Сайт о телевидении

Сайт о телевидении

» » Оперативная память в смартфоне: что даёт и сколько её нужно? Сколько оперативной памяти нужно для компьютера

Оперативная память в смартфоне: что даёт и сколько её нужно? Сколько оперативной памяти нужно для компьютера

Объем оперативной памяти значительно влияет на производительность компьютера. Поэтому решившись на обновление конфигурации своей системы большинство пользователей начинает с установки дополнительной памяти.

Но, перед тем как приступать к такой процедуре необходимо узнать, сколько оперативной памяти поддерживает материнская плата. Иначе есть риск купить комплект модулей памяти, который не будет работать.

Итак, для того чтобы узнать сколько оперативной памяти поддерживает материнская плата, нужно сначала узнать точное название модели самой платы. Для этого лучше всего воспользоваться бесплатной утилитой CPU-Z. Скачайте CPU-Z и установите на свой компьютер.

После запуска программы CPU-Z, перейдите на вкладку «Mainboard». Здесь будет доступна вся основная информация о вашей материнской плате. В самом верху окна будет указано .

После того, как вы выяснили название производителя и модель материнской платы, вам нужно найти страничку данной материнской платы на официальном сайте ее производителя. Для этого просто введите название материнской платы в поисковую систему.

И перейдите на официальный сайт производителя материнской платы.

В этом списке вы сможете найти информацию о максимальном объеме оперативной памяти, типе поддерживаемой памяти, количестве слотов под память, а также другие характеристики вашей материнской платы.

Другие ограничения на объем оперативной памяти

Если вы хотите установить себе большой объем оперативной памяти, то нужно учитывать, что ее максимальный объем ограничивается не только материнской платой, но и процессором. Откройте характеристики процессора на официальном сайте производителя и посмотрите, с каким объемом памяти может работать . Например, для процессора Intel Core i5-2310 максимальный объем оперативной памяти составляет 32 Гб.

Кроме этого, максимальный объем оперативной памяти ограничивает и операционная система. Например, для Windows работают следующие ограничения:

Версия Windows

Ограничение для 32 разрядной системы

Ограничение для 64 разрядной системы

Windows 10

Windows 10 Enterprise

Windows 10 Education

Windows 10 Pro
Windows 10 Home

Windows 8

Windows 8 Enterprise

Windows 8 Professional

Windows 8

Windows 7

Windows 7 Ultimate

Windows 7 Enterprise

Windows 7 Professional

Windows 7 Home Premium

Windows 7 Home Basic

Windows 7 Starter

Windows Vista

Windows Vista Ultimate

Windows Vista Enterprise

Windows Vista Business

Windows Vista Home Premium

Windows Vista Home Basic

Windows Vista Starter

Windows XP

Windows XP
Windows XP Starter Edition

Как видно для 32-битных версий Windows ограничения очень серьезные. Но, для 64-битных версий ограничений практически нет, если не учитывать Windows 7 Home Basic и Windows 7 Home Premium для которых установлено ограничение в 8 и16 Гб.

Не секрет, что наличие большого объема оперативной памяти благотворно сказывается на скорости работы многих приложений. В этом материале мы поговорим о взаимодействии ОЗУ и системы Windows, а так же ответим на многие распространенные вопросы по этой теме.

Вступление

Технологический прогресс не стоит на месте и с каждым годом компьютеры становятся все совершеннее и совершеннее. При этом с ростом технических характеристик, неумолимо снижается цена на комплектующие и сегодня ПК, которые еще три года назад стоили несколько тысяч долларов, продаются за несколько сотен.

Не обошла эта тенденция и оперативную память, которая в последнее время очень сильно подешевела. Лет 15 назад, модуль памяти объемом четыре мегабайта (только вдумайтесь!) стоил около 100 долларов, а на сегодняшний день стоимость четырех гигабайт ОЗУ (ОЗУ - оперативное запоминающее устройство или оперативная память) составляет всего около 700 рублей. Не секрет, что наличие большого объема оперативной памяти благотворно сказывается на скорости работы многих приложений, поэтому именно этот объем является минимальным для большинства современных компьютеров даже начального уровня. Более же продвинутые системы содержат 8, 16 и более гигабайт «оперативки».

И все бы хорошо, но наверняка многие пользователи сталкивались с одной неприятностью, в том случае, если в компьютере установлено четыре и более гигабайт оперативной памяти, 32-разрядная операционная система Windows их попросту не видит.

В этой статье вы узнаете, как операционная система работает с оперативной памятью, какие объемы ОЗУ поддерживают различные редакции Windows, почему в некоторых случаях ОС не видит всю установленную память, из-за чего это происходит и можно ли что-то сделать в этой ситуации, что такое файл подкачки, а так же многое другое. Но для начала давайте сделаем небольшой экскурс в теорию организации физической памяти компьютера, а так же разберемся, как вообще ОЗУ влияет на производительность системы.

Адресное пространство

Базовой единицей измерения количества информации является бит , который может принимать только два значения - ноль и один. В современных вычислительных архитектурах минимальной единицей обработки и хранения информации является байт , равный восьми битам. По сути, память компьютера является огромным массивом байт.

Один байт может хранить одно из 256 значений (2 8), которые в зависимости от их интерпретации могут быть как числами, так символами или буквами. Например, значение 56, может обозначать как обычное число, так и букву «V» в кодировке ASCII. В нескольких байтах, можно хранить гораздо большие значения. Например, три байта могут принимать уже 16 777 216 значений (256 3), в которых может быть закодировано целиком короткое слово.

Что бы какое-либо устройство или программа могли иметь возможность обратиться к конкретному байту в памяти (адресовать его) для того, что бы записать туда или получить оттуда данные, ему присваивается уникальный индекс, называемый адресом . Диапазон адресов от нуля до максимума получил название адресного пространства .

Физическая и виртуальная память

В первых ЭВМ, размер адресного пространства был тождественно равен размеру установленной оперативной памяти. То есть, если в компьютере было установлено 128 Кб памяти, то и максимальный объем памяти, который могла использовать программа при работе, равнялся 128 Кб. При этом адрес какого-либо объекта приложения равнялся адресу физической ячейки запоминающего устройства.

Такой способ адресации был весьма простым, но имел пару существенных недостатков. Во-первых, память выполняемого приложения была ограничена оперативной памятью, которая на тот момент была сильно дорогой и устанавливалась на компьютер в очень маленьких количествах. Во-вторых, все запущенные программы выполнялись в одном адресном пространстве, что приводило к вероятности ошибочной записи данных несколькими приложениями в одну и ту же ячейку. В случае возникновения такой ситуации, о последствиях догадаться несложно.

В современных компьютерах устройства и программы работают не с реальной (физической ) памятью, а виртуальной , которая ее имитирует. Это дает возможность приложению считать, что на машине установлено максимальное теоритически возможное количество ОЗУ, а так же то, что оно является единственной программой, запущенной на компьютере.

Таким образом, адресное пространство ЭВМ наших дней, больше не ограничено размером ее физической (оперативной) памяти и имеет свой максимальный возможный размер, зависящий от рабочей среды, которой является операционная система.

На сегодняшний день операционная система Windows имеет как 32-разрядную, так и 64-разрядную версии. В первой, исходя из названия, для адресации используется 32-битное адресное пространство, максимальный размер которого равен 2 32 = 4 294 967 296 байт или 4 Гб (гигабайт). 64-битная версия операционной системы увеличивает размер адресного пространства до невероятных 2 64 = 18 446 744 073 709 551 616 байт - более 18 квинтиллионов байт или 16 Эб (эксабайт). Правда стоит отметить, что современные клиентские операционные системы Windows 7 x64 в силу объективных причин поддерживают максимальное адресное пространство размером 16 Тб (2 44).

При этом объемы в 4 Гб и 16 Тб, в зависимости от системы, выделяются каждому работающему приложению! То есть любая запущенная программа получает свое собственное адресное пространство, которое не пересекается с другими.

Влияние объема оперативной памяти на скорость работы системы

А что же происходит, когда записи в адресном пространстве по размеру начинают превышать реально установленный объем физической памяти? В этом случае, часть временно не использующихся данных переносится из ОЗУ на жесткий диск в так называемый файл подкачки или «своп» (swap). Если программам вновь понадобятся эти данные, то система по первому требованию, вернет их обратно с диска в оперативную память.

Если в компьютере установлен небольшой объем оперативной памяти, то ОС возможно довольно часто придется перемещать данные из ОЗУ в файл подкачки и обратно, вследствие чего сильно возрастает нагрузка на жесткий диск, что в свою очередь приводит к замедлению работы всей системы. В случае запуска сразу нескольких приложений, может получиться так, что все свое время система начнет тратить на обмен информацией между памятью и диском, вместо того чтобы выполнять программы. Визуально, в этот момент, система «зависает», то есть перестает отвечать на команды пользователя.

