Сумма произведений чисел b1,b2,...,bn на алгебраические дополнение элементов любой строки (столбца) равна определителю матрицы,полученной из данной заменой элементов этой строки (столбца) b1,b2,...bn.

10.Определитель произведения двух квадратных матриц равен произведению их определителей |C|=|А|*|B|,где С=А*В;А и В-матрицы n-го порядка.

ортогональный унитарный матрица полилинейный

Вычисление определителей 2-го и 3-го порядка.

Получим формулы вычисления определителей второго и третьего порядков. По определению при

При вычеркивании первой строки и одного столбца получаем матрицу, содержащую один элемент, поэтому

Подставляя эти значения в правую часть, получаем формулу вычисления определителя второго порядка

Определитель второго порядка равен разности произведения элементов, стоящих на главной диагонали, и произведения элементов, стоящих на побочной диагонали (рис.2.1).

Для определителя третьего порядка имеем

При вычеркивании первой строки и одного столбца получаем определители квадратных матриц второго порядка:

Эти определители второго порядка записываем по формуле (2.2) и получаем формулу вычисления определителя третьего порядка


Определитель (2.3) представляет собой сумму шести слагаемых, каждое из которых есть произведение трех элементов определителя, стоящих в разных строках и разных столбцах. Причем три слагаемых берутся со знаком плюс, а три других -- со знаком минус.

Для запоминания формулы (2.3) используется правило треугольников: надо сложить три произведения трех элементов, стоящих на главной диагонали и в вершинах двух треугольников, имеющих сторону, параллельную главной диагонали (рис. 2.2,а), и вычесть три произведения элементов, стоящих на побочной диагонали и в вершинах двух треугольников, имеющих сторону, параллельную побочной диагонали (рис. 2.2,6).

Можно также пользоваться схемой вычисления, изображенной на рис. 2.3 (правило Саррюса): к матрице приписать справа первый и второй столбцы, вычислить произведения элементов, стоящих на каждой из указанных шести прямых, а затем найти алгебраическую сумму этих произведений, при этом произведение элементов на прямых, параллельных главной диагонали, берутся со знаком плюс, а произведение элементов на прямых, параллельных побочной диагонали, -- со знаком минус (согласно обозначениям на рис. 2.3).

Вычисление определителей порядка N>3.

Итак, получены формулы для вычисления определителей второго и третьего порядков. Можно продолжить вычисления по формуле (2.1) для и получить формулы для вычисления определителей четвертого, пятого и т.д. порядков. Следовательно, индуктивное определение позволяет вычислить определитель любого порядка. Другое дело, что формулы будут громоздкими и неудобными при практических вычислениях. Поэтому определители высокого порядка (четвертого и более), как правило, вычисляют на основании свойств определителей.

Пример 2.1. Вычислить определители

Решение. По формулам (2.2) и (2.3) находим;

Формула разложения определителя по элементам строки (столбца)

Пусть дана квадратная матрица порядка.

Дополнительным минором элемента называется определитель матрицы порядка, полученной из матрицы вычеркиванием i-й строки и j-го столбца.

Алгебраическим дополнением элемента матрицы называется дополнительный минор этого элемента, умноженный на

Теорема 2.1 формула разложения определителя по элементам строки (столбца). Определитель матрицы равен сумме произведений элементов произвольной строки (столбца) на их алгебраические дополнения:

(разложение по i-й строке);

(разложение по j-му столбцу).

Замечания 2.1.

1. Доказательство формулы проводится методом математической индукции.

2. При индуктивном определении (2.1) фактически использована формула разложения определителя по элементам первой строки.

Пример 2.2. Найти определитель матрицы

Решение. Разложим определитель по 3-й строке:

Теперь разложим определитель третьего порядка по последнему столбцу:

Определитель второго порядка вычисляем по формуле (2.2):

Определитель матрицы треугольного вида

Применим формулу разложения для нахождения определителя верхней треугольной матрицы

Разложим определитель по последней строке (по n-й строке):

где -- дополнительный минор элемента. Обозначим. Тогда. Заметим, что при вычеркивании последней строки и последнего столбца определителя, получаем определитель верхней треугольной матрицы такого же вида, как, но (n-1)-го порядка. Раскладывая определитель, по последней строке ((n-1)-й строке), получаем. Продолжая аналогичным образом и учитывая, что, приходим к формулет.е. определитель верхней треугольной матрицы равен произведению элементов, стоящих на главной диагонали.

