Сайт о телевидении

Сайт о телевидении

» » Ликбез: методы ресайза изображений. Описание Image Processing Toolbox

Ликбез: методы ресайза изображений. Описание Image Processing Toolbox

Теперь для интерполяции множеств можно использовать формулу (1). Она примет вид:

Чтобы осуществить построение переходного множества при некотором значении t ,нужно сначала построить множества и , далее найти их сумму.

Пример 4. Пусть – круг радиуса с центром в точке = (0;0), – круг радиуса с центром в некоторой точке . Тогда интерполяционное множество () – это круг с центром в точке , расположенной на отрезке / /, радиуса (рис.9).

Рис.9. Интерполяция двух кругов

Действительно, зафиксировав некоторое значение t (), построим множества и . Окажемся в условиях примера 2. Переписав его результат в текущих обозначениях, получаем нужное утверждение. Видим, что в этом случае переходные изображения (круги) примыкают к общим касательным, проведённым к двум исходным кругам, т.е. результаты интерполяции очень хорошо согласуются с нашими наглядными представлениями о переходных изображениях.

Замечание. Из свойств арифметических операций над множествами следует, что аналогичная картина получится при интерполяции двух любых кругов. Действительно, круг радиуса с центром в произвольной точке может быть представлен в виде суммы круга радиуса с центром в точке (0;0) и множества, состоящего из одной точки (равносильно вектора ): = + . Тогда интерполяционная формула даёт:

= = + .

Остаётся заметить, что семейство векторов , , является переходным от вектора к нулевому вектору.

Таким образом, для удобства осуществления интерполяции (выполнения арифметических операций) можно всегда брать множества (фигуры), примыкающие к началу координат, поскольку произвольные заданные множества сводятся к такой ситуации сдвигом на определённые векторы. Эти векторы затем нужно тоже проинтерполировать (с тем же значением параметра t ).

Среди важных особенностей метода отметим факт, что при интерполяции двух многоугольников, вершины интерполяционного многоугольника получаются интерполяцией (с тем же значением t ) вершин исходных многоугольников. Это следует из того, что арифметические операции над множествами определяются через арифметические операции над отдельными их векторами. Получить «экстремальный» вектор в переходном множестве можно лишь, складывая соответствующие «экстремальные» векторы в исходных множествах.

Пример 5. Пусть – квадрат 2 x 2 с правой нижней вершиной в начале координат, – прямоугольник 4 x 5 с левой нижней вершиной в начале координат (стороны обеих фигур параллельны осям координат) (рис. 10). Построим интерполяционное множество .

1 способ. Воспользуемся формулой (2) при . Построив множества
и (их границы на рисунке 10 проведены пунктирными линиями), находим их сумму. Получим прямоугольник .

Рис.10. Интерполяция прямоугольников на основе арифметических операций

2 способ. Сопоставим соответствующие вершины исходных прямоугольников (в данном случае их соответствие очевидно, на рис. 11 оно показано отрезками); проинтерполировав каждую из этих пар точек (векторов) с заданным , получим вершины интерполяционного множества (прямоугольника).

Рис.11. Интерполяция прямоугольников путём интерполяции вершин

Снова обсуждаемый метод интерполяции даёт такой результат, какой мы ожидали бы увидеть.

Пример 6. Пусть – прямоугольные равнобедренные треугольники с гипотенузой h =100 и общей вершиной в начале координат. Тогда в результате интерполяции по Минковскому при получим шестиугольник (интерполяционное множество ) (рис. 12).

Рис.12. Интерполяция симметричных треугольников

Вычисления по интерполяционной формуле (2) сразу приводят к указанному итогу. В отличие от предыдущего примера, в случае данных треугольников сопоставление вершин, осуществляемое методом Минковского, как и сам результат, оказывается несколько неожиданным. Действительно, попарная интерполяция «верхних» и «нижних» вершин треугольников при даёт соответственно «верхнюю» и «нижнюю» вершины шестиугольника. А вот вершины прямых углов треугольников «интерполируются» с каждой из «верхней» и «нижней» вершин другого треугольника.

Результат примера 6, конечно, оставляет вопросы. Однако если вдуматься, то вряд ли мы сможем предложить «логичный» вариант переходного множества. Изначально предполагалось интерполировать «близкие», сходные изображения. См. также ниже замечание об особенностях интерполяции противоположных векторов.

Ещё более удивителен следующий случай.

Пример 7. Пусть – отрезки на осях координат: ,

. Тогда – квадрат со стороной единица, нижние вершины которого расположены в точках (1;0) и (2;0) (рис. 13).