Чем больше реальный объем оперативной памяти, тем реже идет обращение к винчестеру, а вследствие этого возрастает и общая производительность компьютера. Именно поэтому, увеличение размера ОЗУ практически всегда положительно сказывается на скорости работы системы, а с учетом нынешних цен на память, многим пользователям вполне доступна установка 8, 16 или даже 32 Гб «оперативки». Особенно благоприятно большой объем памяти сказывается при работе с графическими приложениями (включая современные трехмерные игры) и программами видеомонтажа.

Стоит знать, что разные версии 64-битной операционной системы Windows могут поддерживать разный максимальный объем оперативной памяти. И если пользователям старших редакций Vista или 7 (Professional, Enterprise, Ultimate), поддерживающих до 192 Гб памяти, волноваться особо нечего, так как на домашних компьютерах такой объем практически не достижим, то тем, у кого установлены версии Home Basic и Home Premium есть над чем задуматься. Возможности этих редакций сильно урезаны, и если Premium поддерживает до 16 Гб «оперативки», то Basic только 8 Гб. Максимально доступный объем оперативной памяти, поддерживаемый уже устаревшей Windows XP (64-битной версии) составляет 16 Гб.

Почему 32-битная система Windows не видит 4 Гб ОЗУ

Наверняка, многие пользователи хотят воспользоваться падением цен на память и нарастить ее объем в собственных компьютерах. Процедура эта нехитрая - вынуть старые планки из системной платы и вставить новые можно за считанные минуты без каких-либо специальных инструментов. Далее включаем компьютер, тихо радуемся, когда при загрузке программа самотестирования отображает новый объем установленной ОЗУ (хотя и здесь могут быть проблемы, но об этом чуть ниже). Затем, дожидаемся загрузки Windows, заходим в свойства компьютера и… видим, что в разделе «Установленная память» красуется цифра в три с лишним гигабайта, вместо, например, реально установленных четырех. Так что же произошло и можно ли это исправить?

Как мы уже знаем, чисто теоретически 32-х разрядной системе без каких-либо дополнительных ухищрений доступны до 4 гигабайт оперативной памяти (2 32), но Windows не может использовать весь этот объем, так как часть его отводится под устройства компьютера.

Теперь, самое время сделать небольшой экскурс в историю. В первых настольных ПК, выпущенных в начале 80-ых годов, адресное пространство их физической памяти было поделено на две части в соотношении пять к трем. Первая часть отводилось под оперативную память (ОЗУ), а вторая предназначалась для размещения программы самотестирования (POST), базовой системы ввода-вывода (BIOS) и памяти устройств. При этом та часть адресного пространства, которая отводилась под устройства, не могла быть одновременно использована под оперативную память компьютера.

Все изменилось, когда в 1985 году компания Intel выпустила на рынок процессор 80386. Тогда были приняты сразу два решения об изменении распределения физической памяти в компьютерах, основанных на новых чипах. Распределение адресов в первом мегабайте памяти было принято оставить неизменным для совместимости со старым программным обеспечением и предыдущими моделями ЭВМ. Для компьютерных же устройств, нуждающихся в использовании памяти, теперь выделялся четвертый гигабайт. Все остальное пространство отводилось под ОЗУ.

Возможно, сегодня это решение многим покажется не совсем верным, но в то время несколько гигабайт оперативной памяти казалось просто фантастикой! Да и вряд ли кто предполагал, что сама архитектура и такой порядок распределения адресов проживет столько лет. Но и посей день, во всех современных компьютерах оперативная память начинает занимать адреса, начиная с нулевого, а оборудование - начиная с отметки 4 Гб в обратном направлении.

Теперь давайте более наглядно рассмотрим, как же распределяется память с момента начала загрузки компьютера. Здесь важно помнить, что все программы и компьютерные устройства работают не с физической памятью напрямую, а с адресным пространством, размер которого никак не зависит от реального объема установленной ОЗУ. То есть если убрать из компьютера всю установленную в него оперативную память, то размер адресного пространства ни капли не изменится. Напомним, что для 32-битных систем он равен 4 Гб.

Сразу же после включения машины, специальная программа, называемая БИОС (BIOS), начинает обращаться к установленным устройствам. Ее задача, сначала собрать сведения о том, какие диапазоны адресов то или иное устройство может использовать, а потом распределить память так, что бы они не мешали друг другу при работе. После того, как необходимые виртуальные адреса под оборудование становятся зарезервированными в адресном пространстве (от четвертого гигабайта сверху вниз), начинается загрузка операционной системы.

Как мы уже говорили ранее, под установленную оперативную память адресное пространство выделяется снизу вверх - от нуля и далее. Таким образом, после загрузки системы физическая память «проецируется» на адресное пространство (от 0 до 2 Гб) и Windows не видя никаких конфликтов с адресами, зарезервированными под устройства, показывает вам весь установленный объем оперативной памяти.

Таким образом, пока объем оперативной памяти не превышает двух-трех гигабайт, в большинстве случаев никаких проблем не возникает, но как только этот рубеж превышается, возможны появления конфликтов. В четвертом гигабайте вполне вероятно возникновение ситуации, когда на один и тот же адрес будут претендовать как ячейка оперативной памяти, так и ячейка памяти устройства, например видеокарты. Если туда будут записаны данные ОЗУ, то это приведет к искажению изображения на экране, в случае же смены картинки на мониторе - исказится содержимое памяти. Чтобы не допустить таких конфликтов, операционная система не использует под ОЗУ ту часть физической памяти, которая отведена под адреса устройств.

После установки 4 Гб физической памяти, теоретически ее адреса займут все доступное адресное пространство для 32-битных систем. Но доступными останутся только те, которые попадут в незарезервированную устройствами область. В нашем примере, Windows будет считать, что объем установленной оперативной памяти равен 3,5 Гб.

Довольно долгое время никого особенно проблема четвертого гигабайта не волновала. Под нужды устройств использовалось совсем немного места - десятки килобайт для контроллеров дисков и сетевого адаптера, плюс несколько мегабайт под память видеокарты. Сами же объемы оперативной памяти были тоже небольшими, а значит, пересечение адресов используемых ОЗУ и устройствами в доступном адресном пространстве было практически невозможным.

Первый тревожный звонок прозвенел с появлением технологии AGP. На тот момент, видеоадаптеры с аппаратным ускорением трехмерной графики резко увеличили свою потребность в использовании собственной оперативной памяти. А AGP дала возможность графическим адаптерам использовать для собственных нужд часть памяти компьютера, в случае нехватки собственной. При этом вне зависимости от типа адаптера и количества у него собственной памяти, резервируется 256 Мбайт адресов, так как этот размер задается не самой видеоплатой, а оборудованием шины AGP. С приходом технологии PCI-Express ситуация принципиально не изменилась и размер резервируемого места остался тем же.

Помимо увеличившихся аппетитов графических подсистем, постоянно росло и количество интегрированных устройств в системную плату. К ним добавились высокоскоростные сетевые интерфейсы, многоканальные звуковые карты и различные виды контроллеров. Ко всему прочему под устройства адресное пространство отводится не в точном необходимом количестве, а блоками, определяемыми их характеристиками, заданными изготовителями. Из-за этого между адресами различных устройств появляются свободные промежутки, которые еще больше увеличивают зарезервированное пространство памяти.

В некоторых случаях, правда, довольно редких, объем адресного пространства, отведённого под устройства, может достигать и двух гигабайт. В большинстве же случаев, заблокированным оказывается пространство от 500 Мб до 1 Гб.

Технология PAE

Так можно все-таки увидеть все 4 Гб памяти в 32-разрядной Windows? Да, если у вас установлена серверная ОС, например Windows Server 2003 или Server 2008.

В середине 90-х годов была разработана технология расширения доступного объема ОЗУ, получившая название PAE (Physical Address Extension). Впервые она была воплощена в процессорах Intel Pentium Pro, в результате чего они смогли использовать не 32-х, а 36-битную шину адреса, что теоретически позволяло использовать максимально не 4, а 64 Гб оперативной памяти.

Но что самое примечательное, некоторые особенности использования этой технологии в контроллерах памяти, предоставляют возможность не только использовать ее по прямому назначению, но и перебрасывать некоторые участки памяти в другие адреса. Таким образом, появляется возможность переместить в область выше 4 Гб, например, в пятый гигабайт адресного пространства, ту часть ОЗУ, которая была заблокирована из-за возможности возникновения конфликтов с устройствами, после чего она вновь становится доступной. Правда, для этого необходимо соблюсти два условия.

