Сайт о телевидении

Сайт о телевидении

» » Методы аутентификации, использующие пароли. Использование динамически изменяющегося пароля

Методы аутентификации, использующие пароли. Использование динамически изменяющегося пароля

При использовании первого метода каждому пользователю выделя­ется достаточно длинный пароль, причем каждый раз для опознавания используется не весь пароль, а только его некоторая часть. В процессе проверки подлинности система запрашивает у пользователя группу сим­волов по заданным порядковым номерам. Количество символов и их по­рядковые номера для запроса определяются с помощью датчика псевдо­случайных чисел.

При одноразовом использовании паролей каждому пользователю выделяется список паролей. В процессе запроса номер пароля, который необходимо ввести, выбирается последовательно по списку или по схеме случайной выборки.

Недостатком методов модификации схемы простых паролей явля­ется необходимость запоминания пользователями длинных паролей или их списков. Запись же паролей на бумагу или в записные книжки приводит к появлению риска потери или хищения носителей информации с записан­ными на них паролями.

1.3.2. Метод «запрос-ответ»

При использовании метода «запрос-ответ» в ВС заблаговременно создается и особо защищается массив вопросов, включающий в себя как вопросы общего характера, так и персональные вопросы, относящиеся к конкретному пользователю, например, вопросы, касающиеся известных только пользователю случаев из его жизни.

Для подтверждения подлинности пользователя система последова­тельно задает ему ряд случайно выбранных вопросов, на которые он должен дать ответ. Опознание считается положительным, если пользова­тель правильно ответил на все вопросы.

Основным требованием к вопросам в данном методе аутентифика­ции является уникальность, подразумевающая, что правильные ответы на вопросы знают только пользователи, для которых эти вопросы предна­значены.

1.3.3. Функциональные методы

Среди функциональных методов наиболее распространенными яв­ляются метод функционального преобразования пароля, а также метод «рукопожатия».

Метод функционального преобразования основан на использовании некоторой функции F, которая должна удовлетворять следующим требо­ваниям:

Для заданного числа или слова X легко вычислить Y=F(X);

Зная X и Y сложно или невозможно определить функцию Y=F(X).

Необходимым условием выполнения данных требований является наличие в функции F(X) динамически изменяющихся параметров, напри­мер, текущих даты, времени, номера дня недели, или возраста пользова­теля.

Пользователю сообщается:

Исходный пароль - слово или число X, например число 31:

Функция F(X), например, Y=(X mod 100) * D + WJ, где (X mod 100) -операция взятия остатка от целочисленного деления X на 100, D -текущий номер дня недели, a W - текущий номер недели в теку­щем месяце;

Периодичность смены пароля, например, каждый день, каждые три дня или каждую неделю.

Паролями пользователя для последовательности установленных периодов действия одного пароля будут соответственно X, F(X), F(F(X)), F(F(F(X))) и т.д., т.е. для 1-го периода действия одного пароля паролем пользователя будет F""1(X). Поэтому для того, чтобы вычислить очередной пароль по истечении периода действия используемого пароля пользова­телю не нужно помнить начальный (исходный) пароль, важно лишь не за­быть функцию парольного преобразования и пароль, используемый до настоящего момента времени.

С целью достижения высокого уровня безопасности функция преоб­разования пароля, задаваемая для каждого пользователя, должна перио­дически меняться, например, каждый месяц. При замене функции целесо­образно устанавливать и новый исходный пароль.

Согласно методу «рукопожатия» существует функция F, известная только пользователю и ВС. Данная функция должна удовлетворять тем же требованиям, которые определены для функции, используемой в ме­тоде функционального преобразования.

При входе пользователя в ВС системой защиты генерируется слу­чайное число или случайная последовательность символов X и вычисля­ется функция F(X), заданная для данного пользователя (см. Рис. 1.2). Да­лее X выводится пользователю, который должен вычислить F(X) и ввести полученное значение в систему. Значения F(X) и F(X) сравниваются сис­темой и если они совпадают, то пользователь получает доступ в ВС.

Рис. 1.2. Схема аутентификации по методу «рукопожатия»

Например, в ВС генерируется и выдается пользователю случайное число, состоящее из семи цифр. Для заблуждения злоумышленника в лю­бое место числа может вставляться десятичная точка. В качестве функ­ции F принимается Y = (<сумма 1-й, 2-й и 5-й цифр числа>)2 - <сумма 3-й, 4-й, 6-й и 7-й цифр числа> + <сумма цифр текущего времени в часах>.

Для высокой безопасности функцию «рукопожатия» целесообразно циклически менять через определенные интервалы времени, например, устанавливать разные функции для четных и нечетных чисел месяца.

Достоинством метода «рукопожатия» является то, что никакой кон­фиденциальной информации между пользователем и ВС не передается. По этой причине эффективность данного метода особенно велика при его применении а вычислительных сетях для подтверждения подлинности пользователей, пытающихся осуществить доступ к серверам или цен­тральным ЭВМ.

В некоторых случаях может оказаться необходимым пользователю проверить подлинность той ВС, к которой он хочет осуществить доступ. Необходимость во взаимной проверке может понадобиться и когда два пользователя ВС хотят связаться друг с другом по линии связи. Методы простых паролей, а также методы модификации схем простых паролей в этом случае не подходят. Наиболее подходящим здесь является метод «рукопожатия». При его использовании ни один из участников сеанса свя­зи не будет получать никакой секретной информации.

2 ТИПОВЫЕ РЕШЕНИЯ В ОРГАНИЗАЦИИ КЛЮЧЕВЫХ СИСТЕМ

Рассмотрим структуры данных и алгоритмы идентификации и аутен­тификации на основе ключевой информации, а также иерархию хранения ключей.

Поскольку предполагается выполнение процедур как идентификации, так и аутентификации, допустим, что i-й аутентифицирующий объект (i-й ключевой носитель) содержит два информационных поля: IDi - неизме­няемый идентификатор i-го пользователя который является аналогом имени и используется для идентификации пользователя, и К, - аутентифицирующая информация пользователя, которая может изменяться и служит для аутентификации.

На самом деле IDi может соответствовать разным пользователям, например носитель сенсорной памяти Touch Memory содержит 8 байт не­изменяемого идентификатора носителя, но при этом ТМ может быть пе­редан разным пользователям.

Совокупную информацию в ключевом носителе будем называть пер­вичной аутентифицирующей информацией i-ro пользователя. Описанная структура соответствует практически любому ключевому носителю, слу­жащему для опознания пользователя. Например, ТМ имеет 8 байт, не пе­резаписываемого неповторяющегося серийного номера, который одно­значно характеризует конкретное ТМ, и некоторый объем перезаписывае­мой памяти, соответствующий аутентифицирующей информации Kj. Аналогично для носителей типа пластиковых карт выделяется неизме­няемая информация IDi первичной персонализации пользователя и объ­ект в файловой структуре карты, содержащий Ki.

Основой любых систем защиты информационных систем являются идентификация и аутентификация, так как все механизмы защиты информации рассчитаны на работу с поименованными субъектами и объектами АС. Напомним, что в качестве субъектов АС могут выступать как пользователи, так и процессы, а в качестве объектов АС – информация и другие информационные ресурсы системы.

Присвоение субъектам и объектам доступа личного идентификатора и сравнение его с заданным перечнем называется идентификацией. Идентификация обеспечивает выполнение следующих функций:

Установление подлинности и определение полномочий субъекта при его допуске в систему,

Контролирование установленных полномочий в процессе сеанса работы;

Регистрация действий и др.

Аутентификацией (установлением подлинности) называется проверка принадлежности субъекту доступа предъявленного им идентификатора и подтверждение его подлинности. Другими словами, аутентификация заключается в проверке: является ли подключающийся субъект тем, за кого он себя выдает.

Общая процедура идентификации и аутентификации пользователя при его доступе в АС представлена на рис. 2.10. Если в процессе аутентификации подлинность субъекта установлена, то система защиты информации должна определить его полномочия (совокупность прав). Это необходимо для последующего контроля и разграничения доступа к ресурсам.

По контролируемому компоненту системы способы аутентификации можно разделить на аутентификацию партнеров по общению и аутентификацию источника данных. Аутентификация партнеров по общению используется при установлении (и периодической проверке) соединения во время сеанса. Она служит для предотвращения таких угроз, как маскарад и повтор предыдущего сеанса связи. Аутентификация источника данных – это подтверждение подлинности источника отдельной порции данных.

По направленности аутентификация может быть односторонней (пользователь доказывает свою подлинность системе, например при входе в систему) и двусторонней (взаимной).

Рис. 2.10. Классическая процедура идентификации и аутентификации

Обычно методы аутентификации классифицируют по используемым средствам. В этом случае указанные методы делят на четыре группы:

1. Основанные на знании лицом, имеющим право на доступ к ресурсам системы, некоторой секретной информации – пароля.

2. Основанные на использовании уникального предмета: жетона, электронной карточки и др.

3. Основанные на измерении биометрических параметров человека – физиологических или поведенческих атрибутах живого организма.