Рис.13. Интерполяция отрезков

Множества и представляют собой соответственно отрезки и . Складывая их /прибавляя к каждой точке (вектору) отрезка отрезок (всевозможные векторы из него)/, получаем квадрат. В условиях примера 7 по наглядным представлениям переходным множеством, очевидно, должен бы быть отрезок, но особенности метода интерполяции приводят к прямоугольнику.

Анализируя разобранные примеры, можно увидеть, что алгоритм Минковского даёт блестящие результаты в случаях, когда:

1) ,

2) получено из параллельным переносом,

3) Когда пункты 1 и 2 выполняются одновременно.

В других случаях работа алгоритма может быть неудовлетворительной. В частности, когда множества и получаются поворотом друг из друга. Корни такого положения вещей кроются в самом подходе: уже для векторов, между которыми значительный угол, результат интерполяции получается плохой (рис. 14).

Рис.14. Интерполяция векторов, образующих большой угол

Важным моментом в представленном методе является то, что на его «фундаменте» можно строить новые, более совершенные алгоритмы. Они имеют важный прикладной характер и активно используются в современной технике.

.

С этим связаны дополнительные ограничения на применение арифметических операций над множествами в алгоритмах.

Тем не менее, если использовать только положительные числа, всё выполняется. Такая структура в математике называется «конусом». Т.е. изображения с заданными на них операциями по Минковскому образуют «конус».

Установка свойств отображения

В приложении Image Processing Toolbox существует возможность настройки установок, которые контролируют некоторые свойства функций отображения изображений imshow и imtool. Например, использование установок приложения позволяет описать коэффициент увеличения, который применяется при выводе изображений с помощью функций imtool и imshow.

В рамках данного вопроса рассмотрим

  • Список установок, которые поддерживаются приложением.
  • Описание процесса получения текущих значений установок с использованием функции iptgetpref.
  • Описание процесса установки текущих значений установок с использованием функции iptsetpref.

Установки приложения

Приложение Image Processing Toolbox поддерживает несколько установок, которые влияют на способ отображения изображений с помощью функций imshow и imtool. В таблице приведен список установок и их короткое описание. Для получения более детальной информации относительно установок приложения и их значений см. описание функции iptsetpref.

Установки приложения Описание
ImshowBorder Этот параметр может принимать два значения - "loose" и "tight". Если параметр ImshowBorder принимает значение "loose", то изображение будет отображаться функцией imshow с отступом от края окна figure. Таким образом, в окне остается место для дополнительных надписей. Используется по умолчанию. Если параметр ImshowBorder принимает значение "tight", то изображение будет отображаться функцией imshow так, чтобы оно занимало все окно figure.
ImshowAxesVisible Этот параметр может принимать два значения - "on" и "off". Если параметр ImshowAxesVisible принимает значение "on", то при выводе изображения функцией imshow в окне figure будут дополнительно выведены оси координат. Если же параметр ImshowAxesVisible принимает значение "off", то оси координат выводиться не будут. Значение параметра "off" устанавливается по умолчанию.
ImshowInitialMagnification Управляет коэффициентом увеличения, который используется функцией imshow при выводе изображения.
ImtoolInitialMagnification Контролирует коэффициент увеличения в приложении Image Tool, которое используется для масштабирования изображений.

Получение значений установок приложения

Для определения текущих значений используется функция iptgetpref. Рассмотрим пример использования функции iptgetpref для определения значения свойства imtoolInitialMagnification.

Iptgetpref("ImtoolInitialMagnification") ans = 100

Для более детальной информации см. описание функции iptgetpref.

Установка значений свойств приложения

Для установки значений свойств приложения используется функция iptsetpref. Рассмотрим пример использования функции iptsetpref для установки свойств отображения, которые приводят к тому, что при вызове функции imshow будет изменятся размер окна отображения в соответствии с размерами отображаемого изображения и значением свойства "ImshowBorder".

Iptsetpref("ImshowBorder", "tight");

Для более детальной информации см. описание функции iptsetpref.

Пространственные преобразования

Рассмотрим основные функции пространственных преобразований, которые реализованы в приложении Image Processing Toolbox.

Терминология Описание основных терминов, которые используются при обработке изображений
Интерполяция Пространственный (или временной) прогноз значений неизвестных значений пикселей между истинными значениями пикселей.
Изменение размеров изображения с помощью функции imresize.
Вращение изображений Использование функции imrotate для поворота изображений.
Вырезание изображения Использование функции imcrop для вырезания прямоугольной части изображения.
Описание основных свойств пространственных преобразований в приложении.