Первое - процессор должен быть установлен в системную плату, оснащенную специальным диспетчером памяти, осуществляющим поддержку расширения физических адресов. Как правило, в микропрограмме BIOS Setup (БИОС), запускающейся сразу же после включения компьютера, существует специальная настройка, запрещающая или разрешающая переадресацию. В разных моделях материнских плат ее наименование может быть различным, например: Memory Remap, 64-bit OS, Memory Hole и другое. Точное название этой опции можно выяснить из руководства конкретной системной платы. Кстати, старые материнские платы могут вообще не поддерживать режим расширения адресов (это так же можно выяснить из инструкции).

Второе - в операционной системе должен быть включен режим PAE. Так вот в серверных системах он задействован по умолчанию. Поэтому, если у вас установлена 32-битная Windows подобного типа и не слишком старый компьютер (нет вышеуказанных ограничений по железу), то благодаря использованию технологии PAE, будут доступны все 4 Гб оперативной памяти.

Вполне логично, что данную технологию можно было бы применить в клиентских системах и ее применяют, но с некоторыми ограничениями.

Изначально, в первой версии Windows XP данный режим был отключен, так как в 2001 году средний объем ОЗУ в персональных компьютерах составлял 128 - 256 Мб, и никакой необходимости в его включении не было. Возможно, положение дел оставалось бы таким еще довольно долго, но в 2003 году компания Microsoftприступила к разработке второго пакета исправлений для XP, призванного существенно снизить количество уязвимостей в системе. Одним из нововведений, принесенным вторым сервис паком, стало использование аппаратных и программных технологий, предотвращающих запуск вредоносного кода путем дополнительной проверки содержимого памяти. На аппаратном уровне эту проверку выполняет процессор. При этом в компании Intel данная функция носит названия Execute Disable bit (запрет на выполнение), а в AMD - No-execute page-protection (защита страниц от выполнения).

Однако, что бы такая аппаратная защита стала возможна, необходим перевод процессора в режим PAE. Именно поэтому, начиная с Windows XP SP2, данный режим, при наличии подходящего процессора, включается автоматически. Но самое основное, что в 32-разрядных Windows XP с пакетами обновлений SP2 и SP3, а так же последующих Windows Vista и Windows 7, расширение физических адресов реализовано только частично. Эти системы не поддерживают 36-битную адресацию памяти и включенный режим PAE, не добавляет в их распоряжение ни байта адресного пространства, что делает невозможным переброску в верхние участки заблокированных адресов ОЗУ. Причина такой реализации - обеспечение совместимости с драйверами устройств.

Как мы помним, операционная система и все программы используют виртуальные адресные пространства и соответственно виртуальные адреса, которые впоследствии пересчитывается в физические. Процедура эта происходит в два этапа при выключенном режиме PAE и в три, при включенном расширении физических адресов. Драйверы, в отличие от обычных программ, работают напрямую с реальными адресами и для корректной работы в режиме PAE должны понимать усложненную процедуру трансляции адресов. Ведь сформированный драйвером 32-битный адрес после дополнительного (третьего) этапа трансляции может измениться и чтобы выданная им команда достигла цели, необходимо это учитывать.

Разработчики драйверов, предназначенных для серверных систем это принимали в расчет, а вот драйвера для клиентских Windows, устанавливаемых на обычные домашние ПК, во многих случаях были написаны без учета алгоритма работы с включенным PAE. Ведь так было проще - меньше времени уходило на программирование и тестирование, да и сам драйвер занимал меньше места. Тем более к тому моменту, до выхода Windows XP SP2, режим PAE в настольных системах не использовался, а оборудование, которое выпускалось для «персоналок», во многих случаев не было предназначено для серверов (например, звуковые платы). Так что никакой острой необходимости усложнять драйвера, и выпускать их серверные версии у производителей не было.

Именно с такими, неадаптированными драйверами, и возникли серьезные проблемы в Windows со вторым пакетом обновлений. Не смотря на то, что, общее количество драйверов, вызывавших сбои или крах системы, было не таким уж и большим, количество устройств их использующих исчислялось миллионами. В результате огромное количество пользователей после установки второго сервис-пака могли столкнуться с неприятностями и в дальнейшем отказаться от его использования. Поэтому Microsoft пришлось идти на компромисс.

Для обеспечения совместимости с некорректно написанными драйверами функционал PAE в Windows XP SP2 было решено обрезать. Выразилось это в том, что на третьем этапе трансляции адресов на выход передавались те же адреса, которые были поданы на вход. Таким образом, никакого расширения адресного пространства не происходило, и система продолжала оперировать теми же четырьмя гигабайтами.

Как уже упоминалось выше, такой обрезанный режим PAE унаследовали все современные 32-разрядные системы, включая Windows 7 и Windows 8. А вот если вы установите ради эксперимента на свой компьютер оригинальную Windows XP или XP SP1 и включите режим PAE (там он по умолчанию отключен), то увидите собственными глазами, что системе будет доступно все 4 Гб ОЗУ.

ОЗУ и 64-битные системы Windows

Казалось бы, что у 64-разрядных систем никаких проблем с установкой больших объемов памяти быть недолжно. Сколько ОЗУ установили, столько «операционка» и будет видеть. И все же здесь есть свои подводные камни.

Не смотря на то, что 64-битная Windows может использовать адресное пространство и оперативную память, объемы которых далеко превышают четыре гигабайта, правило размещения адресов устройств, здесь точно такое же, как и в 32-битных системах, то есть устройства занимают ячейки в четвертом гигабайте сверху вниз. Сохранение этого принципа опять же обеспечивает нормальную работоспособность любого оборудования, предназначенного для обычных ПК, которое должно с одинаковым успехом работать, как в 32-разрядной системе, так и в 64-разрядной.

Получается, что все ограничения, накладываемые на физическую память в 32-битной системе, должны остаться и в 64-битной, а значит, видимый объем оперативной памяти будет опять неполным, если ваша материнская плата не поддерживает переадресацию или она отключена в настройках. Конечно, такие системные платы уже не выпускаются, но все еще используются во многих компьютерах.

Еще один «сюрприз» вас может ожидать, если в материнскую плату будет установлен максимальный поддерживаемый объем памяти. Например, еще недавно популярный чипсет для бюджетных решений Intel G41 позволяет устанавливать до 8 Гб оперативной памяти. Как правило, в этом случае, на системной плате разведены 33 адресные линии (2 33 = 8 589 934 592 байт = 8 Гб). С точки зрения производителя это вполне объяснимо - зачем делать шину более высокой разрядности, если набор системной логики все равно не поддерживает большие объемы памяти? Но из-за этого, даже если контроллер памяти и может перекинуть заблокированный участок ОЗУ в девятый гигабайт, сделать это у него не получиться, так как для этого потребуется 34-разрядная шина, а не 33-х, как в нашем случае. В итоге пользователю будет доступно только семь с небольшим гигабайт ОЗУ. Тоже самое касается плат поддерживающих 16 и 32 Гб.

В некоторых случаях, даже при работающей переадресации в 64-битной системе несколько десяткой или сотен мегабайт могут все равно оказаться заблокированы системой под оборудование. Виной тому могут стать технологические особенности системной платы, которая в любой ситуации будет резервировать какой-то объем памяти, например, для нужд встроенного видеоадаптера или RAID-контроллера.

Заключение

В заключение давайте сделаем несколько основополагающих выводов, исходя из всего вышесказанного.

Хотя 32-битные системы Windows чисто теоретически могут использовать до 4 Гб оперативной памяти, некоторый ее объем всегда оказывается зарезервированным под нужды устройств, после чего в доступности оказывается обычно не более 3-3,5 Гб.

Однако эта проблема решена в 32-разрядных серверных ОС. Благодаря использованию технологии расширения физических адресов (PAE), в системе может быть виден весь максимальный установленный объем ОЗУ (4 Гб).

В клиентских 32-разрядных версиях Windowsрежим PAE был урезан для обеспечения совместимости с драйверами устройств из-за чего в WindowsXP SP2/SP3, Windows Vista, Windows 7, а так же Windows 8 увидеть все максимально допустимые четыре гигабайта ОЗУ невозможно и исправить это нельзя.

Таким образом, если вы собираетесь установить в компьютер более трех гигабайт оперативной памяти, то необходимо использовать 64-битные версии операционных систем, которые позволяют видеть до 192 Гб ОЗУ и имеют неурезанный режим PAE. В противном случае весь остальной объем памяти будет недоступен для использования.

Так же следует помнить, что для работы PAE, либо процессор, либо системная плата должны иметь специальный контроллер памяти, поддерживающий технологию расширения физических адресов.

Оперативная память используется для временного хранения данных, необходимых для работы операционной системы и всех программ. Оперативной памяти должно быть достаточно, если ее не хватает, то компьютер начинает тормозить.

Плата с чипами памяти называется модулем памяти (или планкой). Память для ноутбука, кроме размера планок, ни чем не отличается от памяти для компьютера, поэтому при выборе руководствуйтесь теми же рекомендациями.