4. Основанные на информации, ассоциированной с пользователем, например, с его координатами.

Рассмотрим эти группы.

1. Наиболее распространенными простыми и привычными являются методы аутентификации, основанные на паролях – секретных идентификаторах субъектов. Здесь при вводе субъектом своего пароля подсистема аутентификации сравнивает его с паролем, хранящимся в базе эталонных данных в зашифрованном виде. В случае совпадения паролей подсистема аутентификации разрешает доступ к ресурсам АС.

Парольные методы следует классифицировать по степени изменяемости паролей:

Методы, использующие постоянные (многократно используемые) пароли,

Методы, использующие одноразовые (динамично изменяющиеся) пароли.

В большинстве АС используются многоразовые пароли. В этом случае пароль пользователя не изменяется от сеанса к сеансу в течение установленного администратором системы времени его действительности. Это упрощает процедуры администрирования, но повышает угрозу рассекречивания пароля. Известно множество способов вскрытия пароля: от подсмотра через плечо до перехвата сеанса связи. Вероятность вскрытия злоумышленником пароля повышается, если пароль несет смысловую нагрузку (год рождения, имя девушки), небольшой длины, набран на одном регистре, не имеет ограничений на период существования и т. д. Важно, разрешено ли вводить пароль только в диалоговом режиме или есть возможность обращаться из программы.

В последнем случае, возможно запустить программу по подбору паролей – «дробилку».

Более надежный способ – использование одноразовых или динамически меняющихся паролей.

Известны следующие методы парольной защиты, основанные на одноразовых паролях:

Методы модификации схемы простых паролей;

Методы «запрос-ответ»;

Функциональные методы.

В первом случае пользователю выдается список паролей. При аутентификации система запрашивает у пользователя пароль, номер в списке которого определен по случайному закону. Длина и порядковый номер начального символа пароля тоже могут задаваться случайным образом.

При использовании метода «запрос-ответ» система задает пользователю некоторые вопросы общего характера, правильные ответы на которые известны только конкретному пользователю.

Функциональные методы основаны на использовании специальной функции парольного преобразования . Это позволяет обеспечить возможность изменения (по некоторой формуле) паролей пользователя во времени. Указанная функция должна удовлетворять следующим требованиям:

Для заданного пароля x легко вычислить новый пароль ;

Зная х и y, сложно или невозможно определить функцию .

Наиболее известными примерами функциональных методов являются: метод функционального преобразования и метод «рукопожатия».

Идея метода функционального преобразования состоит в периодическом изменении самой функции . Последнее достигается наличием в функциональном выражении динамически меняющихся параметров, например, функции от некоторой даты и времени. Пользователю сообщается исходный пароль, собственно функция и периодичность смены пароля. Нетрудно видеть, что паролями пользователя на заданных -периодах времени будут следующие: x, f(x), f(f(x)), ..., f(x)n-1.

Метод «рукопожатия» состоит в следующем. Функция парольного преобразования известна только пользователю и системе защиты. При входе в АС подсистема аутентификации генерирует случайную последовательность x, которая передается пользователю. Пользователь вычисляет результат функции y=f(x) и возвращает его в систему. Система сравнивает собственный вычисленный результат с полученным от пользователя. При совпадении указанных результатов подлинность пользователя считается доказанной.

Достоинством метода является то, что передача какой-либо информации, которой может воспользоваться злоумышленник, здесь сведена к минимуму.

В ряде случаев пользователю может оказаться необходимым проверить подлинность другого удаленного пользователя или некоторой АС, к которой он собирается осуществить доступ. Наиболее подходящим здесь является метод «рукопожатия», так как никто из участников информационного обмена не получит никакой конфиденциальной информации.

Отметим, что методы аутентификации, основанные на одноразовых паролях, также не обеспечивают абсолютной защиты. Например, если злоумышленник имеет возможность подключения к сети и перехватывать передаваемые пакеты, то он может посылать последние как собственные.

2. В последнее время получили распространение комбинированные методы идентификации, требующие, помимо знания пароля, наличие карточки (token) – специального устройства, подтверждающего подлинность субъекта.

Карточки разделяют на два типа:

Пассивные (карточки с памятью);

Активные (интеллектуальные карточки).

Самыми распространенными являются пассивные карточки с магнитной полосой, которые считываются специальным устройством, имеющим клавиатуру и процессор. При использовании указанной карточки пользователь вводит свой идентификационный номер. В случае его совпадения с электронным вариантом, закодированным в карточке, пользователь получает доступ в систему. Это позволяет достоверно установить лицо, получившее доступ к системе и исключить несанкционированное использование карточки злоумышленником (например, при ее утере). Такой способ часто называют двухкомпонентной аутентификацией.

Иногда (обычно для физического контроля доступа) карточки применяют сами по себе, без запроса личного идентификационного номера.

К достоинству использования карточек относят то, что обработка аутентификационной информации выполняется устройством чтения, без передачи в память компьютера. Это исключает возможность электронного перехвата по каналам связи.

Недостатки пассивных карточек следующие: они существенно дороже паролей, требуют специальных устройств чтения, их использование подразумевает специальные процедуры безопасного учета и распределения. Их также необходимо оберегать от злоумышленников, и, естественно, не оставлять в устройствах чтения. Известны случаи подделки пассивных карточек.

Интеллектуальные карточки кроме памяти имеют собственный микропроцессор. Это позволяет реализовать различные варианты парольных методов защиты: многоразовые пароли, динамически меняющиеся пароли, обычные запрос-ответные методы. Все карточки обеспечивают двухкомпонентную аутентификацию.

К указанным достоинствам интеллектуальных карточек следует добавить их многофункциональность. Их можно применять не только для целей безопасности, но и, например, для финансовых операций. Сопутствующим недостатком карточек является их высокая стоимость.

Перспективным направлением развития карточек является наделение их стандартом расширения портативных систем PCMCIA (PC Card). Такие карточки являются портативными устройствами типа PC Card, которые вставляются в разъем PC Card и не требуют специальных устройств чтения. В настоящее время они достаточно дороги.

3. Методы аутентификации, основанные на измерении биометрических параметров человека (см. таблицу 2.6), обеспечивают почти 100 % идентификацию, решая проблемы утраты паролей и личных идентификаторов. Однако такие методы нельзя использовать при идентификации процессов или данных (объектов данных), так как они только начинают развиваться (имеются проблемы со стандартизацией и распространением), требуют пока сложного и дорогостоящего оборудования. Это обусловливает их использование пока только на особо важных объектах и системах.

Примерами внедрения указанных методов являются системы идентификации пользователя по рисунку радужной оболочки глаза, отпечаткам ладони, формам ушей, инфракрасной картине капиллярных сосудов, по почерку, по запаху, по тембру голоса и даже по ДНК.

Таблица 2.6

Примеры методов биометрии

Физиологические методы

Поведенческие методы

Снятие отпечатков пальцев

Сканирование радужной оболочки глаза

Сканирование сетчатки глаза

Геометрия кисти руки

Распознавание черт лица

Анализ клавиатурного почерка

Новым направлением является использование биометрических характеристик в интеллектуальных расчетных карточках, жетонах-пропусках и элементах сотовой связи. Например, при расчете в магазине предъявитель карточки кладет палец на сканер в подтверждение, что карточка действительно его.

Назовем наиболее используемые биометрические атрибуты и соответствующие системы.

· Отпечатки пальцев. Такие сканеры имеют небольшой размер, универсальны, относительно недороги. Биологическая повторяемость отпечатка пальца составляет 10-5 %. В настоящее время пропагандируются правоохранительными органами из-за крупных ассигнований в электронные архивы отпечатков пальцев.

· Геометрия руки. Соответствующие устройства используются, когда из-за грязи или травм трудно применять сканеры пальцев. Биологическая повторяемость геометрии руки около 2 %.

· Радужная оболочка глаза. Данные устройства обладают наивысшей точностью. Теоретическая вероятность совпадения двух радужных оболочек составляет 1 из 1078.

· Термический образ лица . Системы позволяют идентифицировать человека на расстоянии до десятков метров. В комбинации с поиском данных по базе данных такие системы используются для опознания авторизованных сотрудников и отсеивания посторонних. Однако при изменении освещенности сканеры лица имеют относительно высокий процент ошибок.

· Голос. Проверка голоса удобна для использования в телекоммуникационных приложениях. Необходимые для этого 16-разрядная звуковая плата и конденсаторный микрофон стоят менее 25 $. Вероятность ошибки составляет 2 – 5%. Данная технология подходит для верификации по голосу по телефонным каналам связи, она более надежна по сравнению с частотным набором личного номера. Сейчас развиваются направления идентификации личности и его состояния по голосу – возбужден, болен, говорит правду, не в себе и т.д.

· Ввод с клавиатуры. Здесь при вводе, например, пароля отслеживаются скорость и интервалы между нажатиями.

· Подпись. Для контроля рукописной подписи используются дигитайзеры.

