Сайт о телевидении

Сайт о телевидении

» » О периоде функционирования генератора псевдослучайных последовательностей. Генератор псевдослучайных чисел – random

О периоде функционирования генератора псевдослучайных последовательностей. Генератор псевдослучайных чисел – random

Отметим, что для создания РРСП используется три типа генераторов: табличные, физические генераторы и генераторы ПСП.

Примером табличного генератора может служить опубликованная в 1955 году компанией Rand Corporation таблица объемом 106 случайных цифр.

Физические генераторы получили широкое распространение после создания микропроцессоров, имеющие невысокую стоимость при условии достаточной производительности. На рис. 4.1 представлен физический генератор случайных данных ORB, реализованный компанией APA Consulting на микроконтроллере семейства PIC12C67X (8-ми контактный корпус SOIC размером 5.38.1мм).

Рис. 4.1. Генератор случайных чисел ORB

В основу работы данного генератора положен принцип измерения напряжения на конденсаторе, который заряжается и разряжается в соответствии с некоторым потоком бит.

Первые два типа генераторов наряду с хорошими статистическими свойствами имеют ряд недостатков, к главным из которых можно отнести сложность технической реализации, невысокое быстродействие и высокую стоимость.

В силу названных причин при построении программных и программно-аппаратных средств криптографической защиты информации широкое распространение получили генераторы ПСП

Наиболее простым программным датчиком псевдослучайных чисел является линейный конгруэнтный генератор (ЛКГ), который описывается рекуррентным уравнением вида , где
– случайное начальное значение,– множитель,– приращение,
– модуль.

Период выходной последовательности такого генератора не превышает
, максимальное значение достигается при правильном выборе параметров
, а именно, когда:

– числа
ивзаимно просты: НОД
;


кратно любому простому , делящему
;


кратно 4, если
кратно 4.

В приведен список констант для ЛКГ, обеспечивающих максимальный период последовательности и, что не менее важно, соответствующие последовательности проходят статистические тесты.

Для реализации ЛКГ на персональных компьютерах с учетом их разрядной сетки нередко используется модуль

. При этом наиболее качественные статистические свойства ПСП достигаются для константы
.

По сравнению с другими видами генераторов ПСП данный вид обеспечивает высокую производительность за счет малого числа операций для создания одного псевдослучайного бита.

Недостатком ЛКГ в плане их использования для создания поточных шифров является предсказуемость выходных последовательностей.

Эффективные атаки на ЛКГ были предложены Joan Boyar.

Ей принадлежат методы атак на квадратичные и кубические генераторы: и.

Другие исследователи обобщили результаты работ Boyar на случай общего полиномиального конгруэнтного генератора. Stern и Boyar показали, как взломать ЛКГ, даже если известна не вся последовательность.

Wishmann и Hill, а позже Pierre L’Ecuger изучили комбинации ЛКГ. Усложнения не являются более стойкими криптографически, но имеют большие периоды и лучше ведут себя на некоторых критериях случайности.

Регистры сдвига с линейной обратной связью (Linear Feedback Shift Registers – LFSR) включают собственно регистр сдвига и схему вычисления функции обратной связи (tap sequence) – см. рис. 4.2.

Рис. 4.2 Регистр сдвига с линейной обратной связью (LFSR)

На схеме содержимое регистра – последовательность битов – сдвигается с приходом тактового импульса (clock pulse) на один разряд вправо. Бит самого младшего разряда считается выходом LFSR в данном такте работы. Значение самого старшего разряда при этом является результатом сложения по модулю 2 (функция XOR) разрядов (точек съема) обратной связи. Генерируемая последовательность называется линейной рекуррентой.

Теоретически, -битный LFSR может сгенерировать псевдослучайную последовательность с периодом
бит. Такие LFSR называются регистрами максимального периода .

Для этого регистр сдвига должен побывать во всех
ненулевых внутренних состояниях.

Одна и та же рекуррента может быть сгенерирована регистрами разной длины. Предположим, что среди подобных регистров наш -битный LFSR обладает минимальной длиной.

Функции обратной связи регистра можно сопоставить полином
степени не вышес коэффициентами из поля вычетов по модулю два, состоящий из одночленов вида
, где
- множество номеров точек съема обратной связи.

Полином
называетсяминимальным полиномом соответствующей рекуррентной последовательности.

Для каждой конечной (или периодической) последовательности можно указать LFSR, который, при некотором начальном заполнении, порождает эту последовательность.

Среди всех таких регистров, существует регистр минимальной длины .

Величина называетсялинейной сложностью последовательности .

Напомним, что полином называется неприводимым, если он не может быть выражен как произведение двух полиномов меньшей степени, отличных констант.

Примитивный полином степени над полем вычетов по модулю два – это неприводимый полином, который делит
, но не делит
для любых:
.

Теорема. Для того, чтобы последовательность, порожденная LFSR имела максимальный период, необходимо и достаточно, чтобы ее минимальный полином, был примитивным полиномом по модулю 2.

Список практически применимых примитивных полиномов приведен в . Например, примитивным полиномом является .

Набор показателей
означает, что, взяв регистр сдвига длины 32 и генерируя бит обратной связи путем сложения 7-го, 5-го, 3-го, 2-го и 1-го бита по модулю 2, мы получим LFSR максимальной длины (с
состояниями).