Для офисного компьютера достаточно одной планки DDR4 на 4 Гб с частотой 2400 или 2666 МГц (стоит почти одинаково).
Оперативная память Crucial CT4G4DFS824A

Для мультимедийного компьютера (фильмы, простые игры) лучше взять две планки DDR4 с частотой 2666 МГц по 4 Гб, тогда память будет работать в более быстром двухканальном режиме.
Оперативная память Ballistix BLS2C4G4D240FSB

Для игрового компьютера среднего класса можно взять одну планку DDR4 на 8 Гб с частотой 2666 МГц с тем, чтобы в будущем можно было добавить еще одну и лучше если это будет ходовая модель попроще.
Оперативная память Crucial CT8G4DFS824A

А для мощного игрового или профессионального ПК нужно сразу брать набор из 2 планок DDR4 по 8 Гб, при этом будет вполне достаточно частоты 2666 МГц.

2. Сколько нужно памяти

Для офисного компьютера, предназначенного для работы с документами и выхода в интернет, с головой достаточно одной планки памяти на 4 Гб.

Для мультимедийного компьютера, который можно будет использовать для просмотра видео в высоком качестве и нетребовательных игр, вполне хватит 8 Гб памяти.

Для игрового компьютера среднего класса вариантом минимум является 8 Гб оперативки.

Для мощного игрового или профессионального компьютера необходимо 16 Гб памяти.

Больший объем памяти может понадобиться только для очень требовательных профессиональных программ и обычным пользователям не нужен.

Объем памяти для старых ПК

Если вы решили увеличить объем памяти на старом компьютере, то учтите, что 32-разрядные версии Windows не поддерживают более 3 Гб оперативной памяти. То есть, если вы установите 4 Гб оперативной памяти, то операционная система будет видеть и использовать только 3 Гб.

Что касается 64-разрядных версий Windows, то они смогут использовать всю установленную память, но если у вас старый компьютер или есть старый принтер, то на них может не оказаться драйверов под эти операционные системы. В таком случае, перед покупкой памяти, установите 64-х разрядную версию Windows и проверьте все ли у вас работает. Так же рекомендую заглянуть на сайт производителя материнской платы и посмотреть какой объем модулей и общий объем памяти она поддерживает.

Учтите еще, что 64-разрядные операционные системы расходуют в 2 раза больше памяти, например Windows 7 х64 под свои нужды забирает около 800 Мб. Поэтому 2 Гб памяти для такой системы будет мало, желательно не менее 4 Гб.

Практика показывает, что современные операционные системы Windows 7,8,10 полностью раскрываются при объеме памяти 8 Гб. Система становится более отзывчивой, программы быстрее открываются, а в играх исчезают рывки (фризы).

3. Типы памяти

Современная память имеет тип DDR SDRAM и постоянно совершенствуется. Так память DDR и DDR2 уже является устаревшей и может использоваться только на старых компьютерах. Память DDR3 уже не целесообразно использовать на новых ПК, на смену ей пришла более быстрая и перспективная DDR4.

Учтите, что выбранный тип памяти должен поддерживать процессор и материнская плата.

Также новые процессоры, из соображений совместимости, могут поддерживать память DDR3L, которая отличается от обычной DDR3 пониженным напряжением с 1.5 до 1.35 В. Такие процессоры смогут работать и с обычной памятью DDR3, если у вас она уже есть, но производители процессоров это не рекомендуют из-за повышенной деградации контроллеров памяти, рассчитанных на DDR4 с еще более низким напряжением 1.2 В.

Тип памяти для старых ПК

Устаревшая память DDR2 стоит в несколько раз дороже более современной памяти. Планка DDR2 на 2 Гб стоит в 2 раза дороже, а планка DDR2 на 4 Гб в 4 раза дороже планки DDR3 или DDR4 аналогичного объема.

Поэтому, если вы хотите существенно увеличить память на старом компьютере, то возможно более оптимальным вариантом будет переход на более современную платформу с заменой материнской платы и если необходимо процессора, которые будут поддерживать память DDR4.

Подсчитайте во сколько вам это обойдется, возможно выгодным решением будет продать старую материнскую плату со старой памятью и приобрести новые, пусть не самые дорогие, но более современные комплектующие.

Разъемы материнской платы для установки памяти называются слотами.

Каждому типу памяти (DDR, DDR2, DDR3, DDR4) соответствует свой слот. Память DDR3 можно установить только в материнскую плату со слотами DDR3, DDR4 – со слотами DDR4. Материнские платы, поддерживающие старую память DDR2 уже не производят.

5. Характеристики памяти

Основными характеристиками памяти, от которых зависит ее быстродействие, являются частота и тайминги. Скорость работы памяти не оказывает такого сильного влияния на общую производительность компьютера как процессор. Тем не менее, часто можно приобрести более быструю память не на много дороже. Быстрая память нужна прежде всего для мощных профессиональных компьютеров.

5.1. Частота памяти

Частота оказывает наибольшее значение на скорость работы памяти. Но перед ее покупкой необходимо убедиться, что процессор и материнская плата так же поддерживают необходимую частоту. В противном случае реальная частота работы памяти будет ниже и вы просто переплатите за то, что не будет использоваться.

Недорогие материнские платы поддерживают более низкую максимальную частоту памяти, например для DDR4 это 2400 МГц. Материнские платы среднего и высокого класса могут поддерживать память с более высокой частотой (3400-3600 МГц).

А вот с процессорами дело обстоит иначе. Старые процессоры с поддержкой памяти DDR3 могут поддерживать память с максимальной частотой 1333, 1600 или 1866 МГц (в зависимости от модели). Для современных процессоров с поддержкой памяти DDR4 максимально поддерживаемая частота памяти может составлять 2400 МГц или выше.

Процессоры Intel 6-го поколения и выше, а также процессоры AMD Ryzen поддерживают память DDR4 с частотой 2400 МГц или выше. При этом в их модельном ряду есть не только мощные дорогие процессоры, но и процессоры среднего и бюджетного класса. Таким образом, вы можете собрать компьютер на самой современной платформе с недорогим процессором и памятью DDR4, а в будущем поменять процессор и получить высочайшую производительность.

Основной на сегодня является память DDR4 2400 МГц, которая поддерживается наиболее современными процессорами, материнскими платами и стоит столько же как DDR4 2133 МГц. Поэтому приобретать память DDR4 с частотой 2133 МГц сегодня не имеет смысла.

Какую частоту памяти поддерживает тот или иной процессор можно узнать на сайтах производителей:

По номеру модели или серийному номеру очень легко найти все характеристики любого процессора на сайте:

Или просто введите номер модели в поисковой системе Google или Яндекс (например, «Ryzen 7 1800X»).

5.2. Память с высокой частотой

Теперь я хочу затронуть еще один интересный момент. В продаже можно встретить оперативную память гораздо более высокой частоты, чем поддерживает любой современный процессор (3000-3600 МГц и выше). Соответственно, многие пользователи задаются вопросом как же такое может быть?

Все дело в технологии, разработанной компанией Intel, eXtreme Memory Profile (XMP). XMP позволяет памяти работать на более высокой частоте, чем официально поддерживает процессор. XMP должна поддерживать как сама память, так и материнская плата. Память с высокой частотой просто не может существовать без поддержки этой технологии, но далеко не все материнские платы могут похвастаться ее поддержкой. В основном это более дорогие модели выше среднего класса.

Суть технологии XMP заключается в том, что материнская плата автоматически увеличивает частоту шины памяти, благодаря чему память начинает работать на своей более высокой частоте.

У компании AMD существует подобная технология, называемая AMD Memory Profile (AMP), которая поддерживалась старыми материнскими платами для процессоров AMD. Эти материнские платы обычно поддерживали и модули XMP.

Приобретать более дорогую память с очень высокой частотой и материнскую плату с поддержкой XMP есть смысл для очень мощных профессиональных компьютеров, оснащенных топовым процессором. В компьютере среднего класса это будут выброшенные на ветер деньги, так как все упрется в производительность других комплектующих.

В играх частота памяти оказывает небольшое влияние и переплачивать особого смысла нет, достаточно будет взять на 2400 МГц, ну или на 2666 МГц если разница в цене будет небольшая.

Для профессиональных приложений можно взять память с частотой повыше – 2666 МГц или если хотите и позволяют средства на 3000 МГц. Разница в производительности тут больше чем в играх, но не кардинальная, так что загоняться с частотой памяти особого смысла нет.

Еще раз напоминаю, что ваша материнская плата должна поддерживать память требуемой частоты. Кроме того, иногда процессоры Intel начинают работать нестабильно при частоте памяти выше 3000 МГц, а у Ryzen этот предел составляет около 2900 МГц.