4. Новейшим направлением аутентификации является доказательство подлинности удаленного пользователя по его местонахождению. Данный защитный механизм основан на использовании системы космической навигации, типа GPS (Global Positioning System). Пользователь, имеющий аппаратуру GPS, многократно посылает координаты заданных спутников, находящихся в зоне прямой видимости. Подсистема аутентификации, зная орбиты спутников, может с точностью до метра определить месторасположение пользователя. Высокая надежность аутентификации определяется тем, что орбиты спутников подвержены колебаниям, предсказать которые достаточно трудно. Кроме того, координаты постоянно меняются, что сводит на нет возможность их перехвата.

Аппаратура GPS проста и надежна в использовании и сравнительно недорога. Это позволяет ее использовать в случаях, когда авторизованный удаленный пользователь должен находиться в нужном месте.

Суммируя возможности средств аутентификации, ее можно классифицировать по уровню информационной безопасности на три категории:

1. Статическая аутентификация;

2. Устойчивая аутентификация;

3. Постоянная аутентификация.

Первая категория обеспечивает защиту только от НСД в системах, где нарушитель не может во время сеанса работы прочитать аутентификационную информацию. Примером средства статической аутентификации являются традиционные постоянные пароли. Их эффективность преимущественно зависит от сложности угадывания паролей и, собственно, от того, насколько хорошо они защищены.

Для компрометации статической аутентификации нарушитель может подсмотреть, подобрать, угадать или перехватить аутентификационные данные и т. д.

Устойчивая аутентификация использует динамические данные аутентификации, меняющиеся с каждым сеансом работы. Реализациями устойчивой аутентификации являются системы, использующие одноразовые пароли и электронные подписи. Усиленная аутентификация обеспечивает защиту от атак, где злоумышленник может перехватить аутентификационную информацию и пытаться использовать ее в следующих сеансах работы.

Однако устойчивая аутентификация не обеспечивает защиту от активных атак, в ходе которых маскирующийся злоумышленник может оперативно (в течение сеанса аутентификации) перехватить, модифицировать и вставить информацию в поток передаваемых данных.

Постоянная аутентификация обеспечивает идентификацию каждого блока передаваемых данных, что предохраняет их от несанкционированной модификации или вставки. Примером реализации указанной категории аутентификации является использование алгоритмов генерации электронных подписей для каждого бита пересылаемой информации.

Видение проблем, возникающих в связи с необходимостью обеспечения информационной безопасности современного предприятия, радикально отличается от тех представлений, которые доминировали всего лет десять назад. Формально комплекс требований к системам безопасности по-прежнему укладывается в классическую триаду - конфиденциальность (confidentiality), целостность (integrity) и готовность (availability). Однако к этим «трем китам» прибавилось (в основном из-за активизации обмена электронными документами) еще одно требование - аccountability.

В отечественных специализированных словарях данный термин переводят как «возможность для ответственных за защиту информации лиц восстанавливать процесс нарушения или попытки нарушения безопасности информационной системы», что не отражает его смысла в полном объеме. В это понятие входят и обязательства источника за переданную им информацию, в том числе невозможность от нее отказаться, и ответственность адресата за принятые сведения, прежде всего - невозможность отказа от них. Но реализация этих требований в современных условиях заметно изменяется, и одна из тенденций состоит в существенно иной, чем прежде, интеграции информационных систем.

Одним из проявлений нового отношения к культуре обеспечения безопасности следует считать направление secure content management, название которого можно перевести как «безопасное управление контентом» или, скорее, как «управление безопасностью контента». Иногда его еще называют «политической безопасностью контента» (policy-based content security).

В состав соответствующих технологий в обязательном порядке входят антивирусные механизмы, инструменты борьбы со спамом и фишингом. Кроме того, относят к данной категории и фильтрации контента, в том числе обеспечивающие контроль над доступом пользователей в Internet, управление доступом сотрудников в Internet, сканирование (точнее, перлюстрация) исходящих и входящих электронных писем, анализ вредоносных мобильных кодов и защита от них.

2.1.Идентификация и аутентификация

Основой любых систем защиты информационных систем являются идентификация и аутентификация, так как все механизмы защиты информации рассчитаны на работу с поименованными субъектами и объектами АС. Напомним, что в качестве субъектов АС могут выступать как пользователи, так и процессы, а в качестве объектов АС – информация и другие информационные ресурсы системы.

Присвоение субъектам и объектам доступа личного идентификатора и сравнение его с заданным перечнем называется идентификацией . Идентификация обеспечивает выполнение следующих функций:

установление подлинности и определение полномочий субъекта при его допуске в систему;

контролирование установленных полномочий в процессе работы;

регистрация действий и др.

Аутентификацией (установлением подлинности) называется проверка принадлежности субъекту доступа предъявленного им идентификатора и подтверждение его подлинности . Другими словами, аутентификация заключается в проверке: является ли подключающийся субъект тем, за кого он себя выдает.

Если в процессе аутентификации подлинность субъекта установлена, то система защиты информации должна определить его полномочия (совокупность прав). Это необходимо для последующего контроля и разграничения доступа к ресурсам.

По контролируемому компоненту системы способы аутентификации можно разделить на аутентификацию партнеров по общению и аутентификацию источника данных. Аутентификация партнеров по общению используется при установлении (и периодической проверке) соединения во время сеанса. Она служит для предотвращения таких угроз, как маскарад и повтор предыдущего сеанса связи. Аутентификация источника данных – это подтверждение подлинности источника отдельной порции данных.

По направленности аутентификация может быть односторонней (пользователь доказывает свою подлинность системе, например при входе в систему) и двусторонней (взаимной).

Обычно методы аутентификации классифицируют по используемым средствам. В этом случае указанные методы делят на четыре группы:

1. Основанные на знании лицом, имеющим право на доступ к ресурсам системы, некоторой секретной информации – пароля.

2. Основанные на использовании уникального предмета: жетона, электронной карточки и др.

3. Основанные на измерении биометрических параметров человека – физиологических или поведенческих атрибутах живого организма.

4. Основанные на информации, ассоциированной с пользователем, например, с его координатами.

Рассмотрим эти группы.

1. Наиболее распространенными простыми и привычными являются методы аутентификации, основанные на паролях – секретных идентификаторах субъектов. Пароли давно встроены в операционные системы и иные сервисы. Здесь при вводе субъектом своего пароля подсистема аутентификации сравнивает его с паролем, хранящимся в базе эталонных данных в зашифрованном виде. В случае совпадения паролей подсистема аутентификации разрешает доступ к ресурсам АС.

Парольные методы следует классифицировать по степени изменяемости паролей:

Методы, использующие постоянные (многократно используемые) пароли,

Методы, использующие одноразовые (динамично изменяющиеся) пароли.

В большинстве АС используются многоразовые пароли. В этом случае пароль пользователя не изменяется от сеанса к сеансу в течение установленного администратором системы времени его действительности. Это упрощает процедуры администрирования, но повышает угрозу рассекречивания пароля.

Известно множество способов вскрытия пароля: от подсмотра через плечо до перехвата сеанса связи. Вероятность вскрытия злоумышленником пароля повышается, если пароль несет смысловую нагрузку, небольшой длины, набран на одном регистре, не имеет ограничений на период существования и т. д. Важно, разрешено ли вводить пароль только в диалоговом режиме или есть возможность обращаться из программы.

Более надежный способ – использование одноразовых или динамически меняющихся паролей. Известны следующие методы парольной защиты, основанные на одноразовых паролях:

Методы модификации схемы простых паролей;

Методы «запрос-ответ»;

Функциональные методы.

В первом случае пользователю выдается список паролей. При аутентификации система запрашивает у пользователя пароль, номер в списке которого определен по случайному закону. Длина и порядковый номер начального символа пароля тоже могут задаваться случайным образом. При использовании метода «запрос-ответ» система задает пользователю некоторые вопросы общего характера, правильные ответы на которые известны только конкретному пользователю.

Функциональные методы основаны на использовании специальной функции парольного преобразования . Это позволяет обеспечить возможность изменения (по некоторой формуле) паролей пользователя во времени. Указанная функция должна удовлетворять следующим требованиям:

Для заданного пароля x легко вычислить новый пароль ;

Зная х и y, сложно или невозможно определить функцию

Наиболее известными примерами функциональных методов являются: метод функционального преобразования и метод «рукопожатия» .

Идея метода функционального преобразования состоит в периодическом изменении самой функции . Последнее достигается наличием в функциональном выражении динамически меняющихся параметров, например, функции от некоторой даты и времени. Пользователю сообщается исходный пароль, собственно функция и периодичность смены пароля. Нетрудно видеть, что паролями пользователя на заданных -периодах времени будут следующие: x, f(x), f(f(x)), ..., f(x)n-1.

Наиболее известным программным генератором одноразовых паролей является система S/ KEYкомпании Bellcore. Система S/KEY имеет статус Internet-стандарта (RFC 1938).

