Сайт о телевидении

Сайт о телевидении

» » Механизмы ооп. Основные понятия и принципы ооп

Механизмы ооп. Основные понятия и принципы ооп

Общее представление об объектно-ориентированном программировании и его особенностях были рассмотрены в первом уроке. Здесь обобщим изученный в этом курсе материал.

В Python все объекты являются производными классов и наследуют от них атрибуты. При этом каждый объект формирует собственное пространство имен. Python поддерживает такие ключевые особенности объектно-ориентированного программирования как наследование, инкапсуляцию и полиморфизм. Однако инкапсуляцию в понимании сокрытия данных Python поддерживает только в рамках соглашения, но не синтаксиса языка.

В курсе не было уделено внимание множественному наследованию, когда дочерний класс наследуется от нескольких родительских. Такое наследование поддерживается в Python в полной мере и дает возможность в производном классе сочетать атрибуты двух и более классов. При множественном наследовании следует учитывать определенные особенности поиска атрибутов.

Полиморфизм позволяет объектам разных классов иметь схожие интерфейсы. Он реализуется путем объявления в них методов с одинаковыми именами. К проявлению полиморфизма как особенности ООП также можно отнести методы перегрузки операторов.

Кроме наследования, инкапсуляции и полиморфизма существуют другие особенности ООП. Таковой является композиция, или агрегирование, когда класс включает в себя вызовы других классов. В результате при создании объекта от класса-агрегата, создаются объекты других классов, являющиеся составными частями первого.

Классы обычно помещают в модули. Каждый модуль может содержать несколько классов. В свою очередь модули могут объединяться в пакеты. Благодаря пакетам в Python организуются пространства имен.

Преимущества ООП

Особенности объектно-ориентированного программирования наделяют его рядом преимуществ.

Так ООП позволяет использовать один и тот же программный код с разными данными. На основе классов создается множество объектов, у каждого из которых могут быть собственные значения полей. Нет необходимости вводить множество переменных, т. к. объекты получают в свое распоряжение индивидуальные пространства имен. В этом смысле объекты похожи на структуры данных. Объект можно представить как некую упаковку данных, к которой присоединены инструменты для их обработки – методы.

Наследование позволяет не писать новый код, а использовать и настраивать уже существующий за счет добавления и переопределения атрибутов.

Недостатки ООП

ООП позволяет сократить время на написание исходного кода, однако предполагает большую роль предварительного анализа предметной области и проектирования. От правильности решений на этом этапе зависит куда больше, чем от непосредственного написания исходного кода.

Следует понимать, что одна и та же задача может быть решена разными объектными моделями, каждая из которых будет иметь свои преимущества и недостатки. Только опытный разработчик может сказать, какую из них будет проще расширять и обслуживать в дальнейшем.

Особенности ООП в Python

По сравнению со многими другими языками в Python объектно-ориентированное программирования обладает рядом особых черт.

Всё является объектом – число, строка, список, функция, экземпляр класса, сам класс, модуль. Так класс – объект, способный порождать другие объекты – экземпляры.

В Python нет просто типов данных. Все типы – это классы.

Инкапсуляции в Python не уделяется особого внимания. В других языках программирования обычно нельзя получить напрямую доступ к свойству, описанному в классе. Для его изменения может быть предусмотрен специальный метод. В Python же не считается предосудительным непосредственное обращение к свойствам.

И напоследок

Python – это все-таки скриптовый интерпретируемый язык. Хотя на нем пишутся в том числе крупные проекты, часто он используется в веб-разработке, системном администрировании для создания небольших программ-сценариев. В этом случае обычно достаточно встроенных средств языка, "изобретать" собственные классы излишне.

Основные принципы и этапы объектно-ориентированного

программирования

В теории программирования ООП определяется как технология создания сложного программного обеспечения, которая основана на представлении программы в виде совокупности объектов , каждый из которых является экземпляром определенноготипа (класса ), а классы образуют иерархию с

наследованием свойств .

Взаимодействие программных объектов в такой системе осуществляется путем передачи сообщений .

П р и м е ч а н и е. Такое представление программы впервые было использовано в языке имитационного моделирования сложных систем Simula, появившемся еще в 60-х годах.

Естественный для языков моделирования способ представления программы получил развитие в другом специализированном языке моделирования - языке Smalltalk (70-е годы), а затем был

Страница 2 из51

Основные принципы ООП

использован в новых версиях универсальных языков программирования, таких как Pascal, С++,

Основное достоинство ООП - сокращение количества межмодульных вызовов и уменьшение объемов информации, передаваемой между модулями,

по сравнению с модульным программированием. Это достигается за счет более полной локализации данных и интегрирования их с подпрограммами обработки,

что позволяет вести практически независимую разработку отдельных частей

(объектов) программы.

Кроме этого, объектный подход предлагает новые технологические средства разработки, такие как наследование, полиморфизм, композиция, наполнение ,

позволяющие конструировать сложные объекты из более простых. В результате существенно увеличивается показатель повторного использования кодов,

появляется возможность создания библиотек объектов для различных применений, и разработчикам предоставляются дополнительные возможности создания систем повышенной сложности.

Основной недостаток ООП - некоторое снижение быстродействия за счет более сложной организации программной системы.

В основу ООП положены следующие п р и н ц и п ы : абстрагирование,

ограничение доступа, модульность, иерархичность, типизация, параллелизм,

устойчивость.

Рассмотрим, что представляет собой каждый принцип.

А б с т р а г и р о в а н и е - процесс выделения абстракций в предметной области задачи.Абстракция - совокупность существенных характеристик некоторого объекта, которые отличают его от всех других видов объектов и,

таким образом, четко определяют особенности данного объекта с точки зрения дальнейшего рассмотрения и анализа. В соответствии с определением применяемая абстракция реального предмета существенно зависит от решаемой задачи: в одном случае нас будет интересовать форма предмета, в другом вес, в

третьем - материалы, из которых он сделан, в четвертом - закон движения

Страница 3 из51

Основные принципы ООП

предмета и т.д. Современный уровень абстракции предполагает объединение всех свойств абстракции (как касающихся состояния анализируемого объекта,

так и определяющих его поведение) в единую программную единицу некий

абстрактный тип (класс).

О г р а н и ч е н и е д о с т у п а - сокрытие отдельных элементов реализации абстракции, не затрагивающих существенных характеристик ее как целого.

Необходимость ограничения доступа предполагает разграничение двух частей в описании абстракции:

интерфейс - совокупность доступных извне элементов реализации абстракции (основные характеристики состояния и поведения);

реализация - совокупность недоступных извне элементов реализации абстракции (внутренняя организация абстракции и механизмы реализации ее поведения).

Ограничение доступа в ООП позволяет разработчику:

выполнять конструирование системы поэтапно, не отвлекаясь на особенности реализации используемых абстракций;

легко модифицировать реализацию отдельных объектов, что в правильно организованной системе не потребует изменения других объектов.

Сочетание объединения всех свойств предмета (составляющих его состояния и поведения) в единую абстракцию и ограничения доступа к реализации этих свойств получило название инкапсуляции.

М о д у л ь н о с т ь - принцип разработки программной системы,

предполагающий реализацию ее в виде отдельных частей (модулей). При выполнении декомпозиции системы на модули желательно объединять логически связанные части, по возможности обеспечивая сокращение количества внешних связей между модулями. Принцип унаследован от

Страница 4 из51

Основные принципы ООП

модульного программирования, следование ему упрощает проектирование и

отладку программы.