Таймингами называются задержки между операциями чтения/записи/копирования данных в оперативной памяти. Соответственно чем эти задержки меньше, тем лучше. Но тайминги оказывают гораздо меньшее влияние на скорость работы памяти, чем ее частота.

Основных таймингов, которые указываются в характеристиках модулей памяти всего 4.

Из них самой главной является первая цифра, которая называется латентность (CL).

Типичная латентность для памяти DDR3 1333 МГц – CL 9, для памяти DDR3 с более высокой частотой – CL 11.

Типичная латентность для памяти DDR4 2133 МГц – CL 15, для памяти DDR4 с более высокой частотой – CL 16.

Не стоит приобретать память с латентностью выше указанной, так как это говорит об общем низком уровне ее технических характеристик.

Обычно, память с более низкими таймингами стоит дороже, но если разница в цене не значительная, то предпочтение следуют отдать памяти с более низкой латентностью.

5.4. Напряжение питания

Память может иметь различное напряжение питания. Оно может быть как стандартным (общепринятым для определенного типа памяти), так и повышенным (для энтузиастов) или наоборот пониженным.

Это особенно важно если вы хотите добавить память на компьютер или ноутбук. В таком случае напряжение новых планок должно быть таким же, как и у имеющихся. В противном случае возможны проблемы, так как большинство материнских плат не могут выставлять разное напряжение для разных модулей.

Если напряжение выставится по планке с более низким вольтажом, то другим может не хватить питания и система будет работать не стабильно. Если напряжение выставится по планке с более высоким вольтажом, то память рассчитанная на меньшее напряжение может выйти из строя.

Если вы собираете новый компьютер, то это не так важно, но чтобы избежать возможных проблем совместимости с материнской платой и заменой или расширением памяти в будущем, лучше выбирать планки со стандартным напряжением питания.

Память, в зависимости от типа, имеет следующие стандартные напряжения питания:

  • DDR — 2.5 В
  • DDR2 — 1.8 В
  • DDR3 — 1.5 В
  • DDR3L — 1.35 В
  • DDR4 — 1.2 В

Я думаю, вы обратили внимание на то, что в списке есть память DDR3L. Это не новый тип памяти, а обычная DDR3, но с пониженным напряжением питания (Low). Именно такая память нужна для процессоров Intel 6-го поколения и выше, которые поддерживают как память DDR4, так и DDR3. Но лучше в таком случае все же собирать систему на новой памяти DDR4.

6. Маркировка модулей памяти

Модули памяти маркируются в зависимости от типа памяти и ее частоты. Маркировка модулей памяти типа DDR начинается с PC, затем идет цифра, обозначающая поколение и скорость в мегабайтах в секунду (Мб/с).

По такой маркировке неудобно ориентироваться, достаточно знать тип памяти (DDR, DDR2, DDR3, DDR4), ее частоту и латентность. Но иногда, например на сайтах объявлений, можно увидеть маркировку, переписанную с планки. Поэтому, чтобы вы могли сориентироваться в таком случае, я приведу маркировку в классическом виде, с указанием типа памяти, ее частоты и типичной латентности.

DDR – устаревшая

  • PC-2100 (DDR 266 МГц) — CL 2.5
  • PC-2700 (DDR 333 МГц) — CL 2.5
  • PC-3200 (DDR 400 МГц) — CL 2.5

DDR2 – устаревшая

  • PC2-4200 (DDR2 533 МГц) — CL 5
  • PC2-5300 (DDR2 667 МГц) — CL 5
  • PC2-6400 (DDR2 800 МГц) — CL 5
  • PC2-8500 (DDR2 1066 МГц) — CL 5

DDR3 – устаревающая

  • PC3-10600 (DDR3 1333 МГц) — CL 9
  • PC3-12800 (DDR3 1600 МГц) — CL 11
  • PC3-14400 (DDR3 1866 МГц) — CL 11
  • PC3-16000 (DDR3 2000 МГц) — CL 11
  • PC4-17000 (DDR4 2133 МГц) — CL 15
  • PC4-19200 (DDR4 2400 МГц) — CL 16
  • PC4-21300 (DDR4 2666 МГц) — CL 16
  • PC4-24000 (DDR4 3000 МГц) — CL 16
  • PC4-25600 (DDR4 3200 МГц) — CL 16

Память DDR3 и DDR4 может иметь и более высокую частоту, но работать с ней могут только топовые процессоры и более дорогие материнские платы.

7. Конструкция модулей памяти

Планки памяти могут быть односторонние, двухсторонние, с радиаторами или без.

7.1. Размещение чипов

Чипы на модулях памяти могут размещаться с одной стороны платы (односторонние) и с двух сторон (двухсторонние).

Это не имеет значения если вы приобретаете память для нового компьютера. Если же вы хотите добавить память на старый ПК, то желательно, чтобы расположение чипов на новой планке было такое же как и на старой. Это поможет избежать проблем совместимости и повысит вероятность работы памяти в двухканальном режиме, о чем мы еще поговорим в этой статье.

Сейчас в продаже можно встретить множество модулей памяти с алюминиевыми радиаторами различного цвета и формы.

Наличие радиаторов может быть оправдано на памяти DDR3 с высокой частотой (1866 МГц и более), так как она сильнее греется. При этом в корпусе должна быть хорошо организована вентиляция.

Современная оперативка DDR4 с частотой 2400, 2666 МГц практически не греется и радиаторы на ней будут носить чисто декоративный характер. Они могут даже мешать, так как через некоторое время забьются пылью, которую из них трудно вычистить. Кроме того, стоить такая память будет несколько дороже. Так что, если хотите, на этом можно сэкономить, например, взяв отличную память Crucial на 2400 МГц без радиаторов.

Память с частотой от 3000 МГц имеет еще и повышенное напряжение питания, но тоже греется не сильно и в любом случае на ней будут радиаторы.

8. Память для ноутбуков

Память для ноутбуков отличается от памяти для стационарных компьютеров только размером модуля памяти и маркируется SO-DIMM DDR. Так же как и для стационарных компьютеров память для ноутбуков имеет типы DDR, DDR2, DDR3, DDR3L, DDR4.

По частоте, таймингам и напряжению питания память для ноутбуков не отличается от памяти для компьютеров. Но ноутбуки оснащаются только 1 или 2 слотами для памяти и имеют более жесткие ограничения максимального объема. Обязательно уточняйте эти параметры перед выбором памяти для конкретной модели ноутбука.

9. Режимы работы памяти

Память может работать в одноканальном (Single Channel), двухканальном (Dual Channel), трехканальном (Triple Channel) или четырехканальном режиме (Quad Channel).

В одноканальном режиме запись данных происходит последовательно в каждый модуль. В многоканальных режимах запись данных происходит параллельно во все модули, что приводит к значительному увеличению быстродействия подсистемы памяти.

Одноканальным режимом работы памяти ограничены только безнадежно устаревшие материнские платы с памятью DDR и первые модели с DDR2.

Все современные материнские платы поддерживают двухканальный режим работы памяти, а трехканальный и четырехканальный режим поддерживают только некоторые единичные модели очень дорогих материнских плат.

Главным условием работы двухканального режима является наличие 2 или 4 планок памяти. Для трехканального режима необходимо 3 или 6 планок памяти, а для четырехканального 4 или 8 планок.

Желательно, чтобы все модули памяти были одинаковыми. В противном случае работа в двухканальном режиме не гарантируется.

Если вы хотите добавить память на старый компьютер и ваша материнская плата поддерживает двухканальный режим, постарайтесь подобрать максимально идентичную по всем параметрам планку. Лучше всего продать старую и купить 2 новых одинаковых планки.

В современных компьютерах контроллеры памяти были перенесены с материнской платы в процессор. Теперь не так важно, чтобы модули памяти были одинаковыми, так как процессор в большинстве случаев все равно сможет активировать двухканальный режим. Это значит, что если вы в будущем захотите добавить память на современный компьютер, то не обязательно будет искать точь в точь такой же модуль, достаточно выбрать наиболее похожий по характеристикам. Но все же я рекомендую, что бы модули памяти были одинаковыми. Это даст вам гарантию ее быстрой и стабильной работы.

С переносом контроллеров памяти в процессор появились еще 2 режима двухканальной работы памяти – Ganged (спаренный) и Unganged (неспаренный). В случае если модули памяти одинаковые, то процессор может работать с ними в режиме Ganged, как и раньше. В случае, если модули отличаются по характеристикам, то для устранения перекосов в работе с памятью процессор может активировать режим Unganged. В целом скорость работы памяти в этих режимах практически одинаковая и не имеет никакой разницы.

Единственным недостатком двухканального режима является то, что несколько модулей памяти стоят дороже, чем один такого же объема. Но если вы не очень сильно стеснены в средствах, то покупайте 2 планки, скорость работы памяти будет значительно выше.