Метод «рукопожатия» состоит в следующем. Функция парольного преобразования известна только пользователю и системе защиты. При входе в АС подсистема аутентификации генерирует случайную последовательность x , которая передается пользователю. Пользователь вычисляет результат функции y =f (x ) и возвращает его в систему. Система сравнивает собственный вычисленный результат с полученным от пользователя. При совпадении указанных результатов подлинность пользователя считается доказанной.

Достоинством метода является то, что передача какой-либо информации, которой может воспользоваться злоумышленник, здесь сведена к минимуму.

В последнее время получили распространение комбинированные методы идентификации, требующие, помимо знания пароля, наличие карточки (token) – специального устройства, подтверждающего подлинность субъекта .

Карточки разделяют на два типа:

Пассивные (карточки с памятью);

Активные (интеллектуальные карточки).

Самыми распространенными являются пассивные карточки с магнитной полосой, которые считываются специальным устройством, имеющим клавиатуру и процессор. При использовании указанной карточки пользователь вводит свой идентификационный номер. В случае его совпадения с электронным вариантом, закодированным в карточке, пользователь получает доступ в систему. Это позволяет достоверно установить лицо, получившее доступ к системе и исключить несанкционированное использование карточки злоумышленником (например, при ее утере). Такой способ часто называют двухкомпонентной аутентификацией.

Иногда (обычно для физического контроля доступа) карточки применяют сами по себе, без запроса личного идентификационного номера.

К достоинству использования карточек относят то, что обработка аутентификационной информации выполняется устройством чтения, без передачи в память компьютера. Это исключает возможность электронного перехвата по каналам связи.

Недостатки пассивных карточек следующие: они существенно дороже паролей, требуют специальных устройств чтения, их использование подразумевает специальные процедуры безопасного учета и распределения. Их также необходимо оберегать от злоумышленников, и, естественно, не оставлять в устройствах чтения. Известны случаи подделки пассивных карточек.

Биометрия представляет собой совокупность автоматизированных методов идентификации и/или аутентификации людей на основе их физиологических и поведенческих характеристик. Методы аутентификации, основанные на измерении биометрических параметров человека (см. таблицу 2.1), обеспечивают почти 100 % идентификацию, решая проблемы утраты паролей и личных идентификаторов.

Однако такие методы нельзя использовать при идентификации процессов или данных (объектов данных), так как они только начинают развиваться (имеются проблемы со стандартизацией и распространением), требуют пока сложного и дорогостоящего оборудования. Это обусловливает их использование пока только на особо важных объектах и системах.

Примерами внедрения указанных методов являются системы идентификации пользователя по рисунку радужной оболочки глаза, отпечаткам ладони, формам ушей, инфракрасной картине капиллярных сосудов, по почерку, по запаху, по тембру голоса и даже по ДНК.

Примеры методов биометрии Таблица 2.1.

Новым направлением является использование биометрических характеристик в интеллектуальных расчетных карточках, жетонах-пропусках и элементах сотовой связи. Например, при расчете в магазине предъявитель карточки кладет палец на сканер в подтверждение, что карточка действительно его.

Назовем наиболее используемые биометрические атрибуты и соответствующие системы.

· Отпечатки пальцев. Такие сканеры имеют небольшой размер, универсальны, относительно недороги. Биологическая повторяемость отпечатка пальца составляет 10-5 %. В настоящее время пропагандируются правоохранительными органами из-за крупных ассигнований в электронные архивы отпечатков пальцев.

· Геометрия руки. Соответствующие устройства используются, когда из-за грязи или травм трудно применять сканеры пальцев. Биологическая повторяемость геометрии руки около 2 %.

· Радужная оболочка глаза. Данные устройства обладают наивысшей точностью. Теоретическая вероятность совпадения двух радужных оболочек составляет 1 из 1078.

· Термический образ лица . Системы позволяют идентифицировать человека на расстоянии до десятков метров. В комбинации с поиском данных по базе данных такие системы используются для опознания авторизованных сотрудников и отсеивания посторонних. Однако при изменении освещенности сканеры лица имеют относительно высокий процент ошибок.

· Голос. Проверка голоса удобна для использования в телекоммуникационных приложениях. Вероятность ошибки составляет 2 – 5%. Данная технология подходит для верификации по голосу по телефонным каналам связи, она более надежна по сравнению с частотным набором личного номера. Сейчас развиваются направления идентификации личности и его состояния по голосу – возбужден, болен, говорит правду, не в себе и т.д.

· Ввод с клавиатуры. Здесь при вводе, например, пароля отслеживаются скорость и интервалы между нажатиями.

· Подпись. Для контроля рукописной подписи используются дигитайзеры.

Новейшим направлением аутентификации является доказательство подлинности удаленного пользователя по его местонахождению. Данный защитный механизм основан на использовании системы космической навигации, типа GPS (Global Positioning System). Пользователь, имеющий аппаратуру GPS, многократно посылает координаты заданных спутников, находящихся в зоне прямой видимости. Подсистема аутентификации, зная орбиты спутников, может с точностью до метра определить месторасположение пользователя. Высокая надежность аутентификации определяется тем, что орбиты спутников подвержены колебаниям, предсказать которые достаточно трудно. Кроме того, координаты постоянно меняются, что сводит на нет возможность их перехвата .

Аппаратура GPS проста и надежна в использовании и сравнительно недорога. Это позволяет ее использовать в случаях, когда авторизованный удаленный пользователь должен находиться в нужном месте.

Суммируя возможности средств аутентификации, ее можно классифицировать по уровню информационной безопасности на три категории:

1. Статическая аутентификация;

2. Устойчивая аутентификация;

3. Постоянная аутентификация.

Первая категория обеспечивает защиту только от НСД в системах, где нарушитель не может во время сеанса работы прочитать аутентификационную информацию. Примером средства статической аутентификации являются традиционные постоянные пароли. Их эффективность преимущественно зависит от сложности угадывания паролей и, собственно, от того, насколько хорошо они защищены.

Для компрометации статической аутентификации нарушитель может подсмотреть, подобрать, угадать или перехватить аутентификационные данные и т. д.

Устойчивая аутентификация использует динамические данные аутентификации, меняющиеся с каждым сеансом работы. Реализациями устойчивой аутентификации являются системы, использующие одноразовые пароли и электронные подписи. Усиленная аутентификация обеспечивает защиту от атак, где злоумышленник может перехватить аутентификационную информацию и пытаться использовать ее в следующих сеансах работы.

Однако устойчивая аутентификация не обеспечивает защиту от активных атак, в ходе которых маскирующийся злоумышленник может оперативно (в течение сеанса аутентификации) перехватить, модифицировать и вставить информацию в поток передаваемых данных.

Постоянная аутентификация обеспечивает идентификацию каждого блока передаваемых данных, что предохраняет их от несанкционированной модификации или вставки. Примером реализации указанной категории аутентификации является использование алгоритмов генерации электронных подписей для каждого бита пересылаемой информации.

Модель системы защиты

При построении систем защиты от угроз нарушения конфиденциальности информации в автоматизированных системах используется комплексный подход. Схема традиционно выстраиваемой эшелонированной защиты приведена на рис. 1.3.1.

Как видно из приведённой схемы, первичная защита осуществляется за счёт реализуемых организационных мер и механизмов контроля физического доступа к АС. В дальнейшем, на этапе контроля логического доступа, защита осуществляется с использованием различных сервисов сетевой безопасности. Во всех случаях параллельно должен быть развёрнут комплекс инженерно-технических средств защиты информации, перекрывающих возможность утечки по техническим каналам.

Остановимся более подробно на каждой из участвующих в реализации защиты подсистем.

1.3.2 Организационные меры и меры обеспечения физической безопасности

Данные механизмы в общем случае предусматривают :

  • развёртывание системы контроля и разграничения физического доступа к элементам автоматизированной системы.
  • создание службы охраны и физической безопасности.
  • организацию механизмов контроля за перемещением сотрудников и посетителей (с использованием систем видеонаблюдения, проксимити-карт и т.д.);
  • разработку и внедрение регламентов, должностных инструкций и тому подобных регулирующих документов;
  • регламентацию порядка работы с носителями, содержащими конфиденциальную информацию.

Не затрагивая логики функционирования АС, данные меры при корректной и адекватной их реализации являются крайне эффективным механизмом защиты и жизненно необходимы для обеспечения безопасности любой реальной системы.

1.3.3. Идентификация и аутентификация

Напомним, что под идентификацией принято понимать присвоение субъектам доступа уникальных идентификаторов и сравнение таких идентификаторов с перечнем возможных. В свою очередь, аутентификация понимается как проверка принадлежности субъекту доступа предъявленного им идентификатора и подтверждение его подлинности.

Тем самым, задача идентификации – ответить на вопрос «кто это?», а аутентификации - «а он ди это на самом деле?».

Базовая схема идентификации и аутентификации приведена на рис. 1.3.2.

Приведённая схема учитывает возможные ошибки оператора при проведении процедуры аутентификации: если аутентификация не выполнена, но допустимое число попыток не превышено, пользователю предлагается пройти процедуру идентификации и аутентификации еще раз.