Приведем программу на языке С для последовательности генерируемой данным LFSR:

Static unsigned long ShiftRegister=1; //любое ненулевое начальное заполнение

ShiftRegister = ((((ShiftRegister>>31)

^(ShiftRegister>>6)

^(ShiftRegister>>4)

^(ShiftRegister>>2)

^(ShiftRegister>>1)

^(ShiftRegister))

| ShiftRegister>>1);

return ShiftRegister & 0x00000001;

Заметим, если
– примитивный полином, то
– также примитивный. Кроме того, если полином
примитивный, то
– примитивный. Если полином
примитивный, то– примитивный и т.п.

Примитивные трехчлены особенно удобны, т.к. складываются только 2 бита регистра сдвига, но при этом они и более уязвимы к атакам.

Вообще говоря, LFSR – удобны для технической реализации, но с точки зрения криптографической стойкости, обладают слабостями.

Последовательные биты линейной рекурренты линейно зависимы, что делает их бесполезными для шифрования.

Достаточно
последовательных битов рекурренты, чтобы определить множество номеров точек съема обратной связи.

Большие случайные числа, сгенерированные из последовательных битов LFSR, сильно коррелированны. Тем не менее, LFSR достаточно часто используются в качестве элементов более сложных алгоритмов формирования шифрующей ключевой последовательности.

Существует еще ряд генераторов ПСП (в т.ч. генераторы Галуа), которые по ряду причин не нашли широкого применения в криптографических системах. Наиболее эффективные решения были получены на основе составных генераторов .

Идея построения составного генератора базируется на том факте, что комбинация двух и более простых генераторов ПСП, в случае правильного выбора объединяющей функции (в т.ч. сложение по модулям,
и др.), дает генератор с улучшенными свойствами случайности, и, как следствие, с повышенной криптографической стойкостью.

В случае создания криптографически стойкого генератора ПСП легко решается вопрос создания потоковых шифров. Выход таких ПСП неотличим (точнее, должен быть неотличим) от РРСП. Два генератора всегда могут быть синхронно запущены из одного вектора начального состояния, который намного короче передаваемого сообщения, что выгодно отличает эту схему от шифра Вернама.

Известно 4 подхода к конструированию соответствующих генераторов:

1) системно-теоретический подход;

2) сложностно-теоретический подход;

3) информационно-теоретический подход;

4) рандомизированный подход.

Эти подходы различаются в своих предположениях о возможностях криптоаналитика, определении криптографического успеха и понятия надежности.

В случае системно-теоретического подхода криптограф создает генератор ключевого потока, который обладает поддающимися проверке свойствами, включая длину периода выходной последовательности, статистическое распределение потока бит, линейную сложность преобразования и т.д.

С учетом известных методов криптоанализа криптограф оптимизирует генератор против этих атак.

На основе такого подхода Рюппелем сформулирован следующий набор критериев для потоковых шифров.

1.Большой период выходной последовательности, отсутствие повторений.

2. Высокая линейная сложность, как характеристика нашего генератора через регистр LFSR минимальной длины, который может сгенерировать такой же выход.

3. Неотличимость от РРСП по статистическим критериям.

4. Перемешивание: любой бит ключевого потока должен быть сложным преобразованием всех или большинства бит начального состояния (ключа).

5. Рассеивание: избыточность во всех подструктурах алгоритма работы генератора должна рассеиваться.

6. Критерии нелинейности преобразований: в соответствии с некоторой метрикой расстояние до линейных функций должно быть достаточно большим; требуется лавинообразное распространения ошибок в случае изменения одного бита аргумента и др.

Практика подтверждает целесообразность применения указанных критериев не только для анализа и оценки потоковых шифров, созданных в рамках системно-теоретического подхода, но и для любых потоковых и блочных шифров.

Основная проблема подобных криптосистем заключается в том, что для них трудно доказать какие-либо факты об их криптостойкости, так как для всех этих критериев не была доказана их необходимость или достаточность.

Потоковый шифр может удовлетворять всем этим принципам и все-таки оказаться нестойким, т.к. стойкость по отношению к заданному набору криптоаналитических атак ничего не гарантирует.

Примером удачного построения составного генератора с точки зрения повышения линейной сложности является каскад Голмана (рис. 4.3). Каскад Голмана включает несколько регистров сдвига LFSR. Первый регистр движется равномерно с шагом 1. Сдвиг каждого последующего регистра управляется предыдущим так, что изменение состояния последующего регистра в такте происходит, если в такте
с предыдущего регистра снимается 1. Иначе, состояние последующего регистра не изменяется.

Если все LFSR – длины , то линейная сложность системы срегистрами равна
.

Рис. 4.3. Каскад Голлмана

Типичным примером комбинирования регистров сдвига является схема чередующегося «старт-стоп» генератора (Alternating Stop-and-Go Generator).

У этого генератора большой период и большая линейная сложность.

В «старт-стоп» генераторе (рис. 4.4) используется три линейных регистра сдвига различной длины. LFSR-2 меняет состояние, если выход LFSR-1 равен 1; LFSR-3 меняет состояние в противном случае. Результат генератора есть сложение по модулю 2 выходов регистров LFSR-2, LFSR-3.

Рис. 4.4. Чередующийся старт-стопный генератор

Применяя сложностно-теоретический подход, криптограф пытается доказать стойкость генератора, используя теорию сложности.

Основу решений при этом подходе составляют генераторы, базирующиеся на понятии о днонаправленн ой функции .