Замечания 2.2

1. Определитель нижней треугольной матрицы равен произведению элементов, стоящих на главной диагонали.

2. Определитель единичной матрицы равен 1.

3. Определитель матрицы треугольного вида будем называть определителем треугольного вида. Как показано выше, определитель треугольного вида (определитель верхней или нижней треугольной матрицы, в частности, диагональной) равен произведению элементов, стоящих на главной диагонали.

Основные свойства определителей (детерминантов)

1. Для любой квадратной матрицы, т.е. при транспонировании определитель не изменяется. Из этого свойства следует, что столбцы и строки определителя "равноправны": любое свойство, верное для столбцов, будет верным для строк.

2. Если в определителе один из столбцов нулевой (все элементы столбца равны нулю), то определитель равен нулю:.

3. При перестановке двух столбцов определитель меняет знак на противоположный (свойство антисимметричности):

4. Если в определителе имеется два одинаковых столбца, то он равен нулю:

5. Если определитель имеет два пропорциональных столбца, то он равен нулю:

6. При умножении всех элементов одного столбца определителя на число определитель умножается на это число:

7. Если j-й столбец определителя представляется в виде суммы двух столбцов, то определитель равен сумме двух определителей, у которых j-ми столбцами являются и соответственно, а остальные столбцы одинаковы:

8. Определитель линеен по любому столбцу:

9. Определитель не изменится, если к элементам одного столбца прибавить соответствующие элементы другого столбца, умноженные на одно и тоже число:

10. Сумма произведений элементов какого-либо столбца определителя на алгебраические дополнения соответствующих элементов другого столбца равна нулю:

Замечания 2.3

1. Первое свойство определителя доказывается по индукции. Доказательства остальных свойств проводятся с использованием формулы разложения определителя по элементам столбца. Например, для доказательства второго свойства достаточно разложить определитель по элементам нулевого столбца (предположим, что j-й столбец нулевой, т.е.):

Для доказательства свойства 10 нужно прочитать формулу разложения определителя справа налево, а именно, сумму произведений элементов i-го столбца на алгебраические дополнения элементов j-го столбца представить как разложение по j-му столбцу определителя


у которого на месте элементов j-ro столбца стоят соответствующие элементы i-го столбца. Согласно четвертому свойству такой определитель равен нулю.

2. Из первого свойства следует, что все свойства 2-10, сформулированные для столбцов определителя, будут справедливы и для его строк.

3. По формулам разложения определителя по элементам строки (столбца) и свойству 10 заключаем, что

4. Пусть -- квадратная матрица. Квадратная матрица того же порядка, что и, называется присоединенной по отношению к, если каждый ее элемент равен алгебраическому дополнению элемента матрицы. Иными словами, для нахождения присоединенной матрицы следует:

а) заменить каждый элемент матрицы его алгебраическим дополнением, при этом получим матрицу;

б) найти присоединенную матрицу, транспонируя матрицу.

Из формул (2.4) следует, что, где -- единичная матрица того же порядка, что и.

Пример 2.5. Найти определитель блочно-диагональной матрицы, где -- произвольная квадратная матрица, -- единичная, а -- нулевая матрица соответствующего порядка, -- транспонированная.

Решение. Разложим определитель по последнему столбцу. Так как в этом столбце все элементы нулевые, за исключением последнего, равного 1, получим определитель такого же вида, что и исходный, но меньшего порядка. Раскладывая полученный определитель по последнему столбцу, уменьшаем его порядок. Продолжая таким же образом, получаем определитель матрицы. Следовательно,

Методы вычисления определителей n-го порядка.

Пусть дано упорядоченное множество n элементов. Всякое расположение n элементов в определённом порядке называется перестановкой из этих элементов.

Так как каждый элемент определяется своим номером, то будем говорить, что дано n натуральных чисел.

Число различных перестановок из n чисел равно n!

Если в некоторой перестановке из n чисел число i стоит раньше j , но i > j , т. е. большее число стоит раньше меньшего, то говорят, что пара i , j составляет инверсию .

Пример 1. Определить число инверсий в перестановке (1, 5, 4, 3, 2)

Решение.

