Сайт о телевидении

Сайт о телевидении

» » Как работает робот пылесос: устройство и принципы уборки. Робототехника на пальцах

Как работает робот пылесос: устройство и принципы уборки. Робототехника на пальцах

Есть люди, которые занимаются уборкой полов только раз в неделю, а есть и другие, кто делает эту работу значительно чаще. Привлекательной характеристикой роботов-пылесосов становится тот факт, что они отвечают нуждам обоих категорий. Так или иначе, с ними дом становится безупречней, практически не требуя человеческого фактора.

Современные лучшие роботы пылесосы далеки от первых моделей, которые приходилось искать под каждым предметом мебели в доме, пока вы не услышите сигнал нехватки энергии. Последние модели, направленные на уборку домов, предлагают разительное повышение эффективности, способность к самоочищению, а также умение находить дорогу к зарядной станции самостоятельно.

В этой статье мы подробнее разберемся как работает робот пылесос. Помогать нам понять как устроен робот пылесос будет iRobot Roomba Red, а также проверим несколько других роботов-пылесосов на рынке.

Принцип работы робота пылесоса

Современный рынок предлагает огромный выбор роботов-пылесосов , цены на которые варьируются от 3.500 рублей до 100.000 рублей. Эти пылесосы для клининговых услуг характеризуются низкой посадкой и компактными размерами, чтобы сохранить возможность проникать под мебель, что недоступно традиционным пылесосам.

Большинство производителей скажет вам, что робот пылесос предназначен для дополнения к стандартной уборке пылесосом, но не может заменить эту работу. Они предназначены для выполнения ежедневной уборки , которая становится важным штрихом в поддержании чистоты, таким образом, робот-пылесос призван поддерживать чистоту между ручной уборкой пылесосом. Тем не менее, если вы из тех людей, кто никогда не пылесосит, роботизированный помощник сможет сделать полы и ковры чище, чем они есть сейчас, а вам не придется и палец о палец ударить.

Самым популярным производителем роботов-пылесосов в России остается iRobot , который предлагает на рынке разнообразные модели, начиная с базовой модели Roomba Red и заканчивая технологически продвинутыми Roomba Scheduler. Для того, чтобы разобраться с тем, как работает робот пылесос, мы заполучили в свои руки iRobot Roomba Red, который станет нашим проводником в мир роботизированной уборки. Давайте начнем с того, что у него внутри.

iRobot Roomba Red имеет размеры, приблизительно, 13-ю дюймами (33 см) в диаметре и 3,5 дюймами (9 см) в высоту. Внешний осмотр робота пылесоса позволяет выявить следующие детали:

Большинство роботов Roomba работают на аккумуляторах NiMH. Аккумулятор Roomba Red, для примера, рассчитан на 3 ампер-часа, а его полная зарядка занимает порядка семи часов / 18 вольт. Некоторые из последних моделей роботов-пылесосов iRobot, конечно, сократили это время до 2-3 часов. Полная зарядка равна приблизительно 2-3 часам времени уборки, что в мире пылесосов Roomba означает 2-3 комнаты, прежде чем роботу потребуется зарядка. За мобильность робота-пылесоса отвечают два моторизованных колеса. Roomba управляется переменной подачей мощности на каждое колесо.

Пылесос Roomba оборудован пятью моторами:

  • Один за каждым колесом (Итого: 2);
  • Третий управляет пылесосом;
  • Четвертый вращает боковой щеткой;
  • Пятый управляет комплектом щеток;

Если рассматривать её отдельно, то именно навигационная система делает роботы-пылесосы роботизированными. И основная разница в моделях за 3.500 рублей и за 80.000 рублей, скрывается в точности навигационных датчиков. Подопытный Roomba Red использует AWARE Robotic Intelligence System от iRobot, систему, призванную сократить вмешательство человека в работу робота максимально. Система осведомления включает несколько датчиков, которые собирают данные из окружающей среды, отправляют их на микропроцессор робота-пылесоса, после чего поведение Roomba регулируется должным образом. Согласно iRobot, система может реагировать на новые вводные данные до 67 раз в секунду. Далее мы разберемся с навигацией роботов-пылесосов детально и поймем как работает робот пылесос более детально.

Первое, что Roomba делает при нажатии на кнопку «Clean», рассчитывает размеры комнаты. Компания iRobot была весьма туманна, когда речь зашла о том, как робот это делает, но мы считаем, что робот посылает инфракрасный сигнал и проверяет, сколько времени требуется на возврат сигнала до приемника, расположенного на бампере робота-пылесоса. После того, как робот устанавливает размеры комнаты, он знает, как долго и далеко ему нужно двигаться в процессе уборки.