Всё множество использующих в настоящее время методов аутентификации можно разделить на 4 большие группы :

  1. Методы, основанные на знании некоторой секретной информации . Классическим примером таких методов является парольная защита , когда в качестве средства аутентификации пользователю предлагается ввести пароль – некоторую последовательность символов. Данные методы аутентификации являются наиболее распространёнными.
  2. Методы, основанные на использовании уникального предмета . В качестве такого предмета могут быть использованы смарт-карта, токен, электронный ключ и т.д.
  3. Методы, основанные на использовании биометрических характеристик человека . На практике чаще всего используются одна или несколько из следующих биометрических характеристик:
    • отпечатки пальцев;
    • рисунок сетчатки или радужной оболочки глаза;
    • тепловой рисунок кисти руки;
    • фотография или тепловой рисунок лица;
    • почерк (роспись);
    • голос.
      Наибольшее распространение получили сканеры отпечатков пальцев и рисунков сетчатки и радужной оболочки глаза.
  4. Методы, основанные на информации, ассоциированной с пользователем . Примером такой информации могут служить координаты пользователя, определяемые при помощи GPS. Данный подход вряд ли может быть использован в качестве единственного механизма аутентификации, однако вполне допустим в качестве одного из нескольких совместно используемых механизмов.

Широко распространена практика совместного использования нескольких из перечисленных выше механизмов – в таких случаях говорят о многофакторной аутентификации .

Особенности парольных систем аутентификации

При всём многообразии существующих механизмов аутентификации, наиболее распространённым из них остаётся парольная защита. Для этого есть несколько причин, из которых мы отметим следующие :

  • Относительная простота реализации . Действительно, реализация механизма парольной защиты обычно не требует привлечения дополнительных аппаратных средств.
  • Традиционность . Механизмы парольной защиты являются привычными для большинства пользователей автоматизированных систем и не вызывают психологического отторжения – в отличие, например, от сканеров рисунка сетчатки глаза.

В то же время для парольных систем защиты характерен парадокс, затрудняющий их эффективную реализацию: стойкие пароли мало пригодны для использования человеком. Действительно, стойкость пароля возникает по мере его усложнения; но чем сложнее пароль, тем труднее его запомнить, и у пользователя появляется искушение записать неудобный пароль, что создаёт дополнительные каналы для его дискредитации.

Остановимся более подробно на основных угрозах безопасности парольных систем . В общем случае пароль может быть получен злоумышленником одним из трёх основных способов:

  1. За счёт использования слабостей человеческого фактора . Методы получения паролей здесь могут быть самыми разными: подглядывание, подслушивание, шантаж, угрозы, наконец, использование чужих учётных записей с разрешения их законных владельцев.
  2. Путём подбора . При этом используются следующие методы:
    • Полный перебор . Данный метод позволяет подобрать любой пароль вне зависимости от его сложности, однако для стойкого пароля время, необходимое для данной атаки, должно значительно превышать допустимые временные ресурсы злоумышленника.
    • Подбор по словарю . Значительная часть используемых на практике паролей представляет собой осмысленные слова или выражения. Существуют словари наиболее распространённых паролей, которые во многих случаях позволяют обойтись без полного перебора.
    • Подбор с использованием сведений о пользователе. Данный интеллектуальный метод подбора паролей основывается на том факте, что если политика безопасности системы предусматривает самостоятельное назначение паролей пользователями, то в подавляющем большинстве случаев в качестве пароля будет выбрана некая персональная информация, связанная с пользователем АС. И хотя в качестве такой информации может быть выбрано что угодно, от дня рождения тёщи и до прозвища любимой собачки, наличие информации о пользователе позволяет проверить наиболее распространённые варианты (дни рождения, имена детей и т.д.).
  3. За счёт использования недостатков реализации парольных систем. К таким недостаткам реализации относятся эксплуатируемые уязвимости сетевых сервисов, реализующих те или иные компоненты парольной системы защиты, или же недекларированные возможности соответствующего программного или аппаратного обеспечения.

При построении системы парольной защиты необходимо учитывать специфику АС и руководствоваться результатами проведённого анализа рисков. В то же время можно привести следующие практические рекомендации:

  • Установление минимальной длины пароля . Очевидно, что регламентация минимально допустимой длины пароля затрудняет для злоумышленника реализацию подбора пароля путём полного перебора.
  • Увеличение мощности алфавита паролей . За счёт увеличения мощности (которое достигается, например, путём обязательного использования спецсимволов) также можно усложнить полный перебор.
  • Проверка и отбраковка паролей по словарю . Данный механизм позволяет затруднить подбор паролей по словарю за счёт отбраковки заведомо легко подбираемых паролей.
  • Установка максимального срока действия пароля . Срок действия пароля ограничивает промежуток времени, который злоумышленник может затратить на подбор пароля. Тем самым, сокращение срока действия пароля уменьшает вероятность его успешного подбора.
  • Установка минимального срока действия пароля . Данный механизм предотвращает попытки пользователя незамедлительно сменить новый пароль на предыдущий.
  • Отбраковка по журналу истории паролей . Механизм предотвращает повторное использование паролей – возможно, ранее скомпрометированных.
  • Ограничение числа попыток ввода пароля . Соответствующий механизм затрудняет интерактивный подбор паролей.
  • Принудительная смена пароля при первом входе пользователя в систему . В случае, если первичную генерацию паролей для всех пользователь осуществляет администратор, пользователю может быть предложено сменить первоначальный пароль при первом же входе в систему – в этом случае новый пароль не будет известен администратору.
  • Задержка при вводе неправильного пароля . Механизм препятствует интерактивному подбору паролей.
  • Запрет на выбор пароля пользователем и автоматическая генерация пароля . Данный механизм позволяет гарантировать стойкость сгенерированных паролей – однако не стоит забывать, что в этом случае у пользователей неминуемо возникнут проблемы с запоминанием паролей.

Оценка стойкости парольных систем

Оценим элементарные взаимосвязи между основными параметрами парольных систем . Введём следующие обозначения:

  • A – мощность алфавита паролей;
  • L – длина пароля;
  • S=A L – мощность пространства паролей;
  • V – скорость подбора паролей;
  • T – срок действия пароля;
  • P – вероятность подбора пароля в течение его срока действия.

Очевидно, что справедливо следующее соотношение:

Обычно скорость подбора паролей V и срок действия пароля T можно считать известными. В этом случае, задав допустимое значение вероятности P подбора пароля в течение его срока действия, можно определить требуемую мощность пространства паролей S.

Заметим, что уменьшение скорости подбора паролей V уменьшает вероятность подбора пароля. Из этого, в частности, следует, что если подбор паролей осуществляется путём вычисления хэш-функции и сравнение результата с заданным значением, то большую стойкость парольной системы обеспечит применение медленной хэш-функции.

Методы хранения паролей

В общем случае возможны три механизма хранения паролей в АС :

  1. В открытом виде . Безусловно, данный вариант не является оптимальным, поскольку автоматически создаёт множество каналов утечки парольной информации. Реальная необходимость хранения паролей в открытом виде встречается крайне редко, и обычно подобное решение является следствием некомпетентности разработчика.
  2. В виде хэш-значения . Данный механизм удобен для проверки паролей, поскольку хэш-значения однозначно связаны с паролем, но при этом сами не представляют интереса для злоумышленника.
  3. В зашифрованном виде . Пароли могут быть зашифрованы с использованием некоторого криптографического алгоритма, при этом ключ шифрования может храниться:
    • на одном из постоянных элементов системы;
    • на некотором носителе (электронный ключ, смарт-карта и т.п.), предъявляемом при инициализации системы;
    • ключ может генерироваться из некоторых других параметров безопасности АС – например, из пароля администратора при инициализации системы.

Передача паролей по сети

Наиболее распространены следующие варианты реализации:

  1. Передача паролей в открытом виде . Подход крайне уязвим, поскольку пароли могут быть перехвачены в каналах связи. Несмотря на это, множество используемых на практике сетевых протоколов (например, FTP) предполагают передачу паролей в открытом виде.
  2. Передача паролей в виде хэш-значений иногда встречается на практике, однако обычно не имеет смысла – хэши паролей могут быть перехвачены и повторно переданы злоумышленником по каналу связи.
  3. Передача паролей в зашифрованном виде в большинстве является наиболее разумным и оправданным вариантом.

1.3.4. Разграничение доступа

Под разграничением доступа принято понимать установление полномочий субъектов для полследующего контроля санкционированного использования ресурсов, доступных в системе. Принято выделять два основных метода разграничения доступа : дискреционное и мандатное.

Дискреционным называется разграничение доступа между поименованными субъектами и поименованными объектами. На практике дискреционное разграничение доступа может быть реализовано, например, с использованием матрицы доступа (рис. 1.3.4).

Как видно из рисунка, матрица доступа определяет права доступа для каждого пользователя по отношению к каждому ресурсу.

Очевидно, что вместо матрицы доступа можно использовать списки полномочий: например, каждому пользователю может быть сопоставлен список доступных ему ресурсов с соответствующими правами, или же каждому ресурсу может быть сопоставлен список пользователей с указанием их прав на доступ к данному ресурсу.