Числа 5 и 4, 5 и 3, 5 и 2, 4 и 3, 4 и 2, 3 и 2 образуют инверсии. Общее число инверсий в данной перестановке равно 6.

Перестановка называется чётной , если общее число инверсий в ней чётное, в противном случае она называется нечётной . В рассмотренном выше примере дана чётная перестановка.

Пусть дана некоторая перестановка …, i , …, j , … (*) . Преобразование, при котором числа i и j меняются местами, а остальные остаются на своих местах, называется транспозицией . После транспозиции чисел i и j в перестановке (*) получится перестановка …, j , …, i , …, где все элементы, кроме i и j , остались на своих местах.

От любой перестановки из n чисел можно перейти к любой другой перестановке из этих чисел с помощью нескольких транспозиций.

Всякая транспозиция меняет чётность перестановки.

При n ≥ 2 число чётных и нечётных перестановок из n чисел одинаково и равно .

Пусть М – упорядоченное множество из n элементов. Всякое биективное преобразование множества М называется подстановкой n -й степени .

Подстановки записывают так: https://pandia.ru/text/78/456/images/image005_119.gif" width="27" height="19"> и все ik различны.

Подстановка называется чётной , если обе её строки (перестановки) имеют одинаковые чётности, т. е. либо обе чётные, либо обе нечётные. В противном случае подстановка называется нечётной .

При n ≥ 2 число чётных и нечётных подстановок n степени одинаково и равно .

Определителем квадратной матрицы А второго порядка А= называется число, равное =а11а22–а12а21.

Определитель матрицы называют также детерминантом . Для определителя матрицы А используют следующие обозначения: det A, ΔA.

Определителем квадратной матрицы А=третьего порядка называют число, равное │А│=а11а22а33+а12а23а31+а21а13а32‑а13а22а31‑а21а12а33‑а32а23а11

Каждое слагаемое алгебраической суммы в правой части последней формулы представляет собой произведение элементов матрицы, взятых по одному и только одному из каждого столбца и каждой строки. Для определения знака произведения полезно знать правило (его называют правилом треугольника), схематически изображённое на рис.1:

«+» «-»

https://pandia.ru/text/78/456/images/image012_64.gif" width="73" height="75 src=">.

Решение.

Пусть А – матрица n-го порядка с комплексными элементами:

А=https://pandia.ru/text/78/456/images/image015_54.gif" width="112" height="27 src=">(1) ..gif" width="111" height="51">(2) .

Определителем n-го порядка, или определителем квадратной матрицы А=(aij) при n>1, называется алгебраическая сумма всевозможных произведений вида (1) , причём произведение (1) берётся со знаком «+», если соответствующая ему подстановка (2) чётная, и со знаком «‑», если подстановка нечётная.

Минором М ij элемента aij определителя называется определитель, полученный из исходного вычёркиванием i -й строки и j - го столбца.

Алгебраическим дополнением А ij элемента aij определителя называют число А ij =(–1) i + j М ij , где М ij минор элемента aij .

Свойства определителей

1. Определитель не изменяется при замене всех строк соответствующими столбцами (определитель не изменится при транспонировании).

2. При перестановке двух строк (столбцов) определитель меняет знак.

3. Определитель с двумя одинаковыми (пропорциональными) строками (столбцами) равен нулю.

4. Общий для всех элементов строки (столбца) множитель можно вынести за знак определителя.

5. Определитель не изменится, если к элементам некоторой строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число, отличное от нуля.

6. Если все элементы некоторой строки (столбца) определителя равны нулю, то он равен нулю.

7. Определитель равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения (свойство разложения определителя по строке (столбцу)).

Рассмотрим некоторые способы вычисления определителей порядка n .

1. Если в определителе n-го порядка хотя одна строка (или столбец) состоят из нулей, то определитель равен нулю.

2. Пусть в определителе n-го порядка какая-то строка содержит отличные от нуля элементы. Вычисление определителя n-го порядка можно свести в этом случае к вычислению определителя порядка n-1. Действительно, используя свойства определителя, можно все элементы какой-либо строки, кроме одного, сделать нулями, а затем разложить определитель по указанной строке. Например, переставим строки и столбцы определителя так, чтобы на месте а11 стоял отличный от нуля элемент.

https://pandia.ru/text/78/456/images/image018_51.gif" width="32 height=37" height="37">.gif" width="307" height="101 src=">

Заметим, что переставлять строки (или столбцы) не обязательно. Можно нули получать в любой строке (или столбце) определителя.