Значение однонаправленной функции

легко вычислимо, но почти для всех значений практически невозможно определить соответствующее значение. Иначе, если– вычислительная сложность получения
, а
– вычислительная сложность нахождения
, то
.

По общему мнению, одним из кандидатов на однонаправленную функцию может быть показательная функция в некотором конечном поле
, где
.

Нетрудно видеть, что возведение в степень можно ускорить за счет свойств ассоциативности. Например,
, что позволяет вычислить степень за четыре шага, вместо восьми.

Обратная операция – задача нахождения показателя степени по значению степенной функции (дискретный логарифм), в общем случае, пока не может быть решена лучше, чем с помощью оптимизированных методов перебора.

При соответственно выбранной характеристике
и степени расширения поля
эта задача при современном развитии компьютерной техники вычислительно неразрешима.

Примером генератора на основе однонаправленной функции может служить генератор на основе алгоритма RSA с параметрами
вида. Здесь
, где
– секретные большие, неравные простые числа,– показатель степенной функции, НОД
,
.

Результат работы одного такта генератора – младший бит
. Стойкость этого генератора не ниже стойкости RSA. Если
достаточно большое, то генератор обеспечивает практическую стойкость.

BBS – другой пример генератора, построенного на сложностном подходе (предложен Blum, Blum и Shub).

Это один из простых и эффективных алгоритмов. Математическая теория этого генератора – квадратичные вычеты по составному модулю .

Параметры генератора: секретные большие, неравные простые числа,
, такие, что,
; число
;– случайный секретный вычет помодулю
.

Первым шагом вычисляется начальное состояние
.

В основном цикле елемент ПСП з номером
равен, т.е-ым псевдослучайным числом является младший бит числа
.

Заметим, что алгоритм можно использовать для шифрования файлов с произвольным доступом, если, кроме , ввести секретный параметр
, поскольку тогдаможна вычислять через, потому, что, где
.

Это свойство позволяет использовать BBS-генератор для работы с файлами произвольного доступа (random-access).

Число можно распространять свободно, для того чтобы каждый абонент сети смог самостоятельно сгенерировать необходимые биты. При этом если криптоаналитик не сможет разложить на простые множители число, он не сможет предсказать следующий бит, даже в вероятностном смысле, например, «с вероятностью 51% следующий бит равен 1».

Отметим, что подобные генераторы очень медленные, для их практической реализации необходимы специальные процессоры.

Следующие два подхода, информационно-теоретический и рандомизированный , не нашли широкого практического применения.

С точки зрения информационно-теоретического похода самым лучшим средством в борьбе с криптоаналитиком, имеющим бесконечные вычислительные ресурсы и время, является одноразовая лента или одноразовый блокнот.

В случае рандомизированного подхода задача заключается в том, чтобы увеличить число бит, с которыми необходимо работать криптоаналитику (не увеличивая при этом ключ). Этого можно достичь путем использования больших случайных общедоступных строк.

Ключ будет обозначать, какие части (или биты) этих строк необходимо использовать для зашифрования и расшифрования. Тогда криптоаналитику придется использовать метод тотального перебора вариантов (грубой силы) на случайных строках.

Стойкость этого метода может быть выражена в терминах среднего числа бит, которые придется изучить криптоаналитику, прежде чем шансы определить ключ станут выше простого угадывания.

Ueli Maurer описал такую схему. Вероятность вскрытия такой криптосистемы зависит от объема памяти, доступного криптоаналитику (но не зависит от его вычислительных ресурсов).

Чтобы эта схема приобрела практический вид, требуется около 100 битовых последовательностей по
битов каждая. Оцифровка поверхности Луны – один из способов получения такого количества бит.

В заключение отметим, что для построения генератора ПСП необходимо получить несколько случайных битов . Наиболее простой способ: использовать наименьший значимый бит таймера компьютера.

С помощью такого способа нельзя получать много бит, т.к. каждый вызов процедуры генерации бита может занимать четное число шагов таймера, что обязательно скажется на свойствах последовательности.

Самый лучший способ получить случайное число – это обратиться к естественной случайности реального мира – шумы в результате переходных процессов в полупроводниковых диодах, тепловые шумы высокомных резисторов, радиоактивный распад и т.д.

В принципе, элемент случайности есть и в компьютерах:

– время дня;

– загруженность процессора;

– время прибытия сетевых пакетов и т.п.

Проблема не в том, чтобы найти источники случайности, но в том, чтобы сохранить случайность при измерениях.

Например, это можно делать так: найдем событие, случающееся регулярно, но случайно (шум превышает некоторый порог).

Измерим время между первым событием и вторым, затем – времямежду вторым событием и третьим.

Если
, то полагаем выход генератора равным 1; если
, то выход равен 0. При необходимости, процесс продолжим далее.

Существенной проблемой систем генерации случайных данных является наличие отклонений и корреляций в сгенерированной последовательности. Сами процессы могут быть случайными, но проблемы могут возникнуть в процессе измерений. Как с этим бороться?

Пусть вероятность появления нуля смещена на , т.е. может быть записана как
.

Сложение по
двух одинаково распределенных независимых битов даст:. При сложении четырех битов получим:
. Процесс сходится к равновероятному распределению битов.

Другой подход. Пусть распределение единиц и нулей в последовательности есть величины исоответственно.

Преобразуем последовательные пары битов:

– если это одинаковые биты, то отбросим их и рассмотрим следующую пару;

– если биты различны, то в качестве выходного значения возьмем первый бит.