Если вам нужно, скажем 16 Гб оперативки, но вы пока не можете себе этого позволить, то можно приобрести одну планку на 8 Гб, чтобы в будущем добавить еще одну такую же. Но все же лучше приобретать две одинаковых планки сразу, так как потом может не получиться найти такую же и вы столкнетесь с проблемой совместимости.

10. Производители модулей памяти

Одним из лучших соотношений цена/качество на сегодня обладает память безукоризненно зарекомендовавшего себя бренда Crucial, у которого есть модули от бюджетных до геймерских (Ballistix).

Наравне с ним соперничает пользующийся заслуженной популярностью бренд Corsair, память которого стоит несколько дороже.

Как недорогую, но качественную альтернативу, особенно рекомендую польский бренд Goodram, у которого есть планки с низкими таймингами за невысокую цену (линейка Play).

Для недорогого офисного компьютера достаточно будет простой и надежной памяти производства AMD или Transcend. Они прекрасно себя зарекомендовали и с ними практически не бывает проблем.

Вообще, лидерами в производстве памяти считаются корейские компании Hynix и Samsung. Но сейчас модули этих брендов массово производятся на дешевых китайских фабриках и среди них очень много подделок. Поэтому я не рекомендую приобретать память этих брендов.

Исключением могут быть модули памяти Hynix Original и Samsung Original, которые производятся в Корее. Эти планки обычно синего цвета, их качество считается лучше чем в сделанных в Китае и гарантия на них бывает несколько выше. Но по скоростным характеристикам они уступают памяти с более низкими таймингами других качественных брендов.

Ну а для энтузиастов и любителей модинга есть доступные оверклокерские бренды GeIL, G.Skill, Team. Их память отличается низкими таймингами, высоким разгонным потенциалом, необычным внешним видом и стоит немного дешевле раскрученного бренда Corsair.

В продаже также есть большой ассортимент модулей памяти от очень популярного производителя Kingston. Память, продающаяся под бюджетным брендом Kingston, никогда не отличалась высоким качеством. Но у них есть топовая серия HyperX, пользующаяся заслуженной популярностью, которую можно рекомендовать к приобретению, однако цена на нее часто завышена.

11. Упаковка памяти

Лучше приобретать память в индивидуальной упаковке.

Обычно она более высокого качества и вероятность повреждения при транспортировке значительно ниже, чем у памяти, которая поставляется без упаковки.

12. Увеличение памяти

Если вы планируете добавить память на имеющийся компьютер или ноутбук, то сначала узнайте какой максимальный объем планок и общий объем памяти поддерживает ваша материнская плата или ноутбук.

Также уточните сколько слотов для памяти на материнской плате или в ноутбуке, сколько из них занято и какие планки в них установлены. Лучше сделать это визуально. Откройте корпус, выньте планки памяти, рассмотрите их и перепишите все характеристики (или сделайте фото).

Если по какой-то причине вы не хотите лезть в корпус, то посмотреть параметры памяти можно в программе на вкладке SPD. Таким образом вы не узнаете односторонняя планка или двухсторонняя, но можете узнать характеристики памяти, если на планке нет наклейки.

Есть базовая и эффективная частота памяти. Программа CPU-Z и многие подобные показывают базовую частоту, ее нужно умножать на 2.

После того, как вы узнаете до какого объема можете увеличить память, сколько свободных слотов и какая память у вас установлена, можно будет приступать к изучению возможностей по увеличению памяти.

Если все слоты для памяти заняты, то единственной возможностью увеличения памяти остается замена существующих планок на новые большего объема. А старые планки можно будет продать на сайте объявлений или сдать на обмен в компьютерный магазин при покупке новых.

Если свободные слоты есть, то можно добавить к уже существующим планкам памяти новые. При этом желательно, чтобы новые планки были максимально близки по характеристикам уже установленным. В этом случае можно избежать различных проблем совместимости и повысить шансы того, что память будет работать в двухканальном режиме. Для этого должны быть соблюдены следующие условия, в порядке важности.

  1. Тип памяти должен совпадать (DDR, DDR2, DDR3, DDR3L, DDR4).
  2. Напряжение питания всех планок должно быть одинаковым.
  3. Все планки должны быть односторонние или двухсторонние.
  4. Частота всех планок должна совпадать.
  5. Все планки должны быть одинакового объема (для двухканального режима).
  6. Количество планок должно быть четным: 2, 4 (для двухканального режима).
  7. Желательно, чтобы совпадала латентность (CL).
  8. Желательно, чтобы планки были того же производителя.

Проще всего начать выбор с производителя. Выбирайте в каталоге интернет-магазина планки того же производителя, объема и частоты, как установлены у вас. Убедитесь, что совпадает напряжение питания и уточните у консультанта односторонние они или двухсторонние. Если будет еще совпадать и латентность, то вообще хорошо.

Если вам не удалось найти похожие по характеристикам планки того же производителя, то выбирайте всех остальных из перечня рекомендуемых. Затем опять ищите планки нужного объема и частоты, сверяете напряжение питания и уточняете односторонние они или двухсторонние. Если вам не удалось найти похожие планки, то поищите в другом магазине, каталоге или на сайте объявлений.

Всегда лучший вариант это продать всю старую память и купить 2 новых одинаковых планки. Если материнская плата не поддерживает планки нужного объема, возможно придется купить 4 одинаковых планки.

13. Настройка фильтров в интернет-магазине

  1. Зайдите в раздел «Оперативная память» на сайте продавца.
  2. Выберите рекомендуемых производителей.
  3. Выберите формфактор (DIMM — ПК, SO-DIMM — ноутбук).
  4. Выберете тип памяти (DDR3, DDR3L, DDR4).
  5. Выберите необходимый объем планок (2, 4, 8 Гб).
  6. Выберите максимально поддерживаемую процессором частоту (1600, 1866, 2133, 2400 МГц).
  7. Если ваша материнская плата поддерживает XMP, добавьте к выборке память с более высокой частотой (2666, 3000 МГц).
  8. Отсортируйте выборку по цене.
  9. Последовательно просматривайте все позиции, начиная с более дешевых.
  10. Выберите несколько планок подходящих по частоте.
  11. Если разница в цене для вас приемлема, берите планки с большей частотой и меньшей латентностью (CL).

Таким образом, вы получите оптимальную по соотношению цена/качество/скорость память за минимально возможную стоимость.

14. Ссылки

Оперативная память Corsair CMK16GX4M2A2400C16
Оперативная память Corsair CMK8GX4M2A2400C16
Оперативная память Crucial CT2K4G4DFS824A

Каждое приложение на компьютере занимает не только место на жестком диске, но и оперативную память при работе. Чем больше на компьютере установлено приложений, которые используются одновременно, тем больше оперативной памяти требуется для комфортной работы. Каждая вкладка в браузере, открытые документы, картинки, мессенджеры и другие программы занимают определенный объем оперативной памяти. В «Диспетчере задач» можно посмотреть, как много свободной памяти доступно на компьютере в процессе работы и выполнения тех или иных задач.

Если оперативной памяти не хватает, компьютер начнет тормозить и стараться выгрузить из памяти приложения, которые используются наименее активно. Когда речь идет о простом использовании компьютера, в большинстве случаев при нехватке памяти выгружаются вкладки браузера, что приводит к перезагрузке их в момент переключения. Это доставляет определенные неудобства пользователю, от которых можно избавиться двумя способами:

  • , что не сильно исправит положение дел;
  • Добавить оперативной памяти.

Стоимость дополнительной оперативной памяти не столь высока, и ее установка может решить возникающие проблемы. Однако перед покупкой важно не только правильно подобрать память, но и убедиться, что она будет работать на компьютере, в который планируется ее установка. Дело в том, что практически все материнские платы, а также процессоры (особенно на ноутбуках), способны поддерживать определенный объем памяти, максимум которого превышать нельзя. Поэтому перед покупкой дополнительных плашек важно узнать, сколько оперативной памяти поддерживает ноутбук. Сделать это можно несколькими способами, речь о которых пойдет ниже.

Определить сколько оперативной памяти поддерживает ноутбук программно

Существуют десятки диагностических приложений, которые позволяют узнать различную информацию об используемом компьютере: данные про установленные в нем комплектующие и их характеристики, сведения об операционной системе, информацию о DirectX и многое другое. Среди таких диагностических программ по праву одно из лидирующих мест занимает AIDA64. Данное приложение распространяется бесплатно в пробном режиме, и его можно загрузить для проверки того, сколько оперативной памяти поддерживает ноутбук.

Скачать и установить AIDA64 (рекомендуем версию Extreme) с сайта разработчиков не составляет труда. Когда это будет сделано, программу необходимо запустить и следующим образом определить максимальный объем оперативной памяти для используемого компьютера:


Обратите внимание: На некоторых компьютерах программа AIDA64 может выдавать информацию о двух северных мостах. На самом деле в данных вкладках содержится разная информация, и необходимо выбрать тот вариант, в котором имеются пункты про оперативную память.