Общего метода вычисления определителей порядка n не существует, если не считать вычисление определителя заданного порядка непосредственно по определению. К определителю того или иного специального вида применяются различные методы вычисления, приводящие к более простым определителям.

3. Приведем к треугольному виду. Пользуясь свойствами определителя, приводим его к так называемому треугольному виду, когда все элементы, стоящие по одну сторону от главной диагонали равны нулю. Полученный определитель треугольного вида равен произведению элементов, стоящих на главной диагонали. Если удобнее получить нули по одну сторону от побочной диагонали, то он будет равен произведению элементов побочной диагонали, взятому со знаком https://pandia.ru/text/78/456/images/image022_48.gif" width="49" height="37">.

Пример 3. Вычислить определитель разложением по строке

https://pandia.ru/text/78/456/images/image024_44.gif" width="612" height="72">

Пример 4. Вычислить определитель четвёртого порядка

https://pandia.ru/text/78/456/images/image026_45.gif" width="373" height="96 src=">.

2-й способ (вычисление определителя путём разложения его по строке):

Вычислим этот определитель разложением по строке, предварительно преобразовав его так, чтобы в какой-то его строке все элементы кроме одного обратились в ноль. Для этого прибавим первую строку определителя к третьей. Затем умножим третий столбец на (‑5) и сложим с четвёртым столбцом. Преобразованный определитель раскладываем по третьей строке. Минор третьего порядка приводим к треугольному виду относительно главной диагонали.

https://pandia.ru/text/78/456/images/image028_44.gif" width="202" height="121 src=">

Решение.

Вычтем из первой строки вторую, из второй – третью и т. д., наконец, из предпоследней последнюю (последняя строка остается без изменений).

https://pandia.ru/text/78/456/images/image030_39.gif" width="445" height="126 src=">

Первый определитель в сумме – треугольного вида относительно главной диагонали, поэтому он равен произведению диагональных элементов, т. е. (n–1)n. Второй определитель в сумме преобразуем, прибавив последнюю строку ко всем предыдущим строкам определителя. Полученный при этом преобразовании определитель будет треугольного вида относительно главной диагонали, поэтому он будет равен произведению диагональных элементов, т. е. nn-1:

=(n–1)n+(n–1)n + nn-1.

4. Вычисление определителя с помощью теоремы Лапласа. Если в определителе выделить k строк (или столбцов) (1£k£n-1), то определитель равен сумме произведений всех миноров k-ого порядка, расположенных в выделенных k строках (или столбцах), на их алгебраические дополнения.

Пример 6. Вычислить определитель

https://pandia.ru/text/78/456/images/image033_36.gif" width="538" height="209 src=">

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ №2

«ВЫЧИСЛЕНИЕ ОПРЕДЕЛИТЕЛЕЙ N-ГО ПОРЯДКА»

Вариант 1

Вычислить определители

https://pandia.ru/text/78/456/images/image035_39.gif" width="114" height="94 src=">