И е р а р х и я - ранжированная или упорядоченная система абстракций.

Принцип иерархичности предполагает использование иерархий при разработке программных систем.

В ООП используются два вида иерархии.

Иерархия «целое/часть» - показывает, что некоторые абстракции включены

в рассматриваемую абстракцию как ее части, например, лампа состоит из цоколя, нити накаливания и колбы. Этот вариант иерархии используется в процессе разбиения системы на разных этапах проектирования (на логическом уровне - при декомпозиции предметной области на объекты, на физическом уровне - при декомпозиции системы на модули и при выделении отдельных процессов в мультипроцессной системе).

Иерархия «общее/частное» - показывает, что некоторая абстракция является частным случаем другой абстракции, например, « обеденный стол -

конкретный вид стола», а « столы - конкретный вид мебели». Используется при

разработке структуры классов, когда сложные классы строятся на базе более простых путем добавления к ним новых характеристик и, возможно, уточнения имеющихся.

Один из важнейших механизмов ООП - наследование свойств в иерархии общее/частное. Наследование - такое соотношение между абстракциями, когда одна из них использует структурную или функциональную часть другой или нескольких других абстракций (соответственно простое и множественное

наследование).

Т и п и з а ц и я - ограничение, накладываемое на свойства объектов и

препятствующее взаимозаменяемости абстракций различных типов (или сильно сужающее возможность такой замены). В языках с жесткой типизацией для каждого программного объекта (переменной, подпрограммы, параметра и т. д.)

объявляется тип, который определяет множество операций над

Страница 5 из51

Основные принципы ООП

соответствующим программным объектом. Рассматриваемые далее языки программирования на основе Паскаля используют строгую, а на основе С -

среднюю степень типизации.

Использование принципа типизации обеспечивает:

раннее обнаружение ошибок, связанных с недопустимыми операциями над программными объектами (ошибки обнаруживаются на этапе компиляции программы при проверке допустимости выполнения данной операции над программным объектом);

упрощение документирования;

возможность генерации более эффективного кода.

Тип может связываться с программным объектом статически (тип объекта определен на этапе компиляции - раннее связывание) и динамически (тип объекта определяется только во время выполнения программы -позднее связывание). Реализация позднего связывания в языке программирования позволяет создавать переменные - указатели на объекты, принадлежащие различным классам(полиморфные объекты), что существенно расширяет возможности языка.

П а р а л л е л и з м - свойство нескольких абстракций одновременно находиться в активном состоянии, т.е. выполнять некоторые операции.

Существует целый ряд задач, решение которых требует одновременного выполнения некоторых последовательностей действий. К таким задачам,

например, относятся задачи автоматического управления несколькими процессами.

Реальный параллелизм достигается только при реализации задач такого типа на многопроцессорных системах, когда имеется возможность выполнения каждого процесса отдельным процессором. Системы с одним процессором имитируют параллелизм за счет разделения времени процессора между задачами управления различными процессами. В зависимости от типа используемой операционной системы (одноили мультипрограммной)

Страница 6 из51

Основные принципы ООП

разделение времени может выполняться либо разрабатываемой системой (как в

MS DOS), либо используемой ОС (как в системах Windows).

У с т о й ч и в о с т ь - свойство абстракции существовать во времени независимо от процесса, породившего данный программный объект, и/или в пространстве, перемещаясь из адресного пространства, в котором он был создан.

Различают:

∙ временные объекты, хранящие промежуточные результаты некоторых действий, например вычислений;

∙ локальные объекты, существующие внутри подпрограмм, время жизни которых исчисляется от вызова подпрограммы до ее завершения;

∙ глобальные объекты, существующие пока программа загружена в память;

∙ сохраняемые объекты, данные которых хранятся в файлах внешней памяти между сеансами работы программы.

Все указанные выше принципы в той или иной степени реализованы в различных версиях объектно-ориентированных языков.

Объектно-ориентированные языки программирования.Язык считается объектно-ориентированным, если в нем реализованы первые четыре из рассмотренных семи принципов.

Особое место занимают объектные модели Delphi и C++Builder. Эти модели обобщают опыт ООП для MS DOS и включают некоторые новые средства,

обеспечивающие эффективное создание более сложных систем. На базе этих моделей созданы визуальные среды для разработки приложений Windows.

Сложность программирования под Windows удалось существенно

снизить за счет создания специальных библиотек объектов, « спрятавших» многие элементы техники программирования.

Страница 7 из51

Основные принципы ООП

Этапы разработки программных систем с использованием ООП.

Процесс разработки программного обеспечения с использованием ООП включает четыре этапа: анализ, проектирование, эволюция, модификация.

Рассмотрим эти этапы.

А н а л и з . Цель анализа - максимально полное описание задачи. На этом этапе выполняется анализ предметной области задачи, объектная декомпозиция разрабатываемой системы и определяются важнейшие особенности поведения объектов (описание абстракций). По результатам анализа разрабатывается структурная схема программного продукта, на которой показываются основные объекты и сообщения, передаваемые между ними, а также выполняется описание абстракций.

Проект ирование .Различают :

логическое проектирование, при котором принимаемые решения практически не зависят от условий эксплуатации (операционной системы и используемого оборудования);

физическое проектирование, при котором приходится принимать во внимание указанные факторы.

Логическое проектирование заключается в разработке структуры классов:

определяются поля для хранения составляющих состояния объектов и алгоритмы методов, реализующих аспекты поведения объектов. При этом используются рассмотренные выше приемы разработки классов (наследование,

композиция, наполнение, полиморфизм и т.д.). Результатом является иерархия или диаграмма классов, отражающие взаимосвязь классов, и описание классов.

Физическое проектирование включает объединение описаний классов в модули, выбор схемы их подключения (статическая или динамическая компоновка), определение способов взаимодействия с оборудованием, с

операционной системой и/или другим программным обеспечением (например,

базами данных, сетевыми программами), обеспечение синхронизации процессов для систем параллельной обработки и т.д.

Страница 8 из51

Основные принципы ООП

Э в о л ю ц и я с и с т е м ы. Это процесс поэтапной реализации и

подключения классов к проекту. Процесс начинается с создания основной программы или проекта будущего программного продукта. Затем реализуются и подключаются классы, так чтобы создать грубый, но, по возможности,

работающий прототип будущей системы. Он тестируется и отлаживается.

Например, таким прототипом может служить система, включающая реализацию основного интерфейса программного продукта (передача сообщений в отсутствующую пока часть системы не выполняется). В результате мы получаем работоспособный прототип продукта, который может быть, например, показан заказчику для уточнения требований. Затем к системе подключается следующая группа классов, например, связанная с реализацией некоторого пункта меню.

Полученный вариант также тестируется и отлаживается, и так далее, до реализации всех возможностей системы.

Использование поэтапной реализации существенно упрощает тестирование и отладку программного продукта.

Модификация. Это процесс добавления новых функциональных возможностей или изменение существующих свойств системы. Как правило,

изменения затрагивают реализацию класса, оставляя без изменения его интерфейс, что при использовании ООП обычно обходится без особых неприятностей, так как процесс изменений затрагивает локальную область.

Изменение интерфейса - также не очень сложная задача, но ее решение может повлечь за собой необходимость согласования процессов взаимодействия объектов, что потребует изменений в других классах программы. Однако сокращение количества параметров в интерфейсной части по сравнению с модульным программированием существенно облегчает и этот процесс.