Интерполяция

Как уже отмечалось выше, интерполяция - это пространственный (или временной) прогноз значений неизвестных значений пикселей между истинными значениями пикселей. Например, для изменения размеров изображений используется один из методов интерполяции. Методы двумерной интерполяции используются также при повороте изображений (функция imrotate) и при анализе изображений с помощью функции improfile.

Методы интерполяции

Приложение Image Processing Toolbox использует три встроенных алгоритма интерполяции:

  • Интерполяция по ближайшему соседу - используется значение ближайшего пикселя.
  • Билинейная интерполяция - используется интерполяция по билинейной поверхности.
  • Бикубическая интерполяция - используется интерполяция по бикубической поверхности.

Типы изображений

В функциях, которые используют интерполяцию, в качестве аргумента указывается название метода интерполяции. Для большинства функций это интерполяция с использованием значений ближайших пикселей. Этот метод дает приемлемые результаты для всех типов изображений и является единственным методом, который используется для индексных изображений. Для яркостных и RGB изображений лучше использовать билинейную или бикубическую интерполяцию, поскольку, в большинстве случаев, эти методы обеспечивают лучший результат, чем при использовании интерполяции с использованием значения ближайших пикселей.

Для RGB изображений интерполяция выполняется отдельно для красной, зеленой и синей составляющих. В принципе, это не совсем корректно, поскольку приводит к нарушению цветового баланса.

Для бинарных изображений интерполяция даст эффект, если проводить ее осознанно. При использовании билинейной или бикубической интерполяции вычисленные значения пикселей на результирующем изображении не всегда будут равны 0 или 1. Результат обработки также зависит от формата исходного изображения:

  • Если данные исходного изображения представлены в формате double, то результирующее изображение будет полутоновым и представленным в формате double. Таким образом, результирующее изображение не будет бинарным, поскольку содержит значения из диапазона между 0 и 1.
  • Если исходное изображение представлено в формате uint8, то результирующее изображение будет бинарным и представленным в формате uint8. Значения интерполирующих пикселей будут округлены к 0 и 1, а результирующее изображение будет представлено в формате uint8.

При использовании интерполяции с использованием значений ближайших пикселей результат будет всегда бинарным, так как значения интерполируемых пикселей берутся из исходного изображения.

Изменение размеров изображения

Для изменения размеров изображения используется функция imresize. При использовании функции imresize необходимо

  • Описать размер результирующего изображения.
  • Описать выбранный метод интерполяции.
  • Описать фильтр препарирования изображений.

При использовании функции imresize размер результирующего изображения можно указать двумя путями:

  • через описание коэффициента увеличения.
  • через описание размеров результирующего изображения.

Использование коэффициента увеличения

Для увеличения изображения необходимо, чтобы коэффициент увеличения был больше 1. Для уменьшения изображения необходимо, чтобы коэффициент увеличения находился в диапазоне между 0 и 1. Например, с помощью команды, которая написана ниже, реализуется увеличение изображения I в 1.25 раз.

I = imread("circuit.tif"); J = imresize(I,1.25); imshow(I) figure, imshow(J)

Описание размера результирующего изображения

Существует возможность описать размер результирующего изображения в виде вектора, который содержит два числа - количество строк и столбцов результирующего изображения. Рассмотрим пример создания результирующего изображения Y, которое состоит из 100 строк и 150 столбцов.

Y = imresize(X,)

Примечание. Если при описании размеров результирующего изображения не сохранены пропорции соотношения сторон исходного изображения, то результирующее изображение будет искажено.

Описание метода интерполяции

По умолчанию функция imresize для формирования результирующего изображения использует метод интерполяции на основе значений ближайших пикселей. Однако можно задать также другой метод интерполяции. В таблице приведен список опций, которыми задаются методы интерполяции в функции imresize.

Рассмотрим пример, когда функция imresize использует билинейную интерполяцию.

Y = imresize(X,,"bilinear")

Использование фильтров препарирования изображений

Изменение размеров изображения может привести к возникновению артефактов на изображении, что отражается на его качестве.

Поэтому при уменьшении изображений с использованием билинейной или бикубической интерполяции, функция imresize автоматически использует низкочастотный фильтр для уменьшения артефактов на результирующем изображении.

Функция imresize может не применять низкочастотный фильтр, если используется интерполяция по соседним элементам. Интерполяция по соседним элементам используется, в основном, для индексных изображений, а низкочастотная фильтрация для индексных изображений не применяется.

Также можно создать свой фильтр для проведения низкочастотной фильтрации. Для более детальной информации см. описание функции imresize.

Поворот изображений

Для поворота изображений используется функция imrotate. При использовании функции imrotate нужно указать два основных аргумента:

  1. изображение, которое нужно повернуть;
  2. угол поворота.