Ну а пока робот-пылесос убирает, он избегает ступенек и других видов перепадов высоты, используя четыре инфракрасных датчика на передней нижней части робота. Это «Датчики Обрыва», которые постоянно посылают инфракрасные сигналы и, получив отрицательный сигнал, Roomba незамедлительно остановится. Если робот приближается к обрыву, сигнал пропадет. Старшие модели, как Roomba Red, просто разворачиваются и двигаются в другую сторону, современные же модели способы почистить край обрыва. Когда Roomba Red врезается во что-то, его бампер активирует механические датчики, которые сообщают системе робота, что он столкнулся с препятствием. Затем используется определенный алгоритм действий, вовлекающих поворот и попытку движения вперед до тех пор, пока робот не сможет двигаться вперед.

Есть ещё один инфракрасный датчик, который мы назовем «Датчиком Стены», он расположен на правой стороне бампера и позволяет роботу-пылесосу Roomba очень внимательно двигаться вдоль стены и вокруг других объектов (например, мебели), не касаясь их. Это значит, что робот может пройтись вдоль плинтусов, не натыкаясь на них. Он также может самостоятельно рассчитать себе путь уборки, что, согласно iRobot, подключает предварительно заданный алгоритм, который позволяет роботу полностью охватить полы.

Недавно в Японии открылся отель Henn-na (Henn-na Hotel), в котором 90% работ выполняют роботы и 10 человек справляются с оставшимися 10% всех дел. Роботов, выпущенных компанией Kokoro, называют актроидами. Они умеют приветствовать и заселять гостей, устанавливая с ними зрительный контакт и реагируя на движения. Некоторые могут общаться на иностранных языках.

Отель Henn-na, что дословно переводится с японского на английский как «странный отель», использует и других роботов, кроме актроидов, например человекоподобных роботов Нао (NAO) и Пеппер (Pepper) от компании Aldebaran Robotics. Роботы встречают гостей у входа и на стойке регистрации, помогают им снять пальто и относят сумки, убираются в комнатах.

Отель Henn-na не единственный в своём роде. В Нью-Йорке существует YOTEL, в котором роботы заботятся о вещах гостей, делают кофе, приносят бельё, убирают номера и выполняют ещё много другой работы.




А в прошлом году гостиничный гигант Starwood представил роботов, которых назвал Botlrs. Обслуживая гостей, эти роботы могут передвигаться по отелю и в лифтах без человеческой помощи. С 1992 года роботы помогают в больницах: разносят подносы с едой и лекарствами, стирают постельное бельё, выкидывают мусор. В сети гипермаркетов Lowe’s робот OSHbot помогает покупателям отыскать нужный товар.

Amazon использует более 15 000 роботов на своих складах, чтобы вовремя доставлять заказы. Даже армия США планирует заменить десятки тысяч солдат роботами. В прошлом году в Бирмингемском университете появился первый робот-охранник Боб высотой 1,8 метра, который сканирует комнаты и сигнализирует, если видит что-то необычное. Если Боб где-то застревает, он может позвать на помощь, а если разряжается - самоcтоятельно отправляется на подзарядку.

Роботы способствуют повышению продуктивности удалённых работников. В бизнес-школе Массачусетского технологического института те сотрудники, которые работают из дома, могут «разгуливать» по офису и общаться с коллегами при помощи роботов.

Как повсеместное внедрение роботов повлияет на нас

Роботы всё чаще появляются рядом с нами на работе, так не отнимут ли они совсем рабочие места? Некоторые считают, что из-за повсеместного внедрения роботов люди могут оказаться на улице. В 2013 году в Оксфорде провели исследование, согласно которому 47% существующих ныне работ повышенного риска будут вскоре автоматизированы. В течение 20 лет люди на этих местах будут заменены роботами.

Однако существует и другое мнение: отдав машинам тяжёлую работу, люди смогут посвятить себя более интересным и высокотехнологичным занятиям. Так считает и Дэвид Канн, глава Double Robotics, компании, которая создала роботов, используемых в Массачусетском технологическом институте.

Роберт Аткинсон, экономист аналитического центра Фонда технологического развития и инноваций, утверждает: выводы о том, что роботы отнимут рабочие места, основаны на крайне поверхностном анализе ситуации. По сути же происходит обратное: внедрение роботов снижается. Аткинсон объясняет это падение двумя причинами:

  1. Тридцать лет назад США гораздо активнее инвестировали в развитие роботостроения и программного обеспечения, нежели сейчас.
  2. Низко висящие фрукты вроде автоматов регистрации в аэропорту уже сорваны.

Третьей причиной, по мнению Аткинса, можно назвать то, что в США не существует политики развития продуктивности.

Они могли сделать многое, чтобы повысить уровень производительности в стране, но ничего даже не планируют. В отличие, например, от Австралии, где есть Национальная комиссия по повышению производительности, работа которой заключается в выявлении возможностей роста. А мы только предполагаем, что должно произойти…

А компаниям выгоднее нанимать людей с низкой заработной платой, нежели автоматизироваться. Стимула для замены сотрудников роботами нет никакого. Вот если бы людям нужно было платить больше, тогда компании задумались бы о роботизации.