Данный метод позволяет решить проблему смещения, сохранив свойства случайности источника (с некоторой потерей в объеме данных).

Потенциальная проблема обоих методов в том, что при наличии корреляции между соседними битами, данные методы увеличивают смещение. Один из способов избежать этого – использовать различные источники случайных чисел и суммировать биты подписанных друг под другом последовательностей по вертикали.

Факт наличия смещения у генератора случайных чисел, вообще говоря, не всегда означает его непригодность.

Например, допустим, что для генерации 112-битного ключа для алгоритма «тройной» DES (Triple DES, см. далее) используется генератор со смещением к нулю:
,
(энтропия
0.99277 на один бит ключа по сравнению с 1 для идеального генератора).

В этом случае нарушитель может оптимизировать процедуру тотального перебора ключей за счет поиска ключа начиная с наиболее вероятного значения
и заканчивая наименее вероятным
. Вследствие наличия смещения, можно ожидать нахождения ключа в среднем за
попыток. Если бы смещения не было, то потребовалось бы
попыток.

(англ.) русск. : «генерация случайных чисел слишком важна, чтобы оставлять её на волю случая ».

Энциклопедичный YouTube

    1 / 5

    ✪ Генераторы случайных и псевдослучайных чисел

    ✪ Генератор псевдослучайных чисел | Криптография | Программирование (часть 8)

    ✪ Уроки C++ с нуля / Урок #5 - Генератор чисел + строки в C++

    ✪ rand. srand. rand задать диапазон. srand time null. Генератора случайных чисел. randomize. Урок #29.

    ✪ Случайные числа, линейный конгруэнтный метод - LNG (Linear Congruential Generator)

    Субтитры

    Когда мы наблюдаем за физическим миром, мы находим случайные отклонения везде. Мы можем генерировать настоящие случайные величины, измеряя случайные отклонения, называемые шумом. При измерении этого шума (выборке) можно получать числа. Например, если измерить электрический ток статики от телевизора в течении некоторого времени, то получится идеальная случайная последовательность. Можно визуализировать эту случайную последовательность, изобразив путь, направление которого изменяется в зависимости от каждого числа. Это называется случайным блужданием. Нужно отметить отсутствие шаблона любого масштаба в каждой точке последовательности -- следующий шаг всегда непредсказуем. Говорят, что случайные процессы недетерминированные, так как невозможно предсказать их развитие заранее. Машины, с другой стороны, детерминированные. Их операции предсказуемы и повторяемые. В 1946 году Джон фон Нейман был приглашен для проведения вычислений для военных. Особенно активно он участвовал при проектировании водородной бомбы. Используя компьютер ENIAC, он планировал повторяющиеся вычисления приближенных процессов, задействованных при ядерном синтезе. Как бы то ни было, это требовало быстрого доступа к случайно сгенерированным числам, которые возможно воспроизвести при необходимости. Однако, ENIAC имел очень ограниченную внутреннюю память, и хранить длинные случайные последовательности не представлялось возможным. Поэтому Нейман разработал алгоритм для механической симуляции перестановочного аспекта случайности таким образом: Сначала выбирается настоящее случайное число, называемое зерном. Это число можно получить при измерении шумов или взять текущее время в миллисекундах. Далее, выбранное зерно передается на вход для простых вычислений. Зерно умножается само на себя и на выход подаются средние цифры в результирующем числе. Затем, выход итерации передается в качестве зерна на вход для следующей. Этот процесс повторяется так долго, сколько нужно. Этот метод известен как метод серединных квадратов, и это только первый из большого набора генераторов псевдослучайных чисел известных сегодня. Случайность последовательности зависит только от случайности изначального зерна. Одно зерно -- одна последовательность. Итак, какая же разница между случайно сгенерированной и псевдослучайно сгенерированной последовательностями? Представим каждую последовательность в виде случайного блуждания. Они выглядят схожим образом до тех пор, пока мы не ускорим представление. Псевдослучайная последовательность в конечном счете повторяется. Это происходит, когда алгоритм доходит до зерна, которое уже было использовано ранее, и круг замыкается. Длина последовательности до повторения называется периодом. Период четко ограничен длиной изначального зерна. Например, для двузначного зерна алгоритм может породить последовательность длиной до 100 элементов, прежде чем вернется к использованному ранее зерну и начнет циклически повторяться. Трехзначное зерно позволяет растянуть период до 1000 чисел до начала повторений. Четырехзначное зерно расширяет последовательность до 10 000 чисел до начала повторений. Однако, если использовать достаточно большое зерно, можно получать последовательности из триллионов и триллионов элементов до начала повторений. Ключевым же отличием является то, что генерируя последовательность псевдослучайно, из нее исключаются очень многие подпоследовательности, которые просто не могут быть включены в нее. Например, если Алиса генерирует настоящую случайную последовательность из 20 элементов, это эквивалентно произвольной выборке из стопки всех возможных последовательностей этой длины. Эта стопка содержит 26 в степени 20 страниц, что является числом астрономического масштаба. Если встать внизу стопки и посветить фонариком вверх, то человек, стоящий на вершине стопки, не увидит этого света примерно 200 миллионов лет. Сравним это с генерацией 20-элементной псевдослучайной последовательности с использованием 4-значного зерна. Это эквивалентно произвольной выборке из 10 000 возможных начальных зерен. То есть можно сгенерировать лишь 10 000 различных последовательностей, что является исчезающе малой частью всех возможных вариантов последовательностей. Меняя случайные смещения на псевдослучайные, мы сужаем пространство ключей до намного меньшего пространства зерен. Для того, чтобы псевдослучайная последовательность была неотличима от случайно сгенерированной последовательности, нужно, чтобы при помощи компьютера было невозможно перебрать все зерна для нахождения совпадения. Это приводит нас к важному отличию в компьютерной науке между тем, что возможно и тем, что возможно в разумные сроки. Мы применяем ту же логику, когда покупаем замок для велосипеда. Мы знаем, что кто угодно может просто перебрать все возможные комбинации, чтобы найти ту, которая подойдет и откроет замок. Но это займет несколько дней. Поэтому мы предполагаем, что на 8 часов он практически защищен. При использовании генераторов псевдослучайных чисел безопасность возрастает с повышением длины зерна. Самый мощный компьютер будет перебирать все возможные зерна на протяжении многих лет, поэтому мы может спокойно предполагать практическую безопасность вместо идеальной безопасности. При увеличении скорости вычислений длина зерна должна пропорционально увеличиваться. Псевдослучайность освобождает Алису и Боба от необходимости обмениваться полной случайной последовательностью смещений заранее. Вместо этого они обмениваются относительно небольшим случайным зерном и растягивают его в одинаковые подобные случайным последовательности, которые требуются. Но что случится, если они никогда не встретятся для обмена этим случайным зерном.