Угол поворота можно описать в градусах. Если задать положительное значение, то функция imrotate будет вращать изображение против часовой стрелки, если задать отрицательное значение, то функция imrotate буде вращать изображение по часовой стрелке. Рассмотрим пример поворота изображения I на 35 градусов против часовой стрелки.

J = imrotate(I,35);

В качестве необязательных аргументов в функции imrotate также можно описать

  1. метод интерполяции;
  2. размер результирующего изображения.

Описание метода интерполяции

По умолчанию, функция imrotate использует интерполяцию по соседним элементам для определения значений пикселей результирующего изображения. Также пользователь может использовать другой метод интерполяции. В таблице подан список поддерживаемых интерполяционных методов.

Рассмотрим пример поворота изображения на 35° против часовой стрелки с использованием билинейной интерполяции.

I = imread("circuit.tif"); J = imrotate(I,35,"bilinear"); imshow(I) figure, imshow(J)

Описание размера результирующего изображения

По умолчанию, функция imrotate создает результирующее больше, так чтобы поместить исходное изображение, которое размещено под указанным углом. Пикселям, которые находятся за пределами изображения, устанавливается значение 0 и они являются фоном результирующего изображения. Если в функции imrotate в качестве аргумента указать опцию "crop", то результирующее изображение будет обрезано до размеров исходного изображения. Для более детальной информации см. описание функции imrotate.

Вырезание изображений

Для выделения прямоугольной части изображения используется функция imcrop. При использовании функции imcrop необходимо указать два основных аргумента:

  1. исходное изображение;
  2. координаты прямоугольника, которым определяется площадь вырезания.

Существует также другой путь использования функции imcrop. Он заключается в том, что не всегда нужно указывать прямоугольник, который вырезается на изображении. Этот прямоугольник можно задать интерактивно. В этом случае курсор изменяет свой вид и принимает форму крестика. Нажатие на левую клавишу мыши свидетельствует о выборе одного угла прямоугольника, а место курсора в момент отпуска клавиши мыши свидетельствует о выборе другого угла. Таким образом поверх изображения будет наложен прямоугольник, который определяет вырезаемую часть изображения.

Imshow circuit.tif I = imcrop; imshow(I);

Выполнение основных пространственных преобразований

Для выполнения основных двумерных пространственных преобразований используется функция imtransform.

При использовании функции imtransform необходимо указать два основных аргумента:

  • исходное изображение;
  • структуру пространственных преобразований (TFORM), которая определяет тип нужных преобразований.

Описание типа преобразований

При описании типа преобразований необходимо использовать структуру TFORM. Существует два пути использования TFORM:

  • использование функции maketform;
  • использование функции cp2tform.

Использование maketform

При использовании функции maketform необходимо описать тип нужных преобразований. В таблице приведен список типов преобразований в алфавитном порядке, который поддерживается функцией maketform.

Тип преобразования Описание
"affine" Преобразования, которые включают сдвиг, поворот, масштабирование и другие похожие функции преобразования изображений. При этом прямые линии остаются прямыми, параллельные остаются параллельными, а прямоугольник может превратиться в параллелограмм.
"box" Отдельный случай аффинных преобразований, когда каждая размерность масштабируется независимо.
"composite" Структура двух или более преобразований.
"custom" Преобразование, которое определено пользователем и вызывается с помощью функции imtransform.
"projective" При этом типе преобразований прямые линии остаются прямыми, а параллельные сходятся в одной точке. Эта точка может находиться как в пределах изображения, так и за его пределами.

Использование cp2tform

При использовании функции cp2tform создается TFORM, когда необходимо выполнять такие преобразования, как подгонка данных, например, при полиномиальных преобразованиях.

Примечание. При использовании функции imtransform структура TFORM выполняет двумерные пространственные преобразования. Если изображение содержит больше, чем две размерности, например, RGB изображения, то двумерные преобразования автоматически применяются ко всем двумерным составляющим. Для определения n-мерных преобразований используется функция tformarray.

Выполнение преобразований

После определения типа преобразований в структуре TFORM, существует возможность их выполнения путем вызова функции imtransform.

Рассмотрим пример использования функции imtransform для выполнения проективных преобразований с изображением шахматной доски.

I = checkerboard(20,1,1); figure; imshow(I) T = maketform("projective",,... ); R = makeresampler("cubic","circular"); K = imtransform(I,T,R,"Size",,"XYScale",1); figure, imshow(K)

Различные опции функции imtransform контролируют разные аспекты преобразований. Например, как видно из предыдущего преобразования, отдельные установки должны контролировать количество и размещение копий исходного изображения на результирующем изображении. Также контролируется размер результирующего изображения. В приложении Image Processing Toolbox есть достаточно много примеров с использованием функции imtransform и других похожих функций, которые выполняют различные типы пространственных преобразований.