Методы вычисления определителей n – го порядка 1. Метод приведения к треугольному виду Этот метод заключается в преобразовании определителя к такому виду, где все элементы, лежащие по одну сторону одной из диагоналей, равны нулю. Пример 1. Вычислить определитель порядка n d= 01 01 01 01 11110 xxx xxx xxx xxx . Решение. Прибавим первую строку, умноженную на (– x) ко всем остальным: d= x x x x − − − − 0001 0001 0001 0001 11110 . К первому столбцу прибавим все последующие столбцы, умноженные на (1/x). Получим d= . 0000 0000 0000 0000 1111)1(x x x x x n − − − − − Мы получили треугольный вид, следовательно, определитель равен произведению элементов главной диагонали d=(– 1) n – 1 (n – 1)x n – 2 . Пример 2. Вычислить определитель 2221 2212 2122 1222 − − − − =d . Решение. Прибавим к первой строке все остальные, тогда в первой строке все элементы будут равны 2(n – 1) – 1=2n – 3 и, следовательно, общий множитель можно вынести за знак определителя: . 2221 2212 2122 1111)32(− − − −= nd Теперь воспользуемся тем, что в первой строке все элементы равны 1. Умножая первую строку на (– 2) и прибавляя её ко всем остальным строкам, мы получим. 0003 0030 0300 1111)32(− − − −= nd Побочная диагональ в определитель n-го порядка входит со знаком 2)1()1(− − nn (это легко проверить, если подсчитать число инверсий в подста- новке −− 1...21 ...321 nnn n). Тогда получим () ()() () () .32313321 1 1 2)1(1 2)1(−−=−−−= − − + − − nnd n nn n nn Пример 3. Вычислить определитель. 000 00330 00022 1321 nn nn d − − − − = Решение. Прибавим к (n – 1)-му столбцу n-ый, затем полученный (n – 1)-ый столбец прибавим к (n – 2)-му, и т. д. Тогда получим определитель треугольного вида. 2)1(! 0000 00300 00020 123 2)1(1 2)1(2)1(+ = −− + − ++ = nn n n nn nnnnnn d 2. Разложение определителя по строке (столбцу) Пример 1. Вычислить определитель d разложением по третьей строке, если d= 2164 7295 4173 2152 − −− −− − . Решение. Мы знаем, что имеет место, следующее разложение определителя по i-ой строке: d=a i1 A i1 +a i2 A i2 +…+a in A in , где A ij , j= n,1 – алгебраические дополнения элементов определителя. В нашем случае формула принимает вид d=a 31 A 31 +a 32 A 32 +a 33 A 33 +a 34 A 34 , т. е. мы имеем следующее разложение: d=5∙ (– 1) 3+1 ∙ 216 417 215 − − − +(– 9)∙(– 1) 3+2 ∙ 214 413 212 −− +2∙(– 1) 3+3 ∙ 264 473 252 − − − + + (-7)∙ (– 1) 3+4 ∙ 164 173 152 − −− − . Вычисляя полученные определители третьего порядка, получим d=5∙(– 6)+9∙12+2∙(– 54) + 7∙(– 3)= –51. Пример 2. Вычислить определитель d= 78102 4552 5882 6593 −−− . Решение. Прибавляя третью строку, умноженную на (– 1) ко всем остальным, получим d= 3350 4552 913130 2041 −−− . Прибавляя к третьей строке первую, умноженную на (– 2), получим d= 3350 0530 913130 2091 − −−− . Разложив этот определитель по первому столбцу, содержащему лишь один, не равный нулю элемент (с суммой индексов 1+1=2, т. е. чётной), получим d= 335 053 91313 − −−− . Преобразуем полученный определитель. Прибавляя к первой строке третью, умноженную на 3, получим d= 335 053 042 − − . Полученный определитель в третьем столбце содержит лишь один, не равный нулю элемент (с суммой индексов 3+3, т. е. чётной). Поэтому его удобно разложить по третьему столбцу: d=3 53 42 − − =3(10 – 12)= – 6. Пример 3. Вычислить определитель. 000 11000 00300 00220 00011 nn nn d − −− − − = Решение. Разложим определитель по 1-му столбцу, тогда () () () . 1100 0030 0022 0001 1 000 1100 0030 0022 1 12 nn n n nn d n −− − − −−+ −− − −= + В этом равенстве первый и второй определители имеют треугольный вид, поэтому первый определитель равен n!, а второй определитель равен (– 1)(– 2) . . . (1 – n)=(– 1) n–1 (n – 1)!. Тогда получим: () () () .011!1!! 