Простота модификации позволяет сравнительно легко адаптировать программные системы к изменяющимся условиям эксплуатации, что увеличивает время жизни систем, на разработку которых затрачиваются огромные временные и материальные ресурсы.

Страница 9 из51

Основные принципы ООП

Особенностью ООП является то, что объект или группа объектов могут разрабатываться отдельно, и, следовательно, их проектирование может находиться на различных этапах. Например, интерфейсные классы уже реализованы, а структура классов предметной области еще только уточняется.

Обычно проектирование начинается, когда какой-либо фрагмент предметной области достаточно полно описан в процессе анализа.

Рассмотрение основных приемов объектного подхода начнем с объектной декомпозиции.

Объектная декомпозиция

Как уже упоминалось выше, при использовании технологии ООП решение представляется в виде результата взаимодействия отдельных функциональных элементов некоторой системы, имитирующей процессы,

происходящие в предметной области поставленной задачи.

В такой системе каждый функциональный элемент, получив некоторое входное воздействие (называемое сообщением) в процессе решения задачи,

выполняет заранее определенные действия (например, может изменить собственное состояние, выполнить некоторые вычисления, нарисовать окно или график и в свою очередь воздействовать на другие элементы). Процессом решения задачи управляет последовательность сообщений. Передавая эти сообщения от элемента к элементу, система выполняет необходимые действия.

Функциональные элементы системы, параметры и поведение которой определяются условием задачи, обладающие самостоятельным поведением

(т.е. « умеющие» выполнять некоторые действия, зависящие от полученных сообщений и состояния элемента), получили название объектов.

Процесс представления предметной области задачи в виде совокупности объектов, обменивающихся сообщениями, называется объектной декомпозицией.

Страница 10 из51

Основные принципы ООП

Для того чтобы понять, о каких объектах и сообщениях идет речь при выполнении объектной декомпозиции в каждом конкретном случае, следует вспомнить, что первоначально объектный подход был предложен для разработки имитационных моделей поведения сложных систем. Набор объектов таких систем обычно определяется при анализе моделируемых процессов.

Пример. Объектная декомпозиция (имитационная модель

бензоколонки). Пусть нас интересует зависимость длины очереди к бензоколонке от количества заправочных мест, параметров обслуживания каждого заправочного места и интенсивности поступления заявок на заправку топливом (рассматриваем топливо одного типа).

Задачи такого вида обычно решаются с использованием имитационных моделей. Модель программно имитирует реальный процесс с заданными параметрами, параллельно фиксируя его характеристики. Многократно повторяя процесс имитации с различными значениями параметров обслуживания или поступления заявок, исследователь получает конкретные значения характеристик, по которым строятся графики анализируемых зависимостей.

Процесс работы бензоколонки с тремя заправочными местами можно представить в виде диаграммы.

Наверное, в половине вакансий(если не больше), требуется знание и понимание ООП. Да, эта методология, однозначно, покорила многих программистов! Обычно понимание ООП приходит с опытом, поскольку годных и доступно изложенных материалов на данный счет практически нет. А если даже и есть, то далеко не факт, что на них наткнутся читатели. Надеюсь, у меня получится объяснить принципы этой замечательной методологии, как говорится, на пальцах.

Итак, уже в начале статьи я уже упомянул такой термин "методология". Применительно к программированию этот термин подразумевает наличие какого-либо набора способов организации кода, методов его написания, придерживаясь которых, программист сможет писать вполне годные программы.

ООП (или объектно-ориентированное программирование) представляет собой способ организации кода программы, когда основными строительными блоками программы являются объекты и классы, а логика работы программы построена на их взаимодействии.


Об объектах и классах

Класс - это такая структура данных, которую может формировать сам программист. В терминах ООП, класс состоит из полей (по-простому - переменных) и методов (по-простому - функций). И, как выяснилось, сочетание данных и функций работы над ними в одной структуре дает невообразимую мощь. Объект - это конкретный экземпляр класса. Придерживаясь аналогии класса со структурой данных, объект - это конкретная структура данных, у которой полям присвоены какие-то значения. Поясню на примере:

Допустим, нам нужно написать программу, рассчитывающую периметр и площадь треугольника, который задан двумя сторонами и углом между ними. Для написания такой программы используя ООП, нам необходимо будет создать класс (то есть структуру) Треугольник. Класс Треугольник будет хранить три поля (три переменные): сторона А, сторона Б, угол между ними; и два метода (две функции): посчитать периметр, посчитать площадь. Данным классом мы можем описать любой треугольник и вычислить периметр и площадь. Так вот, конкретный треугольник с конкретными сторонами и углом между ними будет называться экземпляром класса Треугольник. Таким образом класс - это шаблон, а экземпляр - конкретная реализация шаблона. А вот уже экземпляры являются объектами, то есть конкретными элементами, хранящими конкретные значения.

Одним из самых распространенных объектно-ориентированных языков программирования является язык java. Там без использования объектов просто не обойтись. Вот как будет выглядеть код класса, описывающего треугольник на этом языке:

/** * Класс Треугольник. */ class Triangle { /** * Специальный метод, называемый конструктор класса. * Принимает на вход три параметра: * длина стороны А, длина стороны Б, * угол между этими сторонами(в градусах) */ Triangle(double sideA, double sideB, double angleAB) { this.sideA = sideA; this.sideB = sideB; this.angleAB = angleAB; } double sideA; //Поле класса, хранит значение стороны А в описываемом треугольнике double sideB; //Поле класса, хранит значение стороны Б в описываемом треугольнике double angleAB; //Поле класса, хранит угла(в градусах) между двумя сторонами в описываемом треугольнике /** * Метод класса, который рассчитывает площадь треугольника */ double getSquare() { double square = this.sideA * this.sideB * Math.sin(this.angleAB * Math.PI / 180); return square; } /** * Метод класса, который рассчитывает периметр треугольника */ double getPerimeter() { double sideC = Math.sqrt(Math.pow(this.sideA, 2) + Math.pow(this.sideB, 2) - 2 * this.sideA * this.sideB * Math.cos(this.angleAB * Math.PI / 180)); double perimeter = this.sideA + this.sideB + sideC; return perimeter; } }

Если мы внутрь класса добавим следующий код:

/** * Именно в этом месте запускается программа */ public static void main(String args) { //Значения 5, 17, 35 попадают в конструктор класса Triangle Triangle triangle1 = new Triangle(5, 17, 35); System.out.println("Площадь треугольника1: "+triangle1.getSquare()); System.out.println("Периметр треугольника1: "+triangle1.getPerimeter()); //Значения 6, 8, 60 попадают в конструктор класса Triangle Triangle triangle2 = new Triangle(6, 8, 60); System.out.println("Площадь треугольника1: "+triangle2.getSquare()); System.out.println("Периметр треугольника1: "+triangle2.getPerimeter()); }

то программу уже можно будет запускать на выполнение. Это особенность языка java. Если в классе есть такой метод

Public static void main(String args)

то этот класс можно выполнять. Разберем код подробнее. Начнем со строки

Triangle triangle1 = new Triangle(5, 17, 35);

Здесь мы создаем экземпляр triangle1 класса Triangle и тут же задаем ему параметры сторон и угла между ними. При этом, вызывается специальный метод, называемый конструктор и заполняет поля объекта переданными значениями в конструктор. Ну, а строки

System.out.println("Площадь треугольника1: "+triangle1.getSquare()); System.out.println("Периметр треугольника1: "+triangle1.getPerimeter());

выводят рассчитанные площадь треугольника и его периметр в консоль.