Линейная фильтрация и проектирование фильтров

Приложение Image Processing Toolbox содержит некоторое число функций, которые проектируют и реализуют двумерную линейную фильтрацию данных изображения. Рассмотри эти вопросы в таком порядке:

Рассмотрим еще некоторые термины, которые также буду в дальнейшем применяться при рассмотрении материала.

Термин Описание
Convolution (свертка) Операция над локальной окрестностью, где каждый результирующий пиксель представляет собой взвешенную сумму исходных пикселей. Вес определяется ядром свертки. С помощью операции свертки можно реализовать такие методы обработки изображений как сглаживание, повышение резкости и усиление границ объектов изображения.
convolution kernel (ядро свертки) Матрица весов, которая используется при выполнении свертки.
Correlation (корреляция) Операция над локальной окрестностью, где каждый результирующий пиксель представляет собой взвешенную сумму пикселей локальной окрестности. Весы определяются ядром корреляции. Понятие корреляции очень тесно связано с понятием свертки.
correlation kernel (ядро корреляции) Для реализации функции корреляции используется весовая функция. Ядра корреляции можно получить с помощью функции проектирования фильтров в Image Processing Toolbox. Ядра корреляции представляют собой ядро свертки, которое повернуто на 180 градусов.
FIR filter (фильтр с конечной импульсной характеристикой, КИХ-фильтр) В приложении существует ряд функций для расчета коэффициентов цифрового КИХ фильтра, в частности, методом Ремеза. Особенностью их использования является то, что исходные данные задаются в виде желаемой АЧХ произвольной сложности.
frequency response (частотная характеристика или частотный отклик) Математическая функция, с помощью которой можно оценивать работу фильтра на различных частотах.
neighborhood operation (операция с использованием значений соседних элементов) Операция, в результате которой значение каждого пикселя вычисляется на основе значений окрестных пикселей. Свертка, методы морфологической обработки и медианная фильтрация являются примерами операций с использованием соседних пикселей.
window method (локальные методы обработки) Методы обработки, при которых учитываются локальные особенности изображения.

Линейная фильтрация

Фильтрация представляет собой технологию модификации или улучшения изображения. Например, существует большое количество фильтров для усиления некоторых особенностей изображения или их удаления. Речь может идти о подчеркивании границ, выделении областей по некоторым признакам (например, цветовым) и т.п.

Как уже отмечалось ранее, существует ряд методов, в которых значения пикселей обработанного изображения вычисляются на основании значений окрестных пикселей. Разница между этими методами состоит в том, каким образом учитываются значения соседних пикселей. Отметим, что на основании значений соседних пикселей можно говорить об особенностях локальных окрестностей изображения.

Линейная фильтрация представляет собой такой вид обработки, при которой значения пикселей обработанного изображения формируются в результате линейных операций над значениями пикселей окрестности исходного изображения.

Поскольку этот вид фильтрации довольно часто применяется при обработке изображений, рассмотрим некоторые вопросы линейной фильтрации более детально, в частности

  • Фильтрация с использованием convolution и correlation.
  • Выполнение фильтрации с использованием функции imfilter и др.

Свертка

Линейная фильтрация изображений может быть реализована с помощью так называемой операции свертки. При реализации этой операции значения результирующих пикселей вычисляются как взвешенная сумма пикселей исходного изображения. Матрица весов называется ядром свертки, она известна еще как фильтр.

Рассмотрим пример. Пусть изображение представляет собой набор пикселей со значениями, представленными в виде матрицы

A =

а ядро свертки представлено таким образом

H =

Рассмотрим пример вычисления результирующего пикселя с координатами (2,4). Для этого необходимо выполнить следующие шаги:

  1. Развернуть ядро свертки на 180 градусов относительно центрального элемента.
  2. Умножить каждое значение веса в матрице свертки на соответствующее значение пикселя в матрице A.
  3. Просуммировать результат умножения.


Корреляция

Операция корреляции очень похожа на операцию свертки в плане реализации. При вычислении корреляции значение результирующего пикселя представляет собой взвешенную сумму окрестных пикселей. Разница состоит в том, что матрица весов перед вычислениями не поворачивается. Рассмотрим аналогичный пример вычисления значения результирующего пикселя (2,4). Исходная матрица изображения и ядро корреляции взяты из предыдущего примера. Для этого необходимо реализовать следующие шаги:

  1. Перемножаем каждое значение веса и на соответствующее значение элемента матрицы исходного изображения.
  2. Суммируем все результаты умножения, которые получены в п.1.