Источники случайных чисел

Источники настоящих случайных чисел найти крайне трудно. Физические шумы , такие, как детекторы событий ионизирующей радиации , дробовой шум в резисторе или космическое излучение , могут быть такими источниками. Однако применяются такие устройства в приложениях сетевой безопасности редко. Сложности также вызывают грубые атаки на подобные устройства.

Криптографические приложения используют для генерации случайных чисел особенные алгоритмы. Эти алгоритмы заранее определены и, следовательно, генерируют последовательность чисел, которая теоретически не может быть статистически случайной. В то же время, если выбрать хороший алгоритм, полученная численная последовательность - псевдослучайных чисел - будет проходить большинство тестов на случайность. Одной из характеристик такой последовательности является период повторения, который должен быть больше рабочего интервала, из которого берутся числа.

Генератор псевдослучайных чисел включён в состав многих современных процессоров , например, RdRand входит в набор инструкций IA-32.

Альтернативным решением является создание набора из большого количества случайных чисел и опубликование его в некотором словаре , называемом «одноразовым блокнотом ». Тем не менее, и такие наборы обеспечивают очень ограниченный источник чисел по сравнению с тем количеством, которое требуется приложениям сетевой безопасности. Хотя данные наборы действительно обеспечивают статистическую случайность, они недостаточно безопасны, так как злоумышленник может получить копию словаря.

Детерминированные ГПСЧ

Из современных ГПСЧ широкое распространение также получил «вихрь Мерсенна », предложенный в 1997 году Мацумото и Нисимурой. Его достоинствами являются колоссальный период (2 19937 −1), равномерное распределение в 623 измерениях (линейный конгруэнтный метод даёт более или менее равномерное распределение максимум в 5 измерениях), быстрая генерация случайных чисел (в 2-3 раза быстрее, чем стандартные ГПСЧ, использующие линейный конгруэнтный метод). Однако существуют алгоритмы, распознающие последовательность, порождаемую вихрем Мерсенна, как неслучайную.

ГПСЧ с источником энтропии или ГСЧ

Наравне с существующей необходимостью генерировать легко воспроизводимые последовательности случайных чисел, также существует необходимость генерировать совершенно непредсказуемые или попросту абсолютно случайные числа. Такие генераторы называются генераторами случайных чисел (ГСЧ - англ. random number generator, RNG ). Так как такие генераторы чаще всего применяются для генерации уникальных симметричных и асимметричных ключей для шифрования, они чаще всего строятся из комбинации криптостойкого ГПСЧ и внешнего источника энтропии (и именно такую комбинацию теперь и принято понимать под ГСЧ).

Почти все крупные производители микрочипов поставляют аппаратные ГСЧ с различными источниками энтропии, используя различные методы для их очистки от неизбежной предсказуемости. Однако на данный момент скорость сбора случайных чисел всеми существующими микрочипами (несколько тысяч бит в секунду) не соответствует быстродействию современных процессоров.

В современных исследованиях осуществляются попытки использования измерения физических свойств объектов (например, температуры) или даже квантовых флуктуаций вакуума в качестве источника энтропии для ГСЧ.

В персональных компьютерах авторы программных ГСЧ используют гораздо более быстрые источники энтропии, такие, как шум звуковой карты или счётчик тактов процессора . Сбор энтропии являлся наиболее уязвимым местом ГСЧ. Эта проблема до сих пор полностью не разрешена во многих устройствах (например, смарт-картах), которые таким образом остаются уязвимыми. Многие ГСЧ используют традиционные испытанные, хотя и медленные, методы сбора энтропии вроде измерения реакции пользователя (движение мыши и т. п.), как, например, в PGP и Yarrow , или взаимодействия между потоками , как, например, в Java SecureRandom.

Пример простейшего ГСЧ с источником энтропии

Если в качестве источника энтропии использовать текущее время, то для получения целого числа от 0 до N достаточно вычислить остаток от деления текущего времени в миллисекундах на число N +1. Недостатком этого ГСЧ является то, что в течение одной миллисекунды он выдает одно и то же число.