Аналогично все происходит и для второго экземпляра класса Triangle .

Понимание сути классов и конструирования конкретных объектов - это уверенный первый шаг к пониманию методологии ООП.

Еще раз, самое важное:

ООП - это способ организации кода программы;

Класс - это пользовательская структура данных, которая воедино объединяет данные и функции для работы с ними(поля класса и методы класса);

Объект - это конкретный экземпляр класса, полям которого заданы конкретные значения.


Три волшебных слова

ООП включает три ключевых подхода: наследование, инкапсуляцию и полиморфизм. Для начала, приведу определения из wikipedia :

Инкапсуляция - свойство системы, позволяющее объединить данные и методы, работающие с ними, в классе. Некоторые языки (например, С++) отождествляют инкапсуляцию с сокрытием, но большинство (Smalltalk, Eiffel, OCaml) различают эти понятия.

Наследование - свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс - потомком, наследником, дочерним или производным классом.

Полиморфизм - свойство системы, позволяющее использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.

Понять, что же все эти определения означают на деле достаточно сложно. В специализированных книгах, раскрывающих данную тему на каждое определение, зачастую, отводится целая глава, но, как минимум, абзац. Хотя, сути того, что нужно понять и отпечатать навсегда в своем мозге программиста совсем немного.
А примером для разбора нам будут служить фигуры на плоскости. Из школьной геометрии мы знаем, что у всех фигур, описанных на плоскости, можно рассчитать периметр и площадь. Например, для точки оба параметра равны нулю. Для отрезка мы можем вычислить лишь периметр. А для квадрата, прямоугольника или треугольника - и то, и другое. Сейчас же мы опишем эту задачу в терминах ООП. Также не лишним будет уловить цепь рассуждений, которые выливаются в иерархию классов, которая, в свою очередь, воплощается в работающий код. Поехали:


Итак, точка - это самая малая геометрическая фигура, которая является основой всех прочих построений (фигур). Поэтому именно точка выбрана в качестве базового родительского класса. Напишем класс точки на java:

/** * Класс точки. Базовый класс */ class Point { /** * Пустой конструктор */ Point() {} /** * Метод класса, который рассчитывает площадь фигуры */ double getSquare() { return 0; } /** * Метод класса, который рассчитывает периметр фигуры */ double getPerimeter() { return 0; } /** * Метод класса, возвращающий описание фигуры */ String getDescription() { return "Точка"; } }

У получившегося класса Point пустой конструктор, поскольку в данном примере мы работаем без конкретных координат, а оперируем только параметрами значениями сторон. Так как у точки нет никаких сторон, то и передавать ей никаких параметров не надо. Также заметим, что класс имеет методы Point::getSquare() и Point::getPerimeter() для расчета площади и периметра, оба возвращают 0. Для точки оно и логично.


Поскольку у нас точка является основой всех прочих фигур, то и классы этих прочих фигур мы наследуем от класса Point . Опишем класс отрезка, наследуемого от класса точки:

/** * Класс Отрезок */ class LineSegment extends Point { LineSegment(double segmentLength) { this.segmentLength = segmentLength; } double segmentLength; // Длина отрезка /** * Переопределенный метод класса, который рассчитывает площадь отрезка */ double getSquare() { return 0; } /** * Переопределенный метод класса, который рассчитывает периметр отрезка */ double getPerimeter() { return this.segmentLength; } String getDescription() { return "Отрезок длиной: " + this.segmentLength; } }

Class LineSegment extends Point

означает, что класс LineSegment наследуется от класса Point . Методы LineSegment::getSquare() и LineSegment::getPerimeter() переопределяют соответствующие методы базового класса. Площадь отрезка всегда равняется нулю, а площадь периметра равняется длине этого отрезка.

Теперь, подобно классу отрезка, опишем класс треугольника(который также наследуется от класса точки):

/** * Класс Треугольник. */ class Triangle extends Point { /** * Конструктор класса. Принимает на вход три параметра: * длина стороны А, длина стороны Б, * угол между этими сторонами(в градусах) */ Triangle(double sideA, double sideB, double angleAB) { this.sideA = sideA; this.sideB = sideB; this.angleAB = angleAB; } double sideA; //Поле класса, хранит значение стороны А в описываемом треугольнике double sideB; //Поле класса, хранит значение стороны Б в описываемом треугольнике double angleAB; //Поле класса, хранит угла(в градусах) между двумя сторонами в описываемом треугольнике /** * Метод класса, который рассчитывает площадь треугольника */ double getSquare() { double square = (this.sideA * this.sideB * Math.sin(this.angleAB * Math.PI / 180))/2; return square; } /** * Метод класса, который рассчитывает периметр треугольника */ double getPerimeter() { double sideC = Math.sqrt(Math.pow(this.sideA, 2) + Math.pow(this.sideB, 2) - 2 * this.sideA * this.sideB * Math.cos(this.angleAB * Math.PI / 180)); double perimeter = this.sideA + this.sideB + sideC; return perimeter; } String getDescription() { return "Треугольник со сторонами: " + this.sideA + ", " + this.sideB + " и углом между ними: " + this.angleAB; } }

Тут нет ничего нового. Также, методы Triangle::getSquare() и Triangle::getPerimeter() переопределяют соответствующие методы базового класса.
Ну а теперь, собственно, тот самый код, который показывает волшебство полиморифзма и раскрывает мощь ООП:

Class Main { /** * Именно в этом месте запускается программа */ public static void main(String args) { //ArrayList - Это специальная структура данных в java, // позволяющая хранить объекты определенного типа в массиве. ArrayList figures = new ArrayList(); //добавляем три разных объекта в массив figures figures.add(new Point()); figures.add(new LineSegment(133)); figures.add(new Triangle(10, 17, 55)); for (int i = 0; i

Мы создали массив объектов класса Point , а поскольку классы LineSegment и Triangle наследуются от класса Point , то и их мы можем помещать в этот массив. Получается, каждую фигуру, которая есть в массиве figures мы можем рассматривать как объект класса Point . В этом и заключается полиморфизм: неизвестно, к какому именно классу принадлежат находящиеся в массиве figures объекты, но поскольку все объекты внутри этого массива принадлежат одному базовому классу Point , то все методы, которые применимы к классу Point также и применимы к его классам-наследникам.


Теперь о инкапсуляции. То, что мы поместили в одном классе параметры фигуры и методы расчета площади и периметра - это и есть инкапсуляция, мы инкапсулировали фигуры в отдельные классы. То, что у нас для расчета периметра используется специальный метод в классе - это и есть инкапсуляцию, мы инкапсулировали расчет периметра в метод getPerimiter() . Иначе говоря, инкапсуляция - это сокрытие реализции (пожалуй, самое короткое, и в то же время емкое определением инкапсуляции).


Полный код примера:

Import java.util.ArrayList; class Main { /** * Именно в этом месте запускается программа */ public static void main(String args) { //ArrayList - Это специальная структура данных в java, // позволяющая хранить объекты определенного типа в массиве. ArrayList figures = new ArrayList(); //добавляем три разных объекта в массив figures figures.add(new Point()); figures.add(new LineSegment(133)); figures.add(new Triangle(10, 17, 55)); for (int i = 0; i

Класс (classes ) является типом данных, определяемых пользователем. В классе задаются свойства и поведение какого-либо предмета или процесса в виде полей данных и функций для работы с ними.