В результате значение пикселя (2,4) будет равно


Вычисление значения результирующего пикселя (2,4)

Подождите! Мы кое о чем забыли! До этих пор мы говорили о "реальном", или оптическом разрешении (несмотря на то, что оно может быть не таким реальным, как вы думали). Разрешающую способность можно также подделать с помощью различных математических алгоритмов, дающих кажущееся разрешение, которое выше, чем та цифра, которая называется для оптического разрешения. Этот процесс называется интерполяцией.

В старые недобрые времена многие продавцы предпочли бы называть в качестве спецификации интерполированное значение разрешающей способности, если бы они его знали. В то время разрешающая способность была ниже (до появления доступных пленочных сканеров), поэтому искушение было очень велико. Так у планшетных сканеров, которые используются для получения изображений фотографий и подобных продуктов, реальное оптическое разрешение могло быть 300x300 выборок на дюйм. С помощью магии интерполяции тот же самый сканер мог выдавать поддельное разрешение в 600x600 выборок на дюйм или даже 1200x1200 выборок на дюйм. И именно это рекламировали бы продавцы. Доверчивые покупатели могли бы думать, что они покупают сканер с разрешением 1200x1200 выборок на дюйм, тогда как большая часть дополнительной четкости была бы математическим "шаманством".

К счастью, такими махинациями почти никто не занимается. Все продавцы в качестве первостепенной спецификации четкости называют оптическое разрешение своих сканеров, несмотря на то, что, как вы видели, и оптическое разрешение может не вполне точно отражать разрешающую способность сканера. Интерполированное разрешение скрыто в других спецификациях таким образом, чтобы они казались намного менее обманчивыми.

Даже при всем этом многие пользователи сканеров не вполне понимают, что такое интерполяция, и либо слишком сильно доверяют ей, либо, наоборот, слишком мало. На самом деле, хотя интерполированное разрешение не так хорошо, как оптическое, при правильном применении оно может оказаться достаточно полезным.

Интерполяция - это не что другое, как процесс, который во время сканирования применяется для изменения размеров изображения (в большую или меньшую сторону) или насыщенности цвета на какое-то другое значение, отличное от размера или насыщенности цвета оригинала. Хотя интерполяцией можно пользоваться для изменения информации о цвете или уменьшения отсканированного изображение по сравнению с оригиналом, в большей части случаев разговоры об интерполяции касаются изображения, на котором создаются новые пиксели, в результате чего конечное изображение становится больше отсканированного оригинала или получает большее разрешение. (Интерполяцию, которая используется для уменьшения изображения, обычно называют субдискретизацией.)

Не путайте интерполяцию с изменением масштаба. При увеличении масштаба изображения каждый пиксель дублируется определенное количество раз. Чтобы увеличить размер изображения втрое, каждый пиксель дублируется трижды. То же самое происходит при уменьшении масштаба изображения. При простом изменении масштаба уменьшение размера изображения на одну треть от оригинала означает отбрасывание каждого третьего пикселя (в надежде, что оставшиеся пиксели все-таки сохранят некое подобие оригинала). В любом случае на получившемся изображении, скорее всего, будут грубые края или "лесенки" на диагональных линиях.

Интерполяция - процесс намного более сложный. Вместо простого копирования пикселей используются интерполяционные алгоритмы, изучающие соседние пиксели и рассчитывающие новые, которые подгоняются так, чтобы переход между ними был как можно незаметнее, в идеальном случае формируя непрерывный переход от старых пикселей к новым. Упрощенно этот процесс можно описать следующим образом. Если на изображении был черный пиксель, а рядом с ним - белый, то при увеличении масштаба в два раза получилось бы два черных пикселя и два белых пикселя. При интерполяции мы получим исходные черный и белый пиксели, плюс один темно-серый пиксель и один светло-серый пиксель между ними, как показано на рис. 3.3.

Существуют различные способы интерполяции изображений, некоторые из них достаточно сложны. Ниже приводятся три самых распространенных метода.

- Метод ближайших соседей . При этом методе рассматривается пиксель, находящийся в непосредственной близости от обрабатываемого, и информация об этом пикселе используется для создания нового.

Поскольку в таком случае нужно проверять только каждый второй пиксель, это достаточно быстрый метод, хотя и не очень точный. Он не подходит для большей части фотографических изображений, содержащих плавные переходы между отдельными участками, поскольку дает в них заметно более зубчатые края. Если вы сканируете изображение с четкими границами, например, фрагмент текста или изображение, которое будет сохраняться в формате GIF, алгоритм ближайших соседей будет вполне пригоден. В таких случаях он дает меньшие файлы, при этом эффективно сохраняя резкие границы. На рис. 3.4 изображена буква А (один из типов изображений, для которых достаточно хорошо работает алгоритм ближайших соседей), а на рис. 3.5 показана увеличенная на 600% часть этой буквы после обработки с помощью данного.