Мандатное разграничение доступа обычно реализуется как разграничение доступа по уровням секретности. Полномочия каждого пользователя задаются в соответствии с максимальным уровнем секретности, к которому он допущен. При этом все ресурсы АС должны быть классифицированы по уровням секретности.

Принципиальное различие между дискреционным и мандатным разграничением доступа состоит в следующем: если в случае дискреционного разграничения доступа права на доступ к ресурсу для пользователей определяет его владелец, то в случае мандатного разграничения доступа уровни секретности задаются извне, и владелец ресурса не может оказать на них влияния. Сам термин «мандатное» является неудачным переводом слова mandatory – «обязательный». Тем самым, мандатное разграничение доступа следует понимать как принудительное.

1.3.5. Криптографические методы обеспечения конфиденциальности информации

В целях обеспечения конфиденциальности информации используются следующие криптографические примитивы :


Симметричные и асимметричные криптосистемы, а также различные их комбинации используются в АС прежде всего для шифрования данных на различных носителях и для шифрования трафика.

1.3.6. Методы защиты внешнего периметра

Подсистема защиты внешнего периметра автоматизированной системы обычно включает в себя два основных механизма: средства межсетевого экранирования и средства обнаружения вторжений. Решая родственные задачи, эти механизмы часто реализуются в рамках одного продукта и функционируют в качестве единого целого. В то же время каждый из механизмов является самодостаточным и заслуживает отдельного рассмотрения.

Межсетевое экранирование

Межсетевой экран (МЭ) выполняет функции разграничения информационных потоков на границе защищаемой автоматизированной системы. Это позволяет:

  • повысить безопасность объектов внутренней среды за счёт игнорирования неавторизованных запросов из внешней среды;
  • контролировать информационные потоки во внешнюю среду;
  • обеспечить регистрацию процессов информационного обмена.

Контроль информационных потоков производится посредством фильтрации информации , т.е. анализа её по совокупности критериев и принятия решения о распространении в АС или из АС.

В зависимости от принципов функционирования, выделяют несколько классов межсетевых экранов . Основным классификационным признаком является уровень модели ISO/OSI, на котором функционирует МЭ.


Большинство используемых в настоящее время межсетевых экранов относятся к категории экспертных. Наиболее известные и распространённые МЭ – CISCO PIX и CheckPoint FireWall-1.

Системы обнаружения вторжений

Обнаружение вторжений представляет собой процесс выявления несанкционированного доступа (или попыток несанкционированного доступа) к ресурсам автоматизированной системы. Система обнаружения вторжений (Intrusion Detection System, IDS) в общем случае представляет собой программно-аппаратный комплекс, решающий данную задачу.

Общая структура IDS приведена на рис. 1.3.6.2:

Алгоритм функционирования системы IDS приведён на рис. 1.3.6.3:

Как видно из рисунков, функционирование систем IDS во многом аналогично межсетевым экранам: сенсоры получают сетевой трафик, а ядро путём сравнения полученного трафика с записями имеющейся базы сигнатур атак пытается выявить следы попыток несанкционированного доступа. Модуль ответного реагирования представляет собой опциональный компонент, который может быть использован для оперативного блокирования угрозы: например, может быть сформировано правило для межсетевого экрана, блокирующее источник нападения.

Существуют две основных категории систем IDS :

  1. IDS уровня сети .
    В таких системах сенсор функционирует на выделенном для этих целей хосте в защищаемом сегменте сети. Обычно сетевой адаптер данного хоста функционирует в режиме прослушивания (promiscuous mode), что позволяет анализировать весь проходящий в сегменте сетевой трафик.
  2. IDS уровня хоста .
    В случае, если сенсор функционирует на уровне хоста, для анализа может быть использована следующая информация:
    • записи стандартных средств протоколирования операционной системы;
    • информация об используемых ресурсах;
    • профили ожидаемого поведения пользователей.

Каждый из типов IDS имеет свои достоинства и недостатки. IDS уровня сети не снижают общую производительность системы, однако IDS уровня хоста более эффективно выявляют атаки и позволяют анализировать активность, связанную с отдельным хостом. На практике целесообразно использовать системы, совмещающие оба описанных подхода.

Существуют разработки, направленные на использование в системах IDS методов искусственного интеллекта. Стоит отметить, что в настоящее время коммерческие продукты не содержат таких механизмов.

1.3.7. Протоколирование и аудит

Подсистема протоколирования и аудита является обязательным компонентом любой АС. Протоколирование , или регистрация , представляет собой механизм подотчётности системы обеспечения информационной безопасности, фиксирующий все события, относящиеся к вопросам безопасности. В свою очередь, аудит – это анализ протоколируемой информации с целью оперативного выявления и предотвращения нарушений режима информационной безопасности.

Системы обнаружения вторжений уровня хоста можно рассматривать как системы активного аудита.

Назначение механизма регистрации и аудита:

  • обеспечение подотчётности пользователей и администраторов;
  • обеспечение возможности реконструкции последовательности событий (что бывает необходимо, например, при расследовании инцидентов, связанных с информационной безопасностью);
  • обнаружение попыток нарушения информационной безопасности;
  • предоставление информации для выявления и анализа технических проблем, не связанных с безопасностью.

Протоколируемые данные помещаются в регистрационный журнал , который представляет собой хронологически упорядоченную совокупность записей результатов деятельности субъектов АС, достаточную для восстановления, просмотра и анализа последовательности действий с целью контроля конечного результата.

Типовая запись регистрационного журнала выглядит следующим образом (рис. 1.3.7.1).

Поскольку системные журналы являются основным источником информации для последующего аудита и выявления нарушений безопасности, вопросу защиты системных журналов от несанкционированной модификации должно уделяться самое пристальное внимание. Система протоколирования должна быть спроектирована таким образом, чтобы ни один пользователь (включая администраторов!) не мог произвольным образом модифицировать записи системных журналов.

Не менее важен вопрос о порядке хранения системных журналов. Поскольку файлы журналов хранятся на том или ином носителе, неизбежно возникает проблема переполнения максимально допустимого объёма системного журнала. При этом реакция системы может быть различной, например:

  • система может быть заблокирована вплоть до решения проблемы с доступным дисковым пространством;
  • могут быть автоматически удалены самые старые записи системных журналов;
  • система может продолжить функционирование, временно приостановив протоколирование информации.

Безусловно, последний вариант в большинстве случаев является неприемлемым, и порядок хранения системных журналов должен быть чётко регламентирован в политике безопасности организации.

Одной из распространенных схем аутентификации является простая аутентификация, которая основана на применении тра­диционных многоразовых паролей с одновременным согласова­нием средств его использования и обработки. Аутентификация на основе многоразовых паролей - простой и наглядный при­мер использования разделяемой информации. Пока в большин­стве защищенных виртуальных сетей VPN доступ клиента к серверу разрешается по паролю. Однако все чаще применяются более эффективные средства аутентификации, например программные и аппаратные системы аутенти­фикации на основе одноразовых паролей, смарт-карт, PIN-ко­дов и цифровых сертификатов.

Базовый принцип «единого входа» предполагает достаточ­ность одноразового прохождения пользователем процедуры аутентификации для доступа ко всем сетевым ресурсам. Поэтому в современных операционных системах предусматривается цен­трализованная служба аутентификации, которая выполняется одним из серверов сети и использует для своей работы базу дан­ных (БД). В этой БД хранятся учетные данные о пользователях сети, включающие идентификаторы и пароли пользователей, а также другую информацию.

Процедура простой аутентификации пользователя в сети: пользователь при по­пытке логического входа в сеть набирает свои идентификатор и пароль. Эти данные поступают для обработки на сервер аутенти­фикации. В БД, хранящейся на сервере аутентификации, по идентификатору пользователя находится соответствующая за­пись. Из нее извлекается пароль и сравнивается с тем паролем, который ввел пользователь. Если они совпали, то аутентифика­ция прошла успешно - пользователь получает легальный статус и получает те права и ресурсы сети, которые определены для его статуса системой авторизации.

В схеме простой аутентификации (рис.1) передача пароля и идентификатора пользователя может производиться следую­щими способами:

· в незашифрованном виде; например, согласно протоколу парольной аутентификации PAP пароли передаются по линии связи в открытой незащищенной форме;



· в защищенном виде; все передаваемые данные (идентифи­катор и пароль пользователя, случайное число и метки вре­мени) защищены посредством шифрования или однона­правленной функции.

Рисунок 1. Простая аутентификация с использованием пароля

Чтобы защитить пароль, его нужно зашифровать перед пересылкой по незащи­щенному каналу. Для этого в схему включены средства шифро­вания Е К и расшифровывания D K , управляемые разделяемым секретным ключом К. Проверка подлинности пользователя ос­нована на сравнении присланного пользователем пароля Р А и исходного значения Р" А, хранящегося на сервере аутентифика­ции. Если значения Р А и Р" А совпадают, то пароль Р А считается подлинным, а пользователь А - законным.