Примеры ГСЧ и источников энтропии

ГПСЧ Достоинства Недостатки
/dev/random в UNIX /Linux Счётчик тактов процессора, однако собирается только во время аппаратных прерываний LFSR , с хешированием выхода через SHA-1 Есть во всех Unix, надёжный источник энтропии Очень долго «нагревается», может надолго «застревать», либо работает как ГПСЧ (/dev/urandom )
Yarrow от Брюса Шнайера Традиционные методы AES -256 и SHA-1 маленького внутреннего состояния Гибкий криптостойкий дизайн Медленный
Microsoft CryptoAPI Текущее время, размер жёсткого диска, размер свободной памяти, номер процесса и NETBIOS-имя компьютера MD5 -хеш внутреннего состояния размером в 128 бит Встроен в Windows, не «застревает» Сильно зависит от используемого криптопровайдера (CSP).
Java SecureRandom Взаимодействие между потоками SHA-1 -хеш внутреннего состояния (1024 бит) Большое внутреннее состояние Медленный сбор энтропии
Chaos от Ruptor Счётчик тактов процессора, собирается непрерывно Хеширование 4096-битового внутреннего состояния на основе нелинейного варианта Marsaglia -генератора Пока самый быстрый из всех, большое внутреннее состояние, не «застревает» Оригинальная разработка, свойства приведены только по утверждению автора
RRAND от Ruptor Счётчик тактов процессора Зашифровывание внутреннего состояния поточным шифром EnRUPT в authenticated encryption режиме (aeRUPT) Очень быстр, внутреннее состояние произвольного размера по выбору, не «застревает» Оригинальная разработка, свойства приведены только по утверждению автора. Шифр EnRUPT не является криптостойким.
RdRand от intel Шумы токов Построение ПСЧ на основе "случайного" битового считывания значений от токов Очень быстр, не «застревает» Оригинальная разработка, свойства приведены только по утверждению статьи из habrahabr - уточнить.
ГПСЧ Stratosphera от ORION Счетчик тактов процессора, собирается непрерывно (также используется соль в виде случайно выбранного целого числа) Построение ПСЧ на основе алгоритма от Intel с многоразовой инициализацией и сдвигом Достаточно быстр, не «застревает», проходит все тесты DIEHARD Оригинальная разработка, свойства приведены только исходя из информации на сайте oriondevteam.com - (уточнение от 23-10-2013).

ГПСЧ в криптографии

Разновидностью ГПСЧ являются ГПСБ (PRBG) - генераторы псевдо-случайных бит, а также различных поточных шифров . ГПСЧ, как и поточные шифры, состоят из внутреннего состояния (обычно размером от 16 бит до нескольких мегабайт), функции инициализации внутреннего состояния ключом или зерном (англ. seed ), функции обновления внутреннего состояния и функции вывода. ГПСЧ подразделяются на простые арифметические, сломанные криптографические и криптостойкие . Их общее предназначение - генерация последовательностей чисел, которые невозможно отличить от случайных вычислительными методами.

Хотя многие криптостойкие ГПСЧ или поточные шифры предлагают гораздо более «случайные» числа, такие генераторы гораздо медленнее обычных арифметических и могут быть непригодны во всякого рода исследованиях, требующих, чтобы процессор был свободен для более полезных вычислений.

В военных целях и в полевых условиях применяются только засекреченные синхронные криптостойкие ГПСЧ (поточные шифры), блочные шифры не используются. Примерами известных криптостойких ГПСЧ являются RC4 , ISAAC , SEAL , Snow , совсем медленный теоретический алгоритм Блюм - Блюма - Шуба , а также счётчики с криптографическими хеш-функциями или криптостойкими блочными шифрами вместо функции вывода.

Примеры криптостойких ГПСЧ

Циклическое шифрование

В данном случае используется способ генерации ключа сессии из мастер-ключа. Счетчик с периодом N используется в качестве входа в шифрующее устройство. Например, в случае использования 56-битного ключа DES может использоваться счетчик с периодом 256. После каждого созданного ключа значение счетчика повышается на 1. Таким образом, псевдослучайная последовательность, полученная по данной схеме, имеет полный период: каждое выходное значение Х0, Х1,…XN-1 основано на разных значениях счетчика, поэтому Х0 ≠ X1 ≠ XN-1. Так как мастер-ключ является секретным, легко показать, что любой секретный ключ не зависит от знания одного или более предыдущих секретных ключей.

ANSI X9.17

ГПСЧ из стандарта ANSI X9.17 используется во многих приложениях финансовой безопасности и PGP . В основе этого ГПСЧ лежит тройной DES . Генератор ANSI X9.17 состоит из следующих частей:

  1. Вход: генератором управляют два псевдослучайных входа. Один является 64-битным представлением текущих даты и времени, которые меняются каждый раз при создании числа. Другой является 64-битным исходным значением. Оно инициализируется некоторым произвольным значением и изменяется в ходе генерации последовательности псевдослучайных чисел.
  2. Ключи: генератор использует три модуля тройного DES. Все три используют одну и ту же пару 56-битных ключей, которая держится в секрете и применяется только при генерации псевдослучайного числа.
  3. Выход: выход состоит из 64-битного псевдослучайного числа и 64-битного значения, которое будет использоваться в качестве начального значения при создании следующего числа.
  • DTi - значение даты и времени на начало i-ой стадии генерации.
  • Vi - начальное значение для i-ой стадии генерации.
  • Ri - псевдослучайное число, созданное на i-ой стадии генерации.
  • K1, K2 - ключи, используемые на каждой стадии.