- Билинейный метод . При этом методе проверяются пиксели по обе стороны от обрабатываемого пикселя. Он выполняется немного медленнее, чем алгоритм ближайших соседей, но может давать достаточно хорошие результаты для изображений, содержащих высококонтрастные элементы. Действие соответствующего алгоритма показано на рис. 3.6.

- Бикубический метод . Самый распространенный метод интерполяции - бикубический, при котором для получения информации для создания новых, интерполированных пикселей, проверяются все окружающие пиксели. Этот метод используется по умолчанию во многих сканерах, а также в Photoshop. В последней версии Photoshop к основному алгоритму бикубической интерполяции добавлены еще два варианта - бикубическое сглаживание (Bicubic Smoother), лучше всего сглаживающее зубцы при увеличении изображения, и бикубическое увеличение резкости (Bicubic Sharper), сохраняющее детали при выполнении субдискретизации для уменьшения изображения. Бикубическая интерполяция показана на рис. 3.7.

Интерполяция - это процесс, который можно применять во время сканирования, если вам действительно нужно получить более высокое разрешение, поскольку самые сложные алгоритмы дают изображения, содержащие полезную информацию, которой не было бы на неприкрашенных отсканированных изображениях. При этом процессе дополнительные пиксели могут рассчитываться с удивительной степенью точности, точно имитируя те результаты, которые вы могли бы получить при более высоком разрешении. Лучше всего интерполяция работает для изображений со множеством деталей.

Какая-то интерполяция происходит при любом сканировании с разрешением, отличным от естественного разрешения сканера. Например, если реальное разрешение вашего сканера составляет 4000 выборок на дюйм, то всякий раз, когда вы сканируете с разрешением, скажем, 2000 spi, желая уменьшить размер файла для не очень важных изображений, конечное изображение формируется в помощью интерполяции. Если же сканер с разрешающей способностью 4000 spi позволяет выполнять сканирование с разрешением 8000 spi, интерполяция запускается для имитации более высокого разрешения. В некоторых сканерах интерполяция выполняется аппаратно при создании отсканированного изображения, тогда как в других этот этап выполняется с помощью программного обеспечения на компьютере.

Чтобы понимать какие процессы заложены в механизм изменения размеров изображения, почитайте — строительном материале любого растрового изображения. Если вкратце, то это маленькие цветные квадратики, из которых, как из мозаики, складывается картинка.

Говоря о размерах, мы говорим о разрешении . Оно записывается как сумма пикселей в одной строке по ширине и одном столбце по высоте и записывается так: 655×382. Именно таких размеров следующий арт:

Поэтому, изменяя размеры изображения, мы должны изменить значения этих пикселей по ширине и/или высоте.

В случае уменьшения размера , например, наш пример изменим до 300×175, картинка уже будет состоять из 300 пикселей в ширине и 175 пикселей в высоте. Никакого сужения не произошло. Фотошоп пересчитал пиксели в изображении и вычислил от каких можно избавиться.

Но этот процесс не обратимый. Если потребуется все вернуть обратно или сделать еще больше, то запустится новый процесс — увеличение.

В случае увеличения размера , фотошоп высчитывает каких пикселей не хватает и добавляет их на основании сложных алгоритмов обработки. Этот процесс не может быть качественным, поэтому при увеличении изображения качество теряется. Картинка теряет в четкости деталей, становится размытой. Для наглядности, пример выше я увеличу до исходного размера. Сравните:

Таким образом, при увеличении, качество будет сильно зависеть от начального размера изображения и от конечно, до которого нужно «дорасти».

Диалоговое окно «Размер изображения»

Итак, самый основной способ изменить размер изображения — воспользоваться командой меню:

Изображение — Размер изображения (Image — Image Size).

Горячая клавиша: Alt+Ctrl+I.

Откроется диалоговое окно:

Данное диалоговое окно позволяет, во-первых, получить информацию о текущих размерах изображения, и во-вторых, собственно изменить их.

Размерность (Pixel Dimensions)

Чтобы изменить размер изображения меняйте значения Ширины и Высоты . По умолчанию они измеряются в пикселях, но из выпадающего списка можно выбрать проценты.