Допустим, если большинство представителей низкооплачиваемых профессий потребуют повышения зарплаты, как это сделали в Нью-Йорке работники заведений фастфуда, тогда процесс автоматизации ускорится.

Вот что говорит по этому вопросу Гарри Матиасон, президент юридической компании Littler Mendelson, которая специализируется на вопросах трудового права в связи с роботизацией.

Прогресс есть. В Нью-Йорке работники фастфуда уже добились того, что минимальная зарплата теперь будет $15 в час. Вскоре работодателям будет экономически выгодно перекладывать часть работы на роботов. Соответственно, это ускорит процесс повсеместной автоматизации. Таким образом, увидеть роботов повсюду в ближайшие пять лет мы сможем, если будем сами проявлять экономическую активность.

Гарри Матиасон

Роботы могут отнять нашу работу, но это не плохо

Как и Аткинсон, Матиасон считает, что причин для беспокойства нет. Он объясняет, что автоматизация 47% рабочих мест повышенного риска не имеет ничего общего с безработицей.

Начнётся перемещение людей на те должности, которых нет сейчас, но они появятся в будущем. Если мы обратимся к истории, то увидим, что подобная ситуация уже была. Тогда всё происходило не так стремительно, как сейчас, но тем не менее прецеденты имелись. К слову, в 1870 году сельским хозяйством зарабатывало 70–80% населения, а сейчас всего 1%.

И, кстати, снова обращаясь к истории, можно увидеть, что при появлении новых технологий на производстве безработица всегда оставалась на прежнем уровне или даже уменьшалась. Мне очень хочется посмотреть, что произойдёт в течение ближайших 10 лет: для людей на первом месте будет стоять не угроза безработицы, а возможность научиться чему-то новому. И если человек 10 лет выполнял одну низкоквалифицированную работу, так, возможно, необходимость карьерного роста будет ему только в радость.

Гарри Матиасон

Матиасон обещает, что нас ждут увлекательные времена. Придётся вносить поправки в Трудовой кодекс, отвечая на вопросы, связанные с взаимодействием людей и роботов. Например, как регулировать распространение личной информации, ведь роботы будут записывать то, что слышат.

Несмотря на то что неизвестно, насколько быстро проникнет роботизация во все сферы, нет никаких сомнений в том, что это случится. И пока одни продолжают бояться потерять рабочее место, другие мечтают о том, как это улучшит экономику в целом и благосостояние каждого человека. Производительность компаний будет расти, они будут больше зарабатывать и смогут больше платить работникам.

Однако один из споров до сих пор не разрешён: каково это, когда на ресепшене отеля тебя встречает актроид, который жутко похоже имитирует человеческие жесты…

Роботы сегодня находят множество применений. Одно из самых опасных — обезвреживание бомб. Уже почти полвека роботы-саперы спасают человеческие жизни. Их использовали для деактивации взрывных устройств в сотнях, если не тысячах, случаев.

Впрочем, говорить «робот-сапер» не совсем верно. В Оксфордском словаре значится: «Робот — механизм, способный автоматически выполнять сложную последовательность действий». Железные саперы не принимают решений и не работают автономно. Их лучше называть дронами, так как ими дистанционно управляет взрывотехник. В британской армии эту профессию называют «взрывной доктор». Специалист на расстоянии исследует взрывное устройство и, по возможности, деактивирует его. Это может быть не только бомба, но также мина или неразорвавшийся снаряд.

Ранние роботы-саперы управлялись при помощи громоздких кабелей (Getty Images)

Одним из первых саперных аппаратов была модель Wheelbarrow Mark 1. Проект предложил офицер британской армии Питер Миллер. Его идея заключалась в использовании шасси электрической тележки, чтобы отвозить подозрительные устройства на безопасное расстояние, где они могут быть взорваны.

Первый прототип довольно плохо маневрировал. К делу подключились военные инженеры и скоро усовершенствовали механизм. Одним из важных нововведений стала возможность испускать мощную струю воды.

Зачем нужна вода? Взрывотехники стараются деактивировать взрывчатое устройство и при этом не вызвать его детонацию. Струя воды помогает достичь этой цели: роботы-саперы прицельно поливают провода и выводят бомбы из строя. Некоторые устройства имеют дополнительную защиту, так что контакт с их «внутренностями» приводит к детонации. Именно поэтому к бомбам лучше посылать роботов, а не людей.


Роботы-саперы обследуют подозрительные устройства, не подвергая опасности личный состав (Getty Images)

«Когда оператор подводит робота к устройству, он ищет, куда можно выстрелить водяной струей, — говорит источник Би-Би-Си в британской армии. — Если робот стреляет и попадает в цель, провод выходит из строя. Взрывотехник может подойти и установить, что устройство безопасно. В современных операциях чаще всего удается избежать больших взрывов».

Роботы-саперы управляются операторами на безопасном расстоянии, ориентируясь по мониторам. Камеры устанавливают в нескольких местах аппарата, в том