Важно: Если пункт «Максимальный объем памяти» отсутствует рядом с информацией о поддерживаемых типах памяти, это не значит, что материнская плата выдержит любой объем оперативной памяти. В таком случае необходимо действовать по второму способу определения максимального объема оперативной памяти, описанному ниже.

Найти информацию о максимуме оперативной памяти в сети

Второй способ определить максимальный объем оперативной памяти, который поддерживается ноутбуком, более сложный, но к нему придется обратиться, если диагностические программы не укажут необходимую информацию. Данный способ заключается в поиске информации в интернете, и искать ее следует:


Обратите внимание: При малограмотном подборе комплектующих для ноутбука (что бывает довольно редко) максимальный объем памяти, с которым способны работать материнская плата и процессор, могут отличаться. Поэтому ознакомиться с данной информацией необходимо для обоих комплектующих.

Часто по модели ноутбука можно узнать о максимально поддерживаемом объеме оперативной памяти на сайтах различных интернет магазинов. К этому варианту следует прибегать в последнюю очередь, поскольку не всегда информация на страницах товаров соответствует действительности. Если вы решили определить максимальный объем поддерживаемой памяти ноутбуком подобным образом, рекомендуем сравнить найденный показатель на сайтах нескольких интернет магазинов.

Оперативная память — это компонент компьютера. Важнейшая характеристика измеряется в гигабайтах: чем больше, тем лучше. Прочие характеристики важны значительно меньше — тайминги и количество планок, двухканальность… У этого устройства множество других названий:

  • «мозги»
  • память
  • оперативка
  • ОЗУ (оперативное запоминающее устройство)
  • SDRAM

Как выглядит оперативная память

В этой статье подробно объясняется предназначение оперативной памяти, способы самостоятельной установки (не сложнее, чем заменить лампочку!), тонкости выбора. Главное: после прочтения пары страниц этого текста неопытный пользователь легко разберётся в маркетинговых заклинаниях про частоты с мегагерцами и будет знать – пригодится ли ещё гигабайт памяти, или продавец впаривает ненужный товар.

Что делает оперативная память: понятное объяснение

Временно хранит операционную информацию. Не ту, которая нужна для сохранения фильмов с музыкой, а ту которая используется самой Windows, программами, играми и т.д. Такая информация храниться только во включённом состоянии ПК. Компьютер включается, стартует система – и во время старта запускаются программы и модули, которые записывают нужные данные с HDD в ОЗУ. Так, чтобы комп мог «общаться» с этими данными очень быстро – т.е., оперативно оперировать (отсюда и термин – «оперативная»).

Если говорить вкратце, то – это сверхбыстрая память, которая раз в 300 шустрее жёсткого диска. Быстрый отклик работающей программы (мгновенное появление меню при правой мышиной кнопке, скажем) – заслуга высоких скоростей «оперативки».

Аналог оперативной памяти в реальном мире – то, что хранится в мозгу человека короткое время. Эти данные готовы к мозговой обработке в любую секунду. С оперативкой в мозгу можно сравнить, например, информацию которую мы запоминаем на короткое время, во время выполнения какой-либо работы. Например, считаем, 9 + 3 = 1 и 2 в уме… Или другой пример, официант запоминает что ему заказал столик — эту информацию он скорее всего забудет через пару часов, заменив её другой. Разумеется, сравнивать память человека и память компьютера не очень правильно, потому что мозг работает по-другому и все что попало в оперативку, может запомниться и попасть в долгую память (в HDD), чего не может быть с компьютером… С HDD, можно сравнить память долгосрочную, например мы прочитали книгу и что-то запомнили. Но доступ к таким данным порой не быстрый, потому что, чтобы вспомнить, нужно взять книжку с полки и освежить память — такую память можно сравнить с памятью жесткого диска в компьютере — не быстрая но фундаментальная.

Наконец, есть ещё и совсем уж молниеносные виды памяти. В компьютере это процессорный кэш, который намертво вшит в CPU, а в человеческой голове – то, что намертво и накрепко вызубрено ещё со школьной парты: таблица умножения, «жи- ши — пиши с буквой и», «дважды два» и т.п.

Сколько нужно Гб оперативной памяти

Чем больше, тем лучше? Да, но лишь до определённого предела. Современные компьютеры (от 2012-14 года начиная) крайне редко оснащаются одним гигабайтом ОЗУ – это уже позавчерашний день и экспонат музея, а не реальный товар в 2017 году.

2 гигабайта оперативной памяти – типичная ёмкость откровенно бюджетных машинок. Пожалуй, этого достаточно – но крайне некомфортно в плане скорости и отзывчивости уже при открытом браузере, Word’е, Скайпе и антивирусе. Нет, на 2017 год двух гигабайт невероятно мало — но кое-как жить с ними можно.

4 гигабайта ОЗУ – некое «пороговое» значение ёмкости оперативной памяти. Четырьмя гигабайтами оснащаются и достаточно бюджетные модели ноутбуков, и более-менее дорогие аналоги. Достаточно? Откровенно говоря, да; но запаса при этом нет. «Прожорливость» программ и самой операционки способна загрузить все 4 гига под завязку, пусть и не всегда.

8 гигабайт DDR – зона комфорта и спокойствия. Редко, очень редко компьютер займёт хотя бы 5-6 гигабайт оперативки (это в 2016 году, а вот в 2018 аппетиты кода смогут забить и не такой громадный объём!).

16, 32 (или 128!) гигабайт ОЗУ вряд ли нужны рядовому пользователю — это уже из территории космоса. Что толку в многотонном кузове грузовика, когда автомобиль не перевозит ничего объёмнее стиральной машинки? В 2017 году вряд ли стоит покупать дополнительные гигабайты оперативной памяти для того, чтобы они просто «были».

В таблице перечислены основные «пожиратели» оперативной памяти. Числа лишь примерные – у кого-то Windows занимает больше мегабайт, у кого-то меньше. Вкладки с сайтами могут содержать коротенькую страницу без рисунков, а могут – монструозные полотнища социальных сетей со всеми контактами, моргалками и напоминаниями. Игры требуют много, но перед их запуском принято отключать ненужные браузеры и текстовые документы.

Итак, таблица: кто сколько «жрёт» оперативной памяти. Типичное потребление ОЗУ современными программами. 2016-2017 годы; дальше – только больше.

Программы и их компоненты Занимаемый объём ОЗУ, мегабайт (не гб!)
ОС Windows 7 500-1500
ОС Windows 8 (или 10) 500-1800
Браузер с 5-7 открытыми вкладками 400-800
Word 200
Скайп 100
Многочисленные служебные процессы, обновлялки, драйверы По 10-20 мб в каждой из 20-50 таких микропрограмм = 200-1000 мегабайт
Download-менеджер 20-30
Современная игра 2000-3000
Игра образца 2010-2012 г 1000-2000
Антивирус в обычном состоянии 300-500
Антивирус в режиме полной проверки 2000-2500

Так сколько нужно оперативной памяти для Windows 7, к примеру? Постарайтесь не покупать компьютеры с 2 гигабайтами на борту – этого откровенно мало. 4 гигабайта – просто хорошо, 8 – супер. Больше – не стоит, как правило. 16 гигабайт и выше нужны для:

  • продвинутых «компьютерщиков», для которых вполне стандартная задача – запустить в Винде 2-3 виртуальные системы;
  • заядлых геймеров со сверхвысокими разрешениями мониторов и дорогущими видеокартами;
  • программистов с необходимостью отлаживания-тестирования настольных программ;
  • видеодизайнеров и их фотоколлег – да и то далеко не всегда;
  • просто потому, что хочется больше, чем у других. Без прицела на практичность.

Типы оперативной памяти, частота и другие характеристики

С момента внедрения первого стандарта DDR прошло уже лет 18-20. Сменилось несколько поколений компьютеров, их производительность выросла в разы. В любой момент времени актуальны не более двух поколений памяти. В 2017 году это стремительно устаревающая DDR3, которая царствовала на рынке лет 7, и уже привычная DDR4. Если вы приобретаете новый компьютер, то, скорее всего, он будет оснащён именно четвёртым поколением ОЗУ. Если речь идёт об апгрейде старого (5-8 летней давности), то внутри работает DDR3. Поколения не совместимы между собой: плашку DDR4 физически невозможно засунуть в разъём от «тройки», и наоборот.

Оперативная память для ноутбуков отличается от обычной «десктопной» физическими размерами. Ноутбучная ОЗУ раза в два меньше в длину, чем стандартная. Частоты, объём и поколение DDR соответствуют друг другу для лэптопов и PC. Правда, память для ноутбуков подразделяется ещё на 2 подкатегории, физически несовместимыми между собой:

  • стандартная SO- DIMM (префикс SO указывает именно на ноутбучный размер оперативки) – самый распространённый вариант;
  • память с низким энергопотреблением SO- DDR3 L (или просто DDR3 L , либо новейшая DDR4 L ): чаще всего встречается в недорогих моделях ноутбуков.