Существенным свойством класса является то, что детали его реализации скрыты от пользователей класса за интерфейсом. Таким образом, класс как модель объекта реального мира является черным ящиком, замкнутым по отношению к внешнему миру.

Идея классов является основной объектно-ориентированного программирования (ООП). Основные принципы ООП были разработаны еще в языках Simula-67 иSmallTalk, но в то время не получили широкого распространения из-за трудностей освоения и низкой эффективности реализации.

Конкретные величины типа данных «класс» называют экземплярами класса илиобъектами (objects ) .

Подпрограммы, определяющие операции над объектами класса, называются методами (methods ). Вызовы методов называютсясообщениями (messages ). Весь набор методов объекта называется протоколом сообщений (messageprotocol), илиинтерфейсом сообщений (message interface ) объекта. Сообщение должно иметь, по крайней мере, две части: конкретный объект, которому оно должно быть послано, и имя метода, определяющего необходимое действие над объектом. Таким образом, вычисления в объектно-ориентированной программе определяются сообщениями, передаваемыми от одного объекта к другому.

Объекты взаимодействуют между собой, посылая и получая сообщения. Сообщение – это запрос на выполнение действия, содержащий набор необходимых параметров. Механизм сообщения реализуется с помощью вызова соответствующих функций. С помощью ООП легко реализуется так называемая событийно-управляемая модель, когда данные активны и управляют вызовом того или иного фрагмента программного кода.

ООП - это метод программирования, развивающий принципы структурного программирования и основанный на следующих абстракциях данных:

I. Инкапсуляция : объединение данных с процедурами и функциями в единый блок программного кода (данные и методы работы с ними рассматриваются как поля объекта).

II. Наследование – передача методов и свойств от предка к потомку, без необходимости написания дополнительного программного кода (наличие экземпляров класса; потомки, прародители, иерархия).

III. Полиморфизм – возможность изменения одинаковых по смыслу свойств и поведения объектов в зависимости от их типа (единое имя для некого действия, которое по-разному осуществляется для объектов иерархии).

Инкапсуляция

Впервые понятие инкапсуляции было использовано в языках, поддерживающих так называемый абстрактный подход к программированию (например, Модула-2). Основная идея абстрактного подхода заключается в том, чтобы, скрыв от пользователя структуру информации об объекте, дать ему возможность получать необходимые для работы с объектом данные только через процедуры, относящиеся к этому объекту. Такой прием позволяет значительно повысить надежность и мобильность разработанного программного обеспечения. Надежность повышается вследствие того, что все процедуры для работы с данными об объекте относительно просты и прозрачны, а значит, могут быть разработаны более качественно. При изменении структуры данных достаточно переработать только программы, непосредственно связанные с объектом, а более сложные программы, использующие данный объект, изменять не нужно. Данное обстоятельство повышает как надежность, так и мобильности созданных программ.

Наследование

Во второй половине 1980-х годов для многих разработчиков программного обеспечения стало очевидным, что одной из наилучших возможностей для повышения производительности их труда является повторное использование программ. Вполне очевидно, что абстрактные типы данных с их инкапсуляцией и управлением доступом должны использоваться многократно. Проблема, связанная с повторным использованием абстрактных типов данных, почти во всех случаях заключается в том, что свойства и возможности существующих типов не вполне подходят для нового использования. Старые типы необходимо, по крайней мере минимально, модифицировать. Такие модификации могут быть трудновыполнимыми и требовать от человека понимания части, если не всего целиком, существующего кода. Кроме того, во многих случаях модификации влекут за собой изменения во всех программах-клиентах.

Вторая проблема, связанная с программированием, ориентированным на данные, заключается в том, что все определения абстрактных типов данных являются независимыми и находятся на одном и том же уровне иерархии. Это часто не позволяет так структурировать программу, чтобы она соответствовала своей проблемной области. Во многих случаях исходная задача содержит категории связанных между собой объектов, являющихся как наследниками одних и тех же предков (т.е. находящихся на одном и том же уровне иерархии), так и предками и наследниками (т.е. состоящих в отношении некоторой субординации друг с другом).

Наследование позволяет решить как проблемы модификации, возникающие в результате повторного использования абстрактного типа данных, так и проблемы организации программ. Если новый абстрактный тип данных может наследовать данные и функциональные свойства некоторого существующего типа, а также модифицировать некоторые из этих сущностей и добавлять новые сущности, то повторное использование значительно облегчается без необходимости вносить изменения в повторно используемый абстрактный тип данных. Программисты могут брать существующий абстрактный тип данных и создавать по его образцу новый тип, соответствующий новым требованиям задачи. Предположим, что в программе есть абстрактный тип данных для массивов целых чисел, включающий в себя операцию сортировки. После некоторого периода использования программа модифицируется и требует наличия не только абстрактного типа данных для массивов целых чисел с операцией сортировки, но и операции вычисления арифметического среднего для элементов объектов, представляющих собой массивы. Поскольку структура массива скрыта в абстрактном типе данных, без наследования этот тип должен быть модифицирован путем добавления новой операции в эту структуру. При наличии наследования нет необходимости в модификации существующего типа; можно описать подкласс существующего типа, поддерживающий не только операцию сортировки, но и операцию для вычисления среднего арифметического.

Класс, который определяется через наследование от другого класса, называется производным классом (derived class ) , илиподклассом (subclass ) . Класс, от которого производится новый класс, называетсяродительским классом (parent class ) , илисуперклассом (superclass ) .

В простейшем случае класс наследует все сущности (переменные и методы) родительского класса. Это наследование можно усложнить, введя управление доступом к сущностям родительского класса.

Это управление доступом позволяет программисту скрыть части абстрактного типа данных от клиентов. Такое управление доступом обычно есть в классах объектно-ориентированных языков. Производные классы представляют собой другой вид клиентов, которым доступ может быть либо предоставлен, либо запрещен. Чтобы это учесть, некоторые объектно-ориентированные языки включают в себя третью категорию управления доступом, часто называемую защищенной (protected), которая используется для предоставления доступа производным классам и запрещения доступа другим классам.

В дополнение к наследуемым сущностям производный класс может добавлять новые сущности и модифицировать методы. Модифицированный метод имеет то же самое имя и часто тот же самый протокол, что и метод, модификацией которого он является. Говорят, что новый метод замещает (override) наследуемую версию метода, который поэтому называется замещаемым (overriden) методом. Наиболее общее предназначение замещающего метода - выполнение операции, специфической для объектов производного класса и не свойственной для объектов родительского класса.

Разработка программы для объектно-ориентированной системы начинается с определения иерархии классов, описывающей отношения между объектами, которые войдут в программу, решающую поставленную задачу. Чем лучше эта иерархия классов соответствует проблемной части, тем более естественным будет полное решение.

Недостаток наследования как средства, облегчающего повторное использование кода, заключается в том, что оно создает зависимость между классами в иерархии наследования. Это умаляет одно из преимуществ абстрактных типов данных, заключающееся в их взаимной независимости. Конечно, не все абстрактные типы данных должны быть полностью независимыми, но в общем случае независимость абстрактных типов данных является одним из их самых сильных положительных свойств. Однако увеличение возможности повторного использования абстрактных типов данных без создания зависимостей между некоторыми из них может оказаться трудной задачей, если не совсем безнадежной.