Наиболее распространенным способом является хра­нение паролей пользователей в открытом виде в системных фай­лах, причем на эти файлы устанавливаются атрибуты защиты от чтения и записи (например, при помощи описания соответст­вующих привилегий в списках контроля доступа ОС). Система сопоставляет введенный пользователем пароль с хранящейся в файле паролей записью. При этом способе не используются криптографические механизмы, такие как шифрование или од­нонаправленные функции. Недостаток: возможность получения злоумышленником в систе­ме привилегий администратора, включая права доступа к сис­темным файлам, и в частности, к файлу паролей.

Пароли пользователей должны храниться в ОС в открытом виде.

С точки зрения безопасности предпочтительным являет метод передачи и хранения паролей с использованием односторонних функций. Обычно для шифрования паролей в списке пользователей используют одну из известных криптографически стойких хэш-функций. В списке пользователей хранится не сам пароль, а образ пароля, являющийся результатом применения к паролю хэш-функции.

Однонаправленность хэш-функции не позволяет восстано­вить пароль по образу пароля, но позволяет, вычислив хэш-функцию, получить образ введенного пользователем пароля и та­ким образом проверить правильность введенного пароля. В про­стейшем случае в качестве хэш-функции используется результат шифрования некоторой константы на пароле.

Например, односторонняя функция h (∙) может быть опреде­лена следующим образом:

h(P∙) = E p (ID),

где Р - пароль пользователя; ID - идентификатор пользовате­ля; Е Р - процедура шифрования, выполняемая с использовани­ем пароля Р в качестве ключа.

Рисунок 2. использование односторонней функции для проверки пароля.

Такие функции удобны, если длина пароля и ключа одина­ковы. В этом случае проверка подлинности пользователя А с по­мощью пароля Р A состоит из пересылки серверу аутентификации отображения h(P A) и сравнения его с предварительно вычислен­ным и хранимым в БД сервера аутентификации эквивален­том h"(P A) (рис. 2). Если отображения h(P A) и h"(P A) равны, то считается, что пользователь успешно прошел аутентификацию.

Для того чтобы предотвратить такую атаку, функцию h(P) можно определить иначе, например в виде:

h(P) = Е P K (ID),

где К и ID - соответственно ключ и идентификатор отправителя. Различают две формы представления объектов, аутентифицирующих пользователя:

· внешний аутентифицирующий объект, не принадлежащий системе;

· внутренний объект, принадлежащий системе, в который переносится информация из внешнего объекта.

Системы простой аутентификации на основе многоразовых паролей имеют пониженную стойкость, поскольку выбор аутентифицирующей информации происходит из относительно не­большого числа слов.

Схемы аутентификации, основанные на традиционных мно­горазовых паролях, не обладают достаточной безопасностью. Более надежными являются процедуры аутентифи­кации на основе одноразовых паролей.

Суть схемы одноразовых паролей - использование различ­ных паролей при каждом новом запросе на предоставление дос­тупа. Одноразовый динамический пароль действителен только для одного входа в систему, и затем его действие истекает. Динамический меха­низм задания пароля - один из лучших способов защиты про­цесса аутентификации от угроз извне. Обычно системы аутенти­фикации с одноразовыми паролями используются для проверки удаленных пользователей.

Генерация одноразовых паролей может осуществляться ап­паратным или программным способом. Некоторые аппаратные средства доступа на основе одноразовых паролей реализуются в виде миниатюрных устройств со встроенным микропроцессо­ром, внешне похожих на платежные пластиковые карточки. Та­кие карты, обычно называемые ключами, могут иметь клавиату­ру и небольшое дисплейное окно.

Схема аутентификации с использованием временной син­хронизации базируется на алгоритме генерации случайных чисел через определенный интервал времени. Этот интервал устанавливается и может быть изменен администратором сети. Схема аутентификации использует два параметра:

· секретный ключ, представляющий собой уникальное 64-битное число, назначаемое каждому пользователю и храня­щееся в БД аутентификационного сервера и в аппаратном ключе пользователя;

· значение текущего времени.

Недостаток: генерируемое аппаратным ключом случайное число является достоверным паролем в тече­ние небольшого конечного промежутка времени. Поэтому воз­можна кратковременная ситуация, когда можно перехватить PIN-код и случайное число, чтобы использовать их для доступа в сеть.

Одним из наиболее распространенных протоколов аутентифи­кации на основе одноразовых паролей является стандартизован­ный в Интернете протокол S/Key (RFC 1760). Этот протокол реа­лизован во многих системах, требующих проверки подлинности удаленных пользователей.

Наиболее распространенным методом аутентификации является ввод секрет­ного числа, которое обычно называют PIN-кодом. Обычно PIN-код представляет собой четырехразрядное число, каждая цифра ко­торого может принимать значение от 0 до 9.

PIN-код вводится с помощью клавиатуры терминала или компьютера и затем отправляется на смарт-карту. Смарт-карта сравнивает полученное значение PIN-кода с эталонным значением, хранимым в карте, и отправляет результат сравнения на терминал.

При идентификации клиента по значению PIN-кода и предъявленной карте используются два основных способа проверки PIN-кода:

1. Неалгоритмический не требует применения специальных алгоритмов. Проверка PIN-кода осуществляется путем непосредственного сравнения введенного клиентом PIN-кода со значениями, хранимыми в БД. Обычно БД со значениями PIN-кодов клиентов шифруется методом прозрач­ного шифрования, чтобы повысить ее защищенность, не усложняя процесса сравнения.

2. Алгоритмический заключается в том, что введенный клиентом PIN-код преобразуют по определенному алгоритму с использованием секретного ключа и затем сравнивают со значением PIN-кода, хранящимся в определен­ной форме на карте. Достоинства:

· отсутствие копии PIN-кода на главном компьютере исклю­чает его раскрытие обслуживающим персоналом;

· отсутствие передачи PIN-кода между банкоматом или кас­сиром-автоматом и главным компьютером банка исключа­ет его перехват злоумышленником или навязывание ре­зультатов сравнения;

· упрощение работы по созданию программного обеспече­ния системы, так как уже нет необходимости действий в реальном масштабе времени.

Строгая аутентификация

Идея строгой аутентификации: проверяемая сторона доказывает свою подлинность проверяю­щей стороне, демонстрируя знание некоторого секрета. Доказательство знания секрета осуществляется с помо­щью последовательности запросов и ответов с использованием криптографических методов и средств.

Доказывающая сторона демонстрирует только знание секрета, но сам секрет в ходе аутентификационного обмена не раскрывается. Это обеспечивает­ся посредством ответов доказывающей стороны на различные запросы проверяющей стороны. При этом результирующий за­прос зависит только от пользовательского секрета и начального запроса, который обычно представляет произвольно выбранное в начале протокола большое число.

В большинстве случаев строгая аутентификация заключается в том, что каждый пользователь аутентифицируется по признаку владения своим секретным ключом. Иначе говоря, пользователь имеет возможность определить, владеет ли его партнер по связи надлежащим секретным ключом и может ли он использовать этот ключ для подтверждения того, что он действительно являет­ся подлинным партнером по информационному обмену.

· односторонняя аутентификация , предусматривает обмен ин­формацией только в одном направлении;

· двусторонняя аутентификация содержит дополнительный ответ проверяющей стороны доказывающей стороне, который должен убедить ее, что связь устанавливается именно с той стороной, которой были предназна­чены аутентификационные данные;

· трехсторонняя аутентификация содержит дополнительную передачу данных от доказывающей стороны проверяющей. Этот подход позволяет отказаться от использования меток времени при проведении аутентификации.

Одноразо­вые параметры иногда называют также nonces - это величина, используемая для одной и той же цели не более одного раза. Среди используемых на сегодняшний день одноразовых пара­метров следует выделить: случайные числа, метки времени и но­мера последовательностей.

Они позволяют избежать повтора пере­дачи, подмены стороны аутентификационного обмена и атаки с выбором открытого текста. С их помощью можно обеспечить уникальность, однозначность и временные гарантии передаваемых сообщений. Различные типы одноразовых параметров могут употребляться как отдельно, так и дополнять друг друга. Следует отметить, что одноразовые параметры широко используются и в других вариантах криптографических протоколов. В зависимости от используемых криптографических алгорит­мом протоколы строгой аутентификации делятся на протоколы, основанные:

· на симметричных алгоритмах шифрования;

· однонаправленных ключевых хэш-функциях;

· асимметричных алгоритмах шифрования;

· алгоритмах электронной цифровой подписи.

Для работы протоколов аутентификации, построенных на основе симметричных алгоритмов, необходимо, чтобы прове­ряющий и доказывающий с самого начала имели один и тот же секретный ключ. Для закрытых систем с небольшим количест­вом пользователей каждая пара пользователей может заранее разделить его между собой. В больших распределенных систе­мах, применяющих технологию симметричного шифрования, часто используются протоколы аутентификации с участием до­меренного сервера, с которым каждая сторона разделяет знание ключа. Такой сервер распределяет сеансовые ключи для каждой пары пользователей всякий раз, когда один из них запрашивает аутентификацию другого.