1212 =−+=−+= +−++ nnn nnnd 3. Теорема Лапласа Пусть в определителе d порядка n произвольно выбраны k строк (или k столбцов), 1≤k≤n – 1. Тогда сумма произведений всех миноров k – го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю d. Пример 1. Пользуясь теоремой Лапласа, вычислить определитель, предварительно преобразовав его. d= 43220 50300 20100 34523 12532 − − −− −− . Выберем третью и четвёртую строки. В них находится единственный минор отличный от нуля, поэтому d= 53 21 − ∙(– 1) 3+4+4+5 ∙ 320 423 232 − −− . Воспользовавшись формулами для вычисления определителей второго и третьего порядков, получим d=12–12+16+27=43. Пример 2. Вычислить определитель. 005000 050000 500000 000500 000010 000001 − = d Решение. Данный определитель имеет вид, указанный в следствии из теоремы Лапласа, поэтому мы можем этим следствием воспользоваться. Тогда () .51 005 050 500 ,5 500 010 001 3 2)4)(3(3 − −− − −==−=−= n nn n BA По следствию из теоремы Лапласа имеем: () .51 2 2 147 2 − +− −== n nn BAd 4. Метод выделения линейных множителей Определитель рассматривается как многочлен от одной или нескольких входящих в него букв. Преобразуя его, обнаруживают, что он делится на ряд линейных множителей, а значит (если эти множители взаимно просты) и на их произведение. Сравнивая отдельные члены определителя с членами произведения линейных множителей, находят частное от деления определителя на это произведение и тем самым находят выражение определителя. Пример. Вычислить определитель методом линейных множителей d= 2 2 9132 5132 32x-21 3211 x − . Решение. Прибавим к первой строке вторую, умноженную на (– 1), а к третьей – четвёртую, умноженную на (– 1): d= 2 2 2 2 9132 4000 32x-21 0010 x x x − − − . Воспользуемся тем, что в первой строке и в третьей строке стоит лишь по одному неравному нулю элементу, и обнулим элементы стоящие во втором и третьем столбцах: d= 0102 4000 0201 0010 2 2 − − x x . Прибавим ко второй строке четвёртую, тогда d= 0102 4000 0303 0010 2 2 − − x x . Из первой строки видно, что определитель делится на x 2 – 1, из второй строки видно, что определитель делится на 3, а из третьей строки видно, что он делится на x 2 – 4. Так как все эти множители взаимно просты, то определитель делится на их произведение 3(x 2 – 1)(x 2 – 4). В данном произведении член x 4 имеет знак «+», а в определителе он содержится со знаком « – », поэтому d= – 3(x 2 – 1)(x 2 – 4). 5. Метод представления определителя в виде суммы определителей Некоторые определители легко вычисляются путём разложения их в сумму определителей того же порядка относительно строк или столбцов. Пример. Вычислить определитель d= add acc abb aaa 42 32 22 12 + + + + . Элементы первого столбца являются суммами двух слагаемых, это даёт возможность данный определитель представить как сумму двух определителей: d= ad ac ab aa 42 32 22 12 + add acc abb aaa 4 3 2 1 . В первом определителе первый и четвёртый столбцы пропорциональны, следовательно, он равен нулю. Во втором определителе первый и третий столбцы равны, следовательно, он тоже равен нулю. Таким образом, d=0. 6. Метод изменения элементов определителя Этот метод основан на следующем свойстве: если ко всем элементам определителя D прибавить одно и то же число x, то определитель увеличится на произведение числа x на сумму алгебраических дополнений всех элементов определителя D. D′=D+x = n ji ij A 1, . Таким образом, вычисление определителя D′ сводится к вычислению определителя D и суммы его алгебраических дополнений. Этот метод применяют в тех случаях, когда путём изменения всех элементов определителя на одно и то же число он приводится к такому виду, в котором легко сосчитать алгебраические дополнения всех элементов. Пример. Вычислить определитель D= n axxxx xaxx xxax xxxa 3 2 1 . Прибавим ко всем элементам число (– x), тогда D′= xa xa xa xa n − − − − 0000 000 000 000 3 2 1 . Алгебраические дополнения элементов определителя D, не лежащих на главной диагонали, равны нулю. Остальные алгебраические дополнения имеют положительный знак, поскольку все суммы индексов чётные. В нашем случае формула принимает вид: D′=(a 1 – x)…(a n – x), x = n ji ij A 1, = – x)()()()(1 1 11 xaxaxaxa ni n i i −…−−…− + = − . Тогда искомый определитель D=D′–x = n ji ij A 1, =(a 1 – x)…(a n – x)+x)()()()(1 1 11 xaxaxaxa ni n i i −…−−…− + = − = =x(a 1 – x)(a 2 – x)…(a n – x) − +…+ − + xaxax n 111 1 . 