Полиморфизм

Третьим свойством объектно-ориентированных языков программирования является вид полиморфизма, обеспечиваемый динамическим связыванием сообщений с определениями методов. Это свойство поддерживается путем разрешения определения полиморфных переменных типа родительского класса, которые также могут ссылаться на объекты любых подклассов данного класса. Родительский класс может определять метод, замещаемый в его подклассах. Операции, определяемые этими методами, похожи, но должны уточняться для каждого класса в иерархии. Когда такой метод вызывается через полиморфную переменную, этот вызов динамически связывается с методом в соответствующем классе. Одна из целей динамического связывания - обеспечить более легкое расширение программных систем при их разработке и поддержке. Такие программы можно писать для операций над объектами настраиваемых классов. Эти операции являются настраиваемыми в том смысле, что их можно применять к объектам любого класса, производного от одного и того же базового класса.

Вычисления в объектно-ориентированных языках

Все вычисления в полностью объектно-ориентированном языке выполняются с помощью передачи сообщения объекту для вызова одного из его методов. Ответом на сообщение является объект, возвращающий результат вычислений, выполненных этим методом. Выполнение программы на объектно-ориентированном языке можно описать как моделирование набора компьютеров (объектов), взаимодействующих друг с другом с помощью обмена сообщениями. Каждый объект - абстракция компьютера в том смысле, что он хранит данные и обеспечивает выполнение процессов для манипуляции этими данными. Кроме того, объекты могут передавать и получать сообщения. В сущности, это основные свойства компьютера - хранить и обрабатывать данные, а также передавать и получать сообщения.

Суть объектно-ориентированного программирования состоит в решении задач с помощью идентификации соответствующих реальных объектов и обработки, требуемой для этих объектов; и последующем моделировании этих объектов, их процессов и необходимых связей между ними.

Библиотека визуальных компонентов (Visual Component Library, VCL)

Delphi содержит большое количество классов, предназначенных для быстрой разработки приложений. Библиотека написана на Object Pascal и имеет непосредственную связь с интегрированной средой разработки приложений Delphi.

Все классы VCL расположены на определенном уровне иерархии и образуют дерево (иерархию) классов .

Знание происхождения объекта оказывает значительную помощь при его изучении, так как потомок наследует все элементы объекта-родителя. Так, если свойство Caption принадлежит классу TControl, то это свойство будет и у его потомков, например, у классов TButton и TCheckBox и у компонентов - кнопки Button и независимого переключателя CheckBox соответственно. Фрагмент иерархии классов с важнейшими классами показан на рис.

Кроме иерархии классов, большим подспорьем в изучении системы программирования являются исходные тексты модулей, которые находятся в каталоге SOURCE главного каталога Delphi.

Я не умею программировать на объектно-ориентированных языках. Не научился. После 5 лет промышленного программирования на Java я всё ещё не знаю, как создать хорошую систему в объектно-ориентированном стиле. Просто не понимаю.

Я пытался научиться, честно. Я изучал паттерны, читал код open source проектов, пытался строить в голове стройные концепции, но так и не понял принципы создания качественных объектно-ориентированных программ. Возможно кто-то другой их понял, но не я.

И вот несколько вещей, которые вызывают у меня непонимание.

Я не знаю, что такое ООП

Серьёзно. Мне сложно сформулировать основные идеи ООП. В функциональном программировании одной из основных идей является отсутствие состояния. В структурном - декомпозиция. В модульном - разделение функционала в законченные блоки. В любой из этих парадигм доминирующие принципы распространяются на 95% кода, а язык спроектирован так, чтобы поощрять их использование. Для ООП я таких правил не знаю.
  • Абстракция
  • Инкапсуляция
  • Наследование
  • Полиморфизм
Смахивает на свод правил, не так ли? Значит вот оно, те самые правила, которым нужно следовать в 95% случаев? Хмм, давайте посмотрим поближе.

Абстракция

Абстракция - это мощнейшее средство программирования. Именно то, что позволяет нам строить большие системы и поддерживать контроль над ними. Вряд ли мы когда-либо подошли бы хотя бы близко к сегодняшнему уровню программ, если бы не были вооружены таким инструментом. Однако как абстракция соотносится с ООП?

Во-первых, абстрагирование не является атрибутом исключительно ООП, да и вообще программирования. Процесс создания уровней абстракции распространяется практически на все области знаний человека. Так, мы можем делать суждения о материалах, не вдаваясь в подробности их молекулярной структуры. Или говорить о предметах, не упоминая материалы, из которых они сделаны. Или рассуждать о сложных механизмах, таких как компьютер, турбина самолёта или человеческое тело, не вспоминая отдельных деталей этих сущностей.

Во-вторых, абстракции в программировании были всегда, начиная с записей Ады Лавлейс, которую принято считать первым в истории программистом. С тех пор люди бесперерывно создавали в своих программах абстракции, зачастую имея для этого лишь простейшие средства. Так, Абельсон и Сассман в своей небезызвестной книге описывают, как создать систему решения уравнений с поддержкой комплексных чисел и даже полиномов, имея на вооружении только процедуры и связные списки. Так какие же дополнительные средства абстрагирования несёт в себе ООП? Понятия не имею. Выделение кода в подпрограммы? Это умеет любой высокоуровневый язык. Объединение подпрограмм в одном месте? Для этого достаточно модулей. Типизация? Она была задолго до ООП. Пример с системой решения уравнений хорошо показывает, что построение уровней абстракции не столько зависит от средств языка, сколько от способностей программиста.

Инкапсуляция

Главный козырь инкапсуляции в сокрытии реализации. Клиентский код видит только интерфейс, и только на него может рассчитывать. Это развязывает руки разработчикам, которые могут решить изменить реализацию. И это действительно круто. Но вопрос опять же в том, причём тут ООП? Все вышеперечисленные парадигмы подразумевают сокрытие реализации. Программируя на C вы выделяете интерфейс в header-файлы, Oberon позволяет делать поля и методы локальными для модуля, наконец, абстракция во многих языках строится просто посредствам подпрограмм, которые также инкапсулируют реализацию. Более того, объектно-ориентированные языки сами зачастую нарушают правило инкапсуляции , предоставляя доступ к данным через специальные методы - getters и setters в Java, properties в C# и т.д. (В комментариях выяснили, что некоторые объекты в языках программирования не являются объектами с точки зрения ООП: data transfer objects отвечают исключительно за перенос данных, и поэтому не являются полноценными сущностями ООП, и, следовательно, для них нет необходимости сохранять инкапсуляцию. С другой стороны, методы доступа лучше сохранять для поддержания гибкости архитектуры. Вот так всё непросто.) Более того, некоторые объектно-ориентированные языки, такие как Python, вообще не пытаются что-то скрыть, а расчитывают исключительно на разумность разработчиков, использующих этот код.

Наследование

Наследование - это одна из немногих новых вещей, которые действительно вышли на сцену благодаря ООП. Нет, объектно-ориентированные языки не создали новую идею - наследование вполне можно реализовать и в любой другой парадигме - однако ООП впервые вывело эту концепцию на уровень самого языка. Очевидны и плюсы наследования: когда вас почти устраивает какой-то класс, вы можете создать потомка и переопределить какую-то часть его функциональности. В языках, поддерживающих множественное наследование, таких как C++ или Scala (в последней - за счёт traits), появляется ещё один вариант использования - mixins, небольшие классы, позволяющие «примешивать» функциональность к новому классу, не копируя код.