1 Ri = EDEK1,K2 [ EDEK1,K2 [ DTi] Vi ] 2 Vi+1 = EDEK1,K2 [ EDEK1,K2 [ DTi] Ri]

Схема включает использование 112-битного ключа и трех EDE-шифрований. На вход даются два псевдослучайных значения: значение даты и времени и начальное значение текущей итерации, на выходе получаются начальное значение для следующей итерации и очередное псевдослучайное значение. Даже если псевдослучайное число Ri будет скомпрометировано, вычислить Vi+1 из Ri не является возможным за разумное время, и, следовательно, следующее псевдослучайное значение Ri+1, так как для получения Vi+1 дополнительно выполняются три операции EDE.

Аппаратные ГПСЧ

Кроме устаревших, хорошо известных LFSR-генераторов, широко применявшихся в качестве аппаратных ГПСЧ в XX веке, к сожалению, очень мало известно о современных аппаратных ГПСЧ (поточных шифрах), так как большинство из них разработано для военных целей и держатся в секрете. Почти все существующие коммерческие аппаратные ГПСЧ запатентованы или держатся в секрете . Аппаратные ГПСЧ ограничены строгими требованиями к расходуемой памяти (чаще всего использование памяти запрещено), быстродействию (1-2 такта) и площади (несколько сотен FPGA - или ASIC -ячеек). Из-за таких строгих требований к аппаратным ГПСЧ очень трудно создать криптостойкий генератор, поэтому до сих пор все известные аппаратные ГПСЧ были взломаны. Примерами таких генераторов являются Toyocrypt и LILI-128, которые оба являются LFSR-генераторами, и оба были взломаны с помощью алгебраических атак.

Из-за недостатка хороших аппаратных ГПСЧ производители вынуждены применять имеющиеся под рукой гораздо более медленные, но широко известные блочные шифры (DES , AES) и хеш-функции (SHA-1) в поточных режимах.

Генерирование случайных последовательностей с заданным вероят­ностным законом и проверка их адекватности - одни из важнейших проблем современной криптологии. Генераторы случайных последова­тельностей используются в существующих криптосистемах для генера­ции ключевой информации и задания ряда параметров криптосистем. Научная и практическая значимость этой проблемы настолько велика, что ей посвящены отдельные монографии в области криптологии, орга­низуются разделы в научных журналах "Journal of Cryptology", "Cryptologia" и специальные заседания на международных научных конфе­ренциях "Eurocrypt", "Asiacrypt", "Crypto" и др.

В начале XX века случайные последовательности имитировались с помощью простейших случайных экспериментов: бросание монеты или игральной кости, извлечение шаров из урны, раскладывание карт, рулетка и т. д. В 1927 г. Л. Типпетом впервые были опубликованы та­блицы, содержащие свыше 40000 случайных цифр, "произвольно из­влечённых из отчётов о переписи населения". В 1939 г. с помощью специально сконструированного механического устройства - генера­тора случайных чисел, М. Дж. Кендалл и Б. Бэбингтон-Смит создали таблицу, включающую 10 5 случайных цифр. В 1946 г. американский математик Джон фон Нейман впервые предложил компьютерный алго­ритм генерации случайных чисел. В 1955 г. компания RAND Corpora­tion опубликовала получившие широкую популярность таблицы, содер­жащие 10 6 случайных цифр, сгенерированных на ЭВМ.

В настоящее время спрос на генераторы случайных последователь­ностей с заданными вероятностными распределениями, а также на сами случайные последовательности настолько возрос, что за рубежом появи­лись научно-производственные фирмы, занимающиеся производством и продажей больших массивов случайных чисел. Например, с 1996 г. в мире распространяется компакт-диск "The Marsaglia random number CDROM", который содержит 4,8 млрд. "истинно случайных" бит.

Подавляющее большинство современных криптографических систем используют либо поточные, либо блочные алгоритмы, базирующиеся на различных типах шифрах замены и перестановки. К сожалению, практически все алгоритмы, используемые в поточных криптосистемах, ориентированных на использование в военных и правительственных системах связи, а также, в некоторых случаях, для защиты информации коммерческого характера, что вполне естественно делает их секретными и недоступными для ознакомления. Единственными стандартными алгоритмами поточного симметричного шифрования являются американский стандарт DES (режимы CFB и OFB) и российский стандарт ГОСТ 28147-89 (режим гаммирования).

Основу функционирования поточных криптосистем составляют генераторы случайных или псевдослучайных последовательностей. Рассмотрим этот вопрос более подробно.

2 Генератор псевдослучайных чисел

Секретные ключи представляют собой основу криптографических преобразований, для которых согласно правилу Керкгоффса , стойкость криптосистемы определяется лишь секретностью ключа. Основной проблемой классической криптографии долгое время являлась трудность генерации секретного ключа. Физическое моделирование случайности с помощью таких физических явлений как, например, радиоактивное излучение или дробовой шум в электронной лампе является довольно сложным и дорогостоящим, а использование нажатия клавиш и движение мыши требует усилий пользователя и к тому же не дают полностью настоящих случайных процессов. Поэтому вместо физического моделирования используют методы математического моделирования случайности и генерации случайных последовательностей в виде программ для ЭВМ или специализированных устройств.