Рассмотрим следующие варианты аутентификации:

· односторонняя аутентификация с использованием меток времени;

· односторонняя аутентификация с использованием случайных чисел;

· двусторонняя аутентификация.

В каждом из этих случаев пользователь доказывает свою подлинность, демонстрируя знание секретного ключа, так как производит расшифровывание запросов с помощью этого секретного ключа.

При использовании в процессе аутентификации симметрич­ного шифрования необходимо также реализовать механизмы обеспечения целостности передаваемых данных на основе общепринятых способов.

Введем следующие обозначения:

r А А;

r В - случайное число, сгенерированное участником В;

t A - метка времени, сгенерированная участником А;

Е К - симметричное шифрование на ключе К (ключ К должен быть предварительно распределен между A и В).

1. Односторонняя аутентификация, основанная на метках времени:

- (1)

После получения и расшифровывания данного сообщения участник В убеждается в том, что метка времени t A действительна и идентификатор В, указанный в сообщении, совпадает с его собственным. Предотвращение повторной передачи данного со­общения основывается на том, что без знания ключа невозмож­но изменить метку времени t A и идентификатор В.

2. Односторонняя аутентификация, основанная на использо­вании случайных чисел:

- (2)

Участник В отправляет участнику А случайное число r B . Уча­стник А шифрует сообщение, состоящее из полученного числа А и идентификатора В, и отправляет зашифрованное сообщение участнику В. Участник В расшифровывает полученное сообще­ние и сравнивает случайное число, содержащееся в сообщении, в тем, которое Он послал участнику А. Дополнительно он прове­рнет имя, указанное в сообщении.

3. Двусторонняя аутентификация, использующая случайные рачения:

- (3)

При получении сообщения (2) участник В выполняет те же проверки, что и в предыдущем протоколе, и дополнительно рас­шифровывает случайное число r А для включения его в сообще­ние (3) для участника А. Сообщение (3), полученное участни­ком А, позволяет ему убедиться на основе проверки значений r А и r В, что он имеет дело именно с участником В.

Широко известными представителями протоколов, обеспе­чивающих аутентификацию пользователей с привлечением в процессе аутентификации третьей стороны, являются протокол распределения секретных ключей Нидхэма и Шредера и прото­кол Kerberos.

Протоколы, представленные выше, могут быть модифициро­ваны путем замены симметричного шифрования на шифрование с помощью односторонней ключевой хэш-функции. Это бывает необходимо, если алгоритмы блочного шифрования не­доступны или не отвечают предъявляемым требованиям (напри­мер, в случае экспортных ограничений).

Своеобразие шифрования с помощью односторонней хэш-функции заключается в том, что оно по существу является одно­сторонним, т. е. не сопровождается обратным преобразовани­ем - расшифровыванием на приемной стороне. Обе стороны (отправитель и получатель) используют одну и ту же процедуру одностороннего шифрования.

Односторонняя хэш-функция h K (∙)с параметром-ключом К, примененная к шифруемым данным М, дает в результате хэш-значение т (дайджест), состоящее из фиксированного не­большого числа байт (рис. 3).

Рисунок 3. Применение для аутентификации односторонней хэш-функции с параметром-ключом

Дайджест т = h K (M) передается получателю вместе с исходным сообщением М. Получатель сооб­щения, зная, какая односторонняя хэш-функция была применена для получения дайджеста, заново вычисляет ее, используя рас­шифрованное сообщение М. Если значения полученного дайдже­ста т и вычисленного дайджеста т" совпадают, значит содержи­мое сообщения Мне было подвергнуто никаким изменениям.

Знание дайджеста не дает возможности восстановить исход­ное сообщение, но позволяет проверить целостность данных. Дайджест можно рассматривать как своего рода контрольную сумму для исходного сообщения. Контрольную сумму используют как средство проверки целост­ности передаваемых сообщений по ненадежным линиям связи.

При вычислении дайджеста применяются секретные ключи. В случае, если для получения дайджеста используется односторонняя хэш-функция с параметром-ключом К, который известен только отправителю и получателю, любая модификация исходного сообщения будет немедленно обнаружена.

Рисунок 4.

На рис. 4 показан другой вариант использования односто­ронней хэш-функции для проверки целостности данных. В этом случае односторонняя хэш-функция h (∙) не имеет парамет­ра-ключа, но применяется не просто к сообщению М, а к сооб­щению, дополненному секретным ключом К, т. е. отправитель вычисляет дайджест т = h(M, К). Получатель, извлекая исходное сообщение М, также дополняет его тем же известным ему секрет­ным ключом К, после чего применяет к полученным данным од­ностороннюю хэш-функцию h (∙). Результат вычислений - дай­джест т" - сравнивается с полученным по сети дайджестом т.

При использовании односторонних функций шифрования в рассмотренные выше протоколы необходимо внести следующие изменения:

· функция симметричного шифрования Е к заменяется функ­цией h K ;

· проверяющий вместо установления факта совпадения по­лей в расшифрованных сообщениях с предполагаемыми значениями вычисляет значение однонаправленной функ­ции и сравнивает его с полученным от другого участника обмена информацией;

· для обеспечения независимого вычисления значения однона­правленной функции получателем сообщения в протоколе 1 метка времени t A должна передаваться дополнительно в от­крытом виде, а в сообщении (2) протокола 3 случайное число r A должно передаваться дополнительно в открытом виде.

Модифицированный вариант протокола 3 с учетом сформу­лированных изменений имеет следующую структуру:

Заметим, что в сообщение (3) протокола включено поле A . Результирующий протокол обеспечивает взаимную аутентификацию и известен как протокол SKID 3.

В протоколах строгой аутентификации могут быть использованы асимметричные алгоритмы с открытыми ключами. В этом случае доказывающий может продемонстрировать знание секретного ключа одним из следующих способов:

· расшифровать запрос, зашифрованный на открытом ключ

· поставить свою цифровую подпись на запросе.

Выбранная система с открытым ключом должна быть устойчивой к атакам с выборкой шифрованного текста даже в том случае, если наруши­тель пытается получить критичную информацию, выдавая себя за проверяющего и действуя от его имени.

В качестве примера протокола, построенного на использова­нии асимметричного алгоритма шифрования, можно привести следующий протокол аутентификации:

Участник В выбирает случайным образом r и вычисляет зна­чение х = h(r) (значение х демонстрирует знание r без раскрытия самого значения r ), далее он вычисляет значение е = Р А (r,В). Под Р А подразумевается алгоритм асимметричного шифрования (например, RSA), а под h (∙) - хэш-функция. Участник В от­правляет сообщение (1) участнику А. Участник А расшифровывает е = Р А (r, В) и получает значения r 1 и B 1 , а также вычисляет x 1 = h (r 1 ). После этого производится ряд сравнений, доказываю­щих, что х = х 1 , и что полученный идентификатор B t действительно указывает на участника В. В случае успешного проведе­нии сравнения участник А посылает г. Получив его, участник В проверяет, то ли это значение, которое он отправил в сообще­нии (1).

В качестве другого примера приведем модифицированный протокол Нидхэма и Шредера, основанный на асимметричном шифровании (достаточно подробно он описан в разделе, посвя­щенном распределению ключевой информации, поскольку ос­новной вариант протокола используется для аутентификационного обмена ключевой информации).

Рассматривая вариант протокола Нидхэма и Шредера, ис­пользуемый только для аутентификации, будем подразумевать под Р В алгоритм шифрования открытым ключом участника В. Протокол имеет следующую структуру:

- (1)

- (2)

Для описания этой схемы аутентификации введем следую­щие обозначения:

t A , r A и r В - временная метка и случайные числа соответст­венно;

S A - подпись, сгенерированная участником А;

S B - подпись, сгенерированная участником В;

cert A А;

cert B - сертификат открытого ключа участника В.

Если участники имеют аутентичные открытые ключи, полу­ченные друг от друга, то можно не пользоваться сертификатами, в противном случае они служат для подтверждения подлинности открытых ключей.

В качестве примеров приведем следующие протоколы аутентификации.

1. Односторонняя аутентификация с применением меток вре­мени:

После принятия данного сообщения участник В проверяет правильность метки времени t A , полученный идентификатор В и, используя открытый ключ из сертификата cert А , корректность цифровой подписи S A (t A , В).

2. Односторонняя аутентификация с использованием случай­ных чисел:

Участник В, получив сообщение от участника А, убеждается, что именно он является адресатом сообщения; используя открытый ключ участника А, взятый из сертификата cert А , проверяет корректность подписи S A (r A , r B , В) под числом r А, полученным в открытом виде, числом r В, которое было отослано в сообще­нии (1), и его идентификатором В. Подписанное случайное чис­ло r А используется для предотвращения атак с выборкой откры­того текста.

3. Двусторонняя аутентификация с использованием случайных чисел:

В данном протоколе обработка сообщений (1) и (2) выпол­няется так же, как и в предыдущем протоколе, а сообщение (3) обрабатывается аналогично сообщению (2).