Значит, вот оно - то, что выделяет ООП как парадигму среди других? Хмм… если так, то почему мы так редко используем его в реальном коде? Помните, я говорил про 95% кода, подчиняющихся правилам доминирующей парадигмы? Я ведь не шутил. В функцинальном программировании не меньше 95% кода использует неизменяемые данные и функции без side-эффектов. В модульном практически весь код логично расфасован по модулям. Преверженцы структурного программирования, следуя заветам Дейкстры, стараются разбивать все части программы на небольшие части. Наследование используется гораздо реже. Может быть в 10% кода, может быть в 50%, в отдельных случаях (например, при наследовании от классов фреймворка) - в 70%, но не больше. Потому что в большинстве ситуаций это просто не нужно .

Более того, наследование опасно для хорошего дизайна. Настолько опасно, что Банда Четырех (казалось бы, проповедники ООП) в своей книге рекомендуют при возможности заменять его на делегирование. Наследование в том виде, в котором оно существует в популярных ныне языках ведёт к хрупкому дизайну. Унаследовавшись от одного предка, класс уже не может наследоваться от других. Изменение предка так же становится опасным. Существуют, конечно, модификаторы private/protected, но и они требуют неслабых экстрасенсорных способностей для угадывания, как класс может измениться и как его может использовать клиентский код. Наследование настолько опасно и неудобно, что крупные фреймворки (такие как Spring и EJB в Java) отказываются от них, переходя на другие, не объектно-ориентированные средства (например, метапрограммирование). Последствия настолько непредсказуемы, что некоторые библиотеки (такие как Guava) прописывает своим классам модификаторы, запрещающие наследование, а в новом языке Go было решено вообще отказаться от иерархии наследования.

Полиморфизм

Пожалуй, полиморфизм - это лучшее, что есть в объектно-ориентированном программировании. Благодаря полиморфизму объект типа Person при выводе выглядит как «Шандоркин Адам Имполитович», а объект типа Point - как "". Именно он позволяет написать «Mat1 * Mat2» и получить произведение матриц, аналогично произведению обычных чисел. Без него не получилось бы и считывать данные из входного потока, не заботясь о том, приходят они из сети, файла или строки в памяти. Везде, где есть интерфейсы, подразумевается и полиморфизм.

Мне правда нравится полиморфизм. Поэтому я даже не стану говорить о его проблемах в мейнстримовых языках. Я также промолчу про узость подхода диспетчеризации только по типу, и про то, как это могло бы быть сделано . В большинстве случаев он работает как надо, а это уже неплохо. Вопрос в другом: является ли полиморфизм тем самым принципом, отличающим ООП от других парадигм? Если бы вы спросили меня (а раз уж вы читаете этот текст, значит, можно считать, что спросили), я бы ответил «нет». И причина всё в тех же процентах использования в коде. Возможно, интерфейсы и полиморфные методы встречаются немного чаще наследования. Но сравните количество строк кода, занимаемое ими, с количеством строк, написанных в обычном процедурном стиле - последних всегда больше. Глядя на языки, поощряющие такой стиль программирования, я не могу назвать их полиморфными. Языки с поддержкой полиморфизма - да, так нормально. Но не полиморфные языки.

(Впрочем, это моё мнение. Вы всегда можете не согласиться.)

Итак, абстракция, инкапсуляция, наследование и полиморфизм - всё это есть в ООП, но ничто из этого не является его неотъемлемым атрибутом. Тогда что такое ООП? Есть мнение, что суть объектно-ориентированного программирования лежит в, собственно, объектах (звучит вполне логично) и классах. Именно идея объединения кода и данных, а также мысль о том, что объекты в программе отражают сущности реального мира. К этому мнению мы ещё вернёмся, но для начала расставим некоторые точки над i.

Чьё ООП круче?

Из предыдущей части видно, что языки программирования могут сильно отличаться по способу реализации объектно-ориентированного программирования. Если взять совокупность всех реализаций ООП во всех языках, то вероятнее всего вы не найдёте вообще ни одной общей для всех черты. Чтобы как-то ограничить этот зоопарк и внести ясность в рассуждения, я остановлюсь только одной группе - чисто объекто-ориентированные языки, а именно Java и C#. Термин «чисто объектно-ориентированный» в данном случае означает, что язык не поддерживает другие парадигмы или реализует их через всё то же ООП. Python или Ruby, например, не буду являться чистыми, т.к. вы вполне можете написать полноценную программу на них без единого объявления класса.

Чтобы лучше понять суть ООП в Java и C#, пробежимся по примерам реализации этой парадигмы в других языках.

Smalltalk. В отличие от своих современных коллег, этот язык имел динамическую типизацию и использовал message-passing style для реализации ООП. Вместо вызовов методов объекты посылали друг другу сообщения, а если получатель не мог обработать то, что пришло, он просто пересылал сообщение кому-то ещё.

Common Lisp. Изначально CL придерживался такой же парадигмы. Затем разработчики решили, что писать `(send obj "some-message)` - это слишком долго, и преобразовали нотацию в вызов метода - `(some-method obj)`. На сегодняшний день Common Lisp имеет развитую систему объектно-ориентированного программирования (CLOS) с поддержкой множественного наследования, мультиметодов и метаклассов. Отличительной чертой является то, что ООП в CL крутится не вокруг объектов, а вокруг обобщённых функций.

Clojure. Clojure имеет целых 2 системы объектно-ориентированного программирования - одну, унаследованную от Java, и вторую, основанную на мультиметодах и более похожую на CLOS.

R. Этот язык для статистического анализа данных также имеет 2 системы объектно-ориентированного программирования - S3 и S4. Обе унаследованы от языка S (что не удивительно, учитывая, что R - это open source реализация коммерческого S). S4 по большей части соотвествует реализациям ООП в современных мейнстримовых языках. S3 является более легковесным вариантом, элементарно реализуемым средствами самого языка: создаётся одна общая функция, диспетчеризирующая запросы по атрибуту «class» полученного объекта.

JavaScript. По идеологии похож на Smalltalk, хотя и использует другой синтаксис. Вместо наследования использует прототипирование: если искомого свойства или вызванного метода в самом объекте нет, то запрос передаётся объекту-прототипу (свойство prototype всех объектов JavaScript). Интересным является факт, что поведение всех объектов класса можно поменять, заменив один из методов прототипа (очень красиво, например, выглядит добавление метода `.toBASE64` для класса строки).

Python. В целом придерживается той же концепции, что и мейнcтримовые языки, но кроме этого поддерживает передачу поиска атрибута другому объекту, как в JavaScript или Smalltalk.

Haskell. В Haskell вообще нет состояния, а значит и объектов в обычном понимании. Тем не менее, своеобразное ООП там всё-таки есть: типы данных (types) могут принадлежать одному или более классам типов (type classes). Например, практически все типы в Haskell состоят в классе Eq (отвечает за операции сравнения 2-х объектов), а все числа дополнительно в классах Num (операции над числами) и Ord (операции <, <=, >=, >). В менстримовых языках типам соответствуют классы (данных), а классам типов - интерфейсы.

Stateful или Stateless?