Вторая после объёма важная характеристика ОЗУ: частота. Чем больше, тем, в принципе, лучше – но DDR4 на 2100 мГц совсем на копейку медленнее DDR4 на 2800 мГц. Разница едва ли не в 1-2 процентах, да и то лишь в некоторых приложениях. Переплачивать за мегагерцы не следует – разве что 2-3 доллара. Есть ещё и другие характеристики памяти: задержки, они же – тайминги. Чем меньше тайминги, тем быстрее работает память (всё верно – тайминг 10 предпочтительнее, чем 12). На эту характеристику ориентироваться уж точно не следует, хотя в эпоху DDR/DDR2 лет 15 назад тайминги значили больше, чем сегодня. Впрочем, это уже история.

Цены на ОЗУ: ориентируемся в предложениях

Примерно с 2010 года оперативная память стоит неприлично дёшево по сравнению с более старыми временами. Сколько именно? Просим прощения за цены в баксах, но… их не зря называют «вечнозелёными». Цены даны не самые дешёвые, по данным интернет-магазина Байон.ру – зато с запасом.

Таблица: стоимость оперативной памяти (для ноутбука и для ПК), 2017 год. Представлены модели DDR3 и DDR4, а также «ноутбучные» форм-факторы SO-DIMM.

Тип памяти Частота, мГц Цена, $ Примечание
DDR3, 2 Гб 1600 19,85 Самый дешёвый приличный вариант
DDR3, 4 Гб 1600 26,00
DDR3, 4 Гб 2400 32,15 Дорогая, «оверклокерская» ОЗУ
DDR3, 8 Гб 1600 38,60
SO-DIMM DDR3, 2 Гб 1600 19,85 Самая дешёвая планка ОЗУ для ноута
SO-DIMM DDR3, 4 Гб 1600 27,50 Самый популярный тип ОЗУ для ноутбука
SO-DIMM DDR3, 4 Гб 1833 29,30 Популярный объём, увеличенная частота
SO-DIMM DDR3, 8 Гб 1600 34,50 Большой объём, стандартная частота
DDR4, 4 Гб 2133 26,00 Среднестатистическая DDR3 на 4 Гб
DDR4, 8 Гб 2133 42,90 Популярная планка большого объёма
DDR4, 8 Гб 2400 55,60 Большой объём, увеличенная частота
SO-DIMM DDR4, 4 Гб 2133 27,50 Стандартная планка современного ноута
SO-DIMM DDR4, 8 Гб 2133 43,50 Объёмная планка современного ноута

Стоит ли апгредить (добавлять) оперативную память?

Однозначно да, если объём оперативки составляет менее 2-3 гигабайт: прирост производительности будет виден невооружённым взглядом. «Критическая точка» производительности находится где-то посредине между 2 и 4 Гб ОЗУ. Меньше оперативки – значительно меньше скорость. Больше – всё работает так, как надо, одним словом – «летает».

Скорее, да, чем нет, если имеющийся объём равен 4 гигабайтам. Скорость компьютера вряд ли вырастет, но будет значительно меньше подвисаний и лагов. Неплохое вложение.

Незачем, если «на борту» уже имеется 6-8 гигабайт.

Незачем, если смысл обновлений – в покупке DDR с более высокой тактовой частотой. Польза от такого апгрейда если и ненулевая, то стремится к таковой.

Как добавить ОЗУ в компьютер? А в ноутбук? Апгрейд оперативной памяти своими руками

ПК-десктопы – более габаритные «создания». Внутри корпуса можно разместить хоть 10 ноутбуков (по размеру!). Слотов и разъёмов на настольных материнских платах много, не в пример ультракомпактным лэптопам, где экономится каждый миллиметр. Типичное количество слотов в компьютере для ОЗУ – 2 или 4. Как правило, заняты лишь 1-2 из них. Добавить планку оперативной памяти к уже работающей – дело пары минут. Достаточно выключить компьютер, открыть системный блок и вставить планку DDR в соответствующий разъём. Не нужны ни инструменты, ни даже отвёртка.

Главное требование – ОЗУ должно быть соответствующего поколения. Современную DDR4 никак не вставить в разъём для DDR3: даже размеры у них разные. А вот объём дополнительной планки может быть любым. Частота – также любой, но при разных частотах нескольких планок «оперативки» компьютер работает на наименьшей из них.

В ноутбуках всё чуть сложнее. У них встречаются три типа слотов для ОЗУ:

  1. Двухслотовые конфигурации : как правило, в 2 разъёма уже вставлено по «оперативке». В этом случае следует прикупить один более ёмкий модуль, и заменить существующий на новый. Классика жанра: 4 Гб ОЗУ, 2 планки по 2 Гб в каждой. Других разъёмов нет. Придётся купить 4-гигабайтный модуль памяти (либо 8-Гб, если это нужно), и вставить его вместо старого. В итоге получим 6 Гб оперативной памяти. Старый модуль, кстати, можно продать.

Реже встречаются два слота, один из которых занят, другой – свободен. Всё идеально просто: докупаем ОЗУ любого объёма, вставляем в пустующий разъём. К примеру, было 4 Гб (одна планка), докупаем ещё 4 Гб в одной планке, вставляем… итог – 8 Гб.

  1. Однослотовые конфигурации (обычно недорогие модели ноутбуков). Разъём там лишь один, и он, разумеется, уже заполнен планкой оперативной памяти. Единственный вариант – снять старый модуль, поставить новый – большего объёма.
  2. Ноутбуки с распаянной оперативкой . Апгрейд почти невозможен: выпаивать старый модуль и вновь впаивать новый – нетривиальная и очень рискованная задача. Впрочем, оперативка намертво распаивается лишь в недорогих машинках, и бывает это не слишком часто.

Как узнать количество слотов и тип памяти в ноутбуке или компьютере

Подойдёт любая диагностическая программа, наподобие CPU-Z. Скачиваем, устанавливаем, смотрим в разделе про память (memory).

Базовая информация про оперативную память: сколько гб и прочее, находится во вкладке Memory. Сразу видны такие характеристики:

  • Тип памяти: DDR3
  • Объём ОЗУ: 6 Гб
  • Количество каналов: 2 (Dual)
  • Менее интересные показатели – тайминги и частота: 665,1 мГц (стандарт DDR подразумевает двусторонний обмен информации с памятью, потому истинная частота — 1333 мГц).

Выводы можно сделать такие: у компьютера (в данном случае – ноутбука) явно 2 слота, оба – занятые. На это указывает двухканальный режим работы, который возможен лишь при наличии чётного количества планок. Другой вывод – явно нестандартная конфигурация: 4+2 Гб ОЗУ. Обычно производители устанавливают объём оперативной памяти, кратный числу 2: 2, 4, 8, или 16 гигабайт. Значит, владелец уже делал апгрейд ОЗУ.

Гораздо более подробная информация описана на следующей вкладке утилиты CPU-Z: SPD (скорость «мозгов»). В левой верхней части окна действительно видно, что здесь 2 слота, оба – заняты. В первом разъёме примостилась плашка на 2 гига (2048 Мбайт) с частотой 667 (1333 мГц). Во втором – 4 гигабайта (4096 Мб) с той же частотой 1333.

Пара информационных бонусов: видна дата производства одной из оперативок (9 неделя 2011 года), и производители обеих планок: Nanya и PNY.

Как можно проапгрейдить оперативную память в примере выше? 6 гигабайт – вполне достаточный объём на 2016 год, но если есть сильное желание – можно купить одну планку DDR3 на 4 Гб (цена – около 26 долларов), и вставить её вместо старой 2-гиговой (кстати, можно продать её долларов за 5-8). Итогом станет 8 гигабайт ОЗУ.

Производители оперативной памяти: какой лучше. И – заключительные советы

Кто только не производит ОЗУ: и процессорный гигант AMD, и Samsung с LG, и многочисленные Kingston, Corsair и т.п. В наиболее многочисленном сегменте оперативной памяти разницы между производителями толком нет. Все они выпускают надёжную и быструю DDR, которая способна на некоторый разгон.

Задумываться о производителе следует лишь в случаях, когда требуется более серьёзный оверклокинг, особые требования к надёжности, и, пожалуй, к художественной красоте оперативной памяти. Всё верно, более дорогие модели выпускаются с необязательными, но потрясающие симпатичными радиаторами охлаждения модулей.

И ещё. Оперативная память – замечательно надёжная штука. Её вполне безопасно брать с рук, «б/у» – скорее всего, отработает она ещё много лет, с теми же характеристиками и энергопотреблением.