Обратите внимание на скобку и иконку в виде цепочки. Это означает, что при изменении ширины или высоты, второе значение будет автоматически меняться в тех же пропорциях, что и оригинал изображения. Это нужно, чтобы оно не получилось сжатым или вытянутым. Для включения\отключения такой функцию, поставьте галочку «Сохранить пропорции» (Constrain Proportions).

Размер печатного оттиска (Document Size)

Об этой группе настроек я упоминал, говоря о на принтере. Разрешение (Resolution) меняет размер пикселей и влияет на качество печати. Для принтеров смело ставьте в диапазоне 200-300 пикселей на дюйм.

Значения Ширины и Высоты говорят нам о том, на каких размерах бумаги может быть напечатано изображение. Меняя числа, будет менять и размер изображения. Обратите внимание, что и тут есть функция сохранения пропорций.

Масштабировать стили (Scale Styles)

Определяет, будет ли программа масштабировать какие-либо стили слоя, примененные к изображению. Рекомендуется оставить этот флажок установленным, иначе, к примеру, тень, которую вы добавили, может в конечном итоге оказаться больше или меньше, чем сама картинка.

Интерполяция

Это ваш ключ к изменению разрешения без влияния на качество изображения. Интерполяция (Resample Image) - это процесс, при котором фотошоп реагирует на команду изменения размера, добавляя или вычитая пиксели. Проблема заключается в том, что при интерполяции, программа «строит предположения», а это может испортить качество изображения.

При первом запуске программы, настройка Интерполяция включена, и отвечает за увеличение или уменьшение количества пикселов в изображении. Эти процессы снижают качество изображения, поскольку программа либо создает пиксели, либо выбирает, какие из них удалить соответственно. Отключив настройку, вы защитите качество, закрепив размер в пикселях.

Когда вы устанавливаете флажок Интерполяция , вам необходимо выбрать метод из раскрывающегося списка, расположенного ниже. Зачем это может потребоваться? Иногда вам понадобится помощь фотошопа в создании изображения большего или меньшего размера, чем оригинал.

Например, если у вас есть изображение с разрешением 200 пикселей на дюйм , размер которого при печати составляет 4×6, а размер печатного варианта должен быть 5×7 и желательно сохранить разрешение в 200 пикселей на дюйм . Для этого можно установить данный флажок.

Варианты раскрывающегося списка, расположенного под флажком Интерполяция, определяют, к какой форме математических вычислений прибегает фотошоп для добавления или удаления пикселов. Так как более высокое качество изображения означает больше работы, чем лучше изображение, тем больше времени необходимо программе для совершения вышеупомянутого процесса.

Вот какие варианты вам предлагаются, отсортированные по качеству (от худшего к лучшему) и по скорости (от самого быстрого к самому медленному):

  • По соседним пикселям (сохраняет четкие края) (Nearest Neighbor) . Хотя этот метод в результате дает самое низкое качество изображения, он может быть полезен, поскольку создает самые маленькие файлы. Пригодится, если вы передаете файлы через Интернет, а у вас или у получателя медленное соединение. Этот метод работает ориентируясь на цвета окружающих пикселов, и копируя их. Он известен тем, что создает неровные края, поэтому вам стоит применять его только к изображениям с резкими краями, таким как иллюстрации, которые не были сглажены.
  • Билинейная (Bilinear). Если вы выберете этот метод, фотошоп будет угадывать цвет новых пикселов, выбирая нечто среднее между цветом пикселов, расположенных непосредственно выше и ниже, а также слева и справа от добавляемого. Результат данного метода чуть лучше, чем при выборе варианта По соседним пикселям и он все еще довольно быстрый, но вам лучше использовать вместо Билинейная один из следующих трех методов.
  • Бикубическая (наилучшая для плавных градиентов) (Bicubic) . Этот метод позволяет определить цвета новых пикселов, усреднив цвета пикселов непосредственно над и под новым, а также двух пикселов слева и справа от него. Этот метод занимает больше времени, чем предыдущие два, но создает более плавный переход в областях, где один цвет заменяется другим.
  • Бикубическая, глаже (наилучшая для увеличения) (Bicubic Smoother) . Близок к предыдущему методу по способу создания новых пикселов. При использовании этого метода пиксели немного размываются, чтобы можно было наложить новые на старые, придавая изображению более гладкий и естественный вид. Рекомендуется применять данный метод для увеличения изображений.
  • Бикубическая, четче (наилучшая для уменьшения) (Bicubic Sharper). Этот метод также похож на метод Бикубическая (наилучшая для плавных градиентов) по способу создания новых пикселов, однако вместо того, чтобы размывать целые пиксели для улучшения наложения новых и старых как предыдущий метод, он смягчает только края пикселов. Рекомендуется применять данный метод для уменьшения изображений.