Но вернёмся к более распространённым системам объектно-ориентированного программирования. Чего я никогда не мог понять, так это отношения объектов с внутренним состоянием. До изучения ООП всё было просто и прозрачно: есть структуры, хранящие несколько связанных данных, есть процедуры (функции), их обрабатывающие. выгулять(собаку), снятьс(аккаунт, сумма). Потом пришли объекты, и это было тоже ничего (хотя читать программы стало гораздо сложней - моя собака выгуливала [кого?], а аккаунт снимал деньги [откуда?]). Затем я узнал про сокрытие данных. Я всё ещё мог выгулять собаку, но вот посмотреть состав её пищи уже не мог. Пища не выполняла никаких действий (наверное, можно было написать, что пища.съесть(собака), но я всё-таки предпочитаю, чтобы моя собака ела пищу, а не наоборот). Пища - это просто данные, а мне (и моей собаке) нужно было просто получить к ним доступ. Всё просто . Но в рамки парадигмы влезть было уже невозможно, как в старые джинсы конца 90-х.

Ну ладно, у нас есть методы доступа к данным. Пойдём на этот маленький самообман и притворимся, что данные у нас действительно скрыты. Зато я теперь знаю, что объекты - это в первую очередь данные, а потом уже, возможно, методы их обрабатывающие. Я понял, как писать программы, к чему нужно стремиться при проектировании.

Не успел я насладиться просветлением, как увидил в интернетах слово stateless (готов поклясться, оно было окружено сиянием, а над буквами t и l висел нимб). Короткое изучение литературы открыло чудесный мир прозрачного потока управления и простой многопоточности без необходимости отслеживать согласованность объекта. Конечно, мне сразу захотелось прикоснуться к этому чудесному миру. Однако это означало полный отказ от любых правил - теперь было непонятно, следует ли собаке самой себя выгуливать, или для этого нужен специальный ВыгулМенеджер; нужен ли аккаунт, или со всей работой справится Банк, а если так, то должен он списывать деньги статически или динамически и т.д. Количество вариантов использования возрасло экспоненциально, и все варианты в будущем могли привести к необходимости серьёзного рефакторинга.

Я до сих пор не знаю, когда объект следует сделать stateless, когда stateful, а когда просто контейнером данных. Иногда это очевидно, но чаще всего нет.

Типизация: статическая или динамическая?

Еща одна вещь, с которой я не могу определиться относительно таких языков, как C# и Java, это являются они статически или динамически типизированными. Наверное большинство людей воскликнет «Что за глупость! Конечно статически типизированными! Типы проверяются во время компиляции!». Но действительно ли всё так просто? Правда ли, что программист, прописывая в параметрах метода тип X может быть уверен, что в него всегда будут передаваться объекты именно типа X? Верно - не может, т.к. в метод X можно будет передать параметр типа X или его наследника . Казалось бы, ну и что? Наследники класса X всё равно будут иметь те же методы, что и X. Методы методами, а вот логика работы может оказаться совершенно другой. Самый распространённый случай, это когда дочерний класс оказывается соптимизированным под другие нужды, чем X, а наш метод может рассчитывать именно на ту оптимизацию (если вам такой сценарий кажется нереалистичным, попробуйте написать плагин к какой-нибудь развитой open source библиотеке - либо вы потратите несколько недель на разбор архитектуры и алгоритмов библиотеки, либо будете просто наугад вызывать методы с подходящей сигнатурой). В итоге программа работает, однако скорость работы падает на порядок. Хотя с точки зрения компилятора всё корректно. Показательно, что Scala, которую называют наследницей Java, во многих местах по умолчанию разрешает передавать только аргументы именно указанного типа, хотя это поведение и можно изменить.

Другая проблема - это значение null, которое может быть передано практически вместо любого объекта в Java и вместо любого Nullable объекта в C#. null принадлежит сразу всем типам, и в то же время не принадлежит ни одному. null не имеет ни полей, ни методов, поэтому любое обращение к нему (кроме проверки на null) приводит к ошибке. Вроде бы все к этому привыкли, но для сравнения Haskell (да и та же Scala) заставлют использовать специальные типы (Maybe в Haskell, Option в Scala) для обёртки функций, которые в других языках могли бы вернуть null. В итоге про Haskell часто говорят «скомпилировать программу на нём сложно, но если всё-таки получилось, значит скорее всего она работает корректно».

С другой стороны, мейнстримовые языки, очевидно, не являются динамически типизированными, а значит не обладают такими свойствами, как простота интерфейсов и гибкость процедур. В итоге писать в стиле Python или Lisp также становится невозможным.

Какая разница, как называется такая типизация, если все правила всё равно известны? Разница в том, с какой стороны подходить к проектированию архитектуры. Существует давний спор, как строить систему: делать много типов и мало функций, или мало типов и много функций? Первый подход активно используется в Haskell, второй в Lisp. В современных объектно-ориентированных языках используется что-то среднее. Я не хочу сказать, что это плохо - наверное у него есть свои плюсы (в конце концов не стоит забывать, что за Java и C# стоят мультиязыковые платформы), но каждый раз приступая к новому проекту я задумываюсь, с чего начать проектирования - с типов или с функционала.

И ещё...

Я не знаю, как моделировать задачу. Считается, что ООП позволяет отображать в программе объекты реального мира. Однако в реальности у меня есть собака (с двумя ушами, четырмя лапами и ошейником) и счёт в банке (с менеджером, клерками и обеденным перерывом), а в программе - ВыгулМенеджер, СчётФабрика… ну, вы поняли. И дело не в том, что в программе есть вспомогательные классы, не отражающие объекты реального мира. Дело в том, что поток управления изменяется . ВыгулМенеджер лишает меня удовольствия от прогулки с собакой, а деньги я получаю от бездушного БанкСчёта (эй, где та милая девушка, у которой я менял деньги на прошлой неделе?).

Может быть я сноб, но мне было гораздо приятней, когда данные в компьютере были просто данными, даже если описывали мою собаку или счёт в банке. С данными я мог сделать то, что удобно, без оглядки на реальный мир.

Я также не знаю, как правильно декомпозировать функционал. В Python или C++, если мне нужна была маленькая функция для преобразования строки в число, я просто писал её в конце файла. В Java или C# я вынужден выносить её в отдельный класс StringUtils. В недо-ОО-языках я мог объявить ad hoc обёртку для возврата двух значений из функции (снятую сумму и остаток на счету). В ООП языках мне придётся создать полноценный класс РезультатТранзакции. И для нового человека на проекте (или даже меня самого через неделю) этот класс будет выглядеть точно таким же важным и фундаментальным в архитектуре системы. 150 файлов, и все одинаково важные и фундаментальные - о да, прозрачная архитектура, прекрасные уровни абстракции.

Я не умею писать эффективные программы. Эффективные программы используют мало памяти - иначе сборщик мусора будет постоянно тормозить выполнение. Но чтобы совершить простейшую операцию в объектно-ориентированных языках приходится создавать дюжину объектов. Чтобы сделать один HTTP запрос мне нужно создать объект типа URL, затем объект типа HttpConnection, затем объект типа Request… ну, вы поняли. В процедурном программировании я бы просто вызвал несколько процедур, передав им созданную на стеке структуру. Скорее всего, в памяти был бы создан всего один объект - для хранения результата. В ООП мне приходится засорять память постоянно.

Возможно, ООП - это действительно красивая и элегантная парадигма. Возможно, я просто недостаточно умён, чтобы понять её. Наверное, есть кто-то, кто может создать действительно красивую программу на объектно-ориентированном языке. Ну что ж, мне остаётся только позавидовать им.