Эти программы и устройства хотя и называются генераторами случайных чисел, на самом деле генерируют детерминированные последовательности, которые только кажутся случайными по своим свойствам и поэтому называются псевдослучайными последовательностями. От них требуется, чтобы, даже зная закон формирования, но, не зная ключа в виде заданных начальных условий, никто не смог бы отличить генерируемую последовательность от случайной, как будто она получена путем бросания идеальных игровых костей.

Генератор псевдослучайных чисел (ГПСЧ, англ. Pseudorandom number generator, PRNG) - алгоритм, генерирующий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению (обычно равномерному).

Можно сформировать три основных требования, которым должны удовлетворять криптографическистойкие генераторы псевдослучайных последовательностей или гаммы.

1. Период гаммы должен быть достаточно большим для шифрования сообщений различной длины.

2. Гамма должна быть трудно предсказуемой. Это значит, что если известны тип генератора и кусок гаммы, то невозможно предсказать следующий за этим куском бит гаммы или предшествующий этому куску бит гаммы.

3. Генерирование гаммы не должно быть связано с большими техническими и организационными трудностями.

Самая важная характеристика генератора псевдослучайных чисел - это информационная длина его периода, после которого числа будут либо просто повторяться, либо их можно будет предсказать. Эта длина практически определяет возможное число ключей криптосистемы. Чем эта длина больше, тем сложнее подобрать ключ.

Второе из указанных выше требований связано со следующей проблемой: на основании чего можно сделать заключение, что гамма конкретного генератора действительно является непредсказуемой? Пока в мире нет универсальных и практически проверяемых критериев для проверки этого свойства. Интуитивно случайность воспринимается как непредсказуемость. Чтобы гамма считалась случайной и непредсказуемой как минимум необходимо, чтобы ее период был очень большим, а различные комбинации бит определенной длины равномерно распределялись по всей ее длине. Это требование статистически можно толковать и как сложность закона генерации псевдослучайной последовательности чисел. Если по достаточно длинному отрезку этой последовательности нельзя ни статистически, ни аналитически определить этот закон генерации, то в принципе этим можно удовлетвориться.

И, наконец, третье требование должно гарантировать возможность практической реализации генераторов псевдослучайных последовательностей с учетом требуемого быстродействия и удобства практичного использования. Рассмотрим теперь некоторые практические методы получения псевдослучайных чисел.

3 Методы получение псевдослучайных чисел

Одним из первых таких методов был метод, предложенный в 1946 году Д. фон Нейманом. Этот метод базировался на том, что каждое последующее число в псевдослучайной последовательности формировалось возведением предыдущего числа в квадрат и отбрасыванием цифр с обоих концов. Однако этот метод оказался ненадежным, и от него быстро отказались. Другим методом является так называемый конгруэнтный способ.

3.1 Линейный конгруэнтный метод

Линейный конгруэнтный метод - один из алгоритмов генерации псевдослучайных чисел. Применяется в простых случаях и не обладает криптографической стойкостью. Входит в стандартные библиотеки различных компиляторов.

Этот алгоритм заключается в итеративном применении следующей формулы:

где a>0, c>0, m>0 - некоторые целочисленные константы. Получаемая последовательность зависит от выбора стартового числа X 0 и при разных его значениях получаются различные последовательности случайных чисел. В то же время, многие свойства последовательности X j определяются выбором коэффициентов в формуле и не зависят от выбора стартового числа. Ясно, что последовательность чисел, генерируемая таким алгоритмом, периодична с периодом, не превышающим m . При этом длина периода равна m тогда и только тогда, когда:

· НОД (c, m) = 1 (то есть c и m взаимно просты);

· a - 1 кратно p для всех простых p - делителей m;

· a - 1 кратно 4, если m кратно 4.

Статистические свойства получаемой последовательности случайных чисел полностью определяются выбором констант a и c при заданной разрядности e . Для этих констант выписаны условия, гарантирующие удовлетворительное качество получаемых случайных чисел.

В таблице ниже приведены наиболее часто используемые параметры линейных конгруэнтных генераторов, в частности, в стандартных библиотеках различных компиляторов (функция rand()).

3.2 Метод Фибоначчи

Интересный класс генераторов псевдослучайных последовательностей основан на использовании последовательностей Фибоначчи. Классический пример такой последовательности {0,1,1,2,3,5,8,13,21,34 …} - за исключением первых двух ее членов, каждый последующий член равен сумме двух предыдущих.

Особенности распределения случайных чисел, генерируемых линейным конгруэнтным алгоритмом, делают невозможным их использование в статистических алгоритмах, требующих высокого разрешения.

В связи с этим линейный конгруэнтный алгоритм постепенно потерял свою популярность, и его место заняло семейство фибоначчиевых алгоритмов, которые могут быть рекомендованы для использования в алгоритмах, критичных к качеству случайных чисел. В англоязычной литературе фибоначчиевы датчики такого типа называют обычно «Subtract-with-borrow Generators» (SWBG).

Наибольшую популярность фибоначчиевы датчики получили в связи с тем, что скорость выполнения арифметических операций с вещественными числами сравнялась со скоростью целочисленной арифметики, а фибоначчиевы датчики естественно реализуются в вещественной арифметике.

Один из широко распространённых фибоначчиевых датчиков основан на следующей итеративной формуле:

где X k - вещественные числа из диапазона }