7. Метод рекуррентных соотношений Этот метод заключается в том, что данный определитель выражают, преобразуя и разлагая его по строке или столбцу, через определители того же вида, но более низкого порядка. Полученное равенство называется рекуррентным соотношением. Этот метод используется для вычисления определителей вида.)(000 00 0 00 21 −− −+= + + + + = nnn DDD αββα βα βαα ββαα ββα D n – (α+β)D n – 1 +αβD n – 2 =0 или, в общем виде D n – pD n – 1 +qD n – 2 =0, где p=α+β, q=αβ. Пусть рекуррентное соотношение имеет вид: D n =pD n – 1 – qD n – 2 , n>2, (5) где p, q – постоянные не зависящие от n. При q=0 D n вычисляется как член геометрической прогрессии: D n =p 1 − n D 1 ; здесь D 1 – определитель 1 – го порядка данного вида, т. е. элемент определителя D n , стоящий в левом верхнем углу. Пусть q>0 и α, β – корни квадратного уравнения x 2 – px+q=0. Тогда р=α+β, q=αβ и равенство (5) можно переписать так: D n – αD n – 1 =β (D n – 1 – αD n – 2) (6) или D n – βD n – 1 =α(D n – 1 – βD n – 2). (7) Предположим сначала, что α≠β. По формуле (n – 1) – го члена геометрической прогрессии находим из равенств (6) и (7): D n – αD n – 1 =β 2 − n (D 2 – αD 1) и D n – βD n – 1 =α 2 − n (D 2 – βD 1). Откуда.)()(12 1 12 1 βα αββα − −−− = −− DDDD D nn n (8) Пусть теперь α=β. Равенства (6) и (7) обращаются в одно и то же D n – αD n – 1 =α (D n – 1 – αD n – 2), откуда D n – αD n – 1 =Aα 2 − n , (9) где A=D 2 – αD 1 . Заменяя здесь n на n – 1, получим: D n – 1 – αD n – 2 =Aα 3 − n , откуда D n – 1 =αD n – 2 +Aα 3 − n . Подставляя это выражение в равенство (9), найдём D n =α 2 D n – 2 +2Aα 2 − n . Повторяя тот же приём несколько раз, получим D n =α 1 − n D 1 +(n – 1)Aα 2 − n , где A=D 2 – αD 1 . Пример 1. Вычислить определитель методом рекуррентных соотношений. d= 21...0000 12...0000 ..................... 00...2100 00...1210 00...0121 00...0012 . Решение. Разложим определитель по первой строке, тогда D n =2(– 1) 1+1 D n – 1 +(– 1) 2+1 2...000 ............... 0...210 0...120 0...011 . Определитель в последнем равенстве разложим по первому столбцу, тогда D n примет вид: D n =2D n – 1 – D n – 2 . Значит p=2, q=1. Решая уравнение x 2 – 2x+1=0, находим α, β и придём к случаю, когда α=β. Тогда по формуле D n =α 1 − n D 1 +(n – 1)Aα 2 − n , где A=D 2 – αD 1 находим, при α=1, D n =D 1 +(n – 1)A. В нашем случае D 1 =2, D 2 =3, тогда A=3 – 2=1. Следовательно, D n =2+(n – 1)=n+1. Пример 2. Вычислить определитель методом рекуррентных соотношений: d= 210...000 121...000 012...000 ..................... 000...210 000...122 000...043 . Решение. Разлагая d по последней строке, получим D n =2(– 1) nn + D n – 1 +(– 1))1(−+ nn 110...000 021...000 012...000 ..................... 000...210 000...122 000...043 . Определитель в последнем равенстве разложим по (n – 1) – му столбцу, тогда D n примет вид: D n =2D n – 1 – D n – 2 . Значит p=2, q=1. Решая уравнение x 2 – 2x+1=0, находим α, β и придём к случаю, когда α=β. Тогда по формуле D n = α n – 1 D 1 +(n – 1)Aα n – 2 , где A=D 2 – αD 1 находим, при α=1, D n =D 1 +(n – 1)A. В нашем случае D 1 =3, D 2 = – 2, тогда A= – 5. Следовательно, D n =3+(n – 1)(– 5)=8 – 5n. 8. Определитель Вандермонда Определителем Вандермонда называется определитель вида. 1111 11 3 1 2 1 1 22 3 2 2 2 1 321 −−−− = n n nnn n n aaaa aaaa aaaa d Докажем, что при любом n определитель Вандермонда равен произведению всевозможных разностей a i – a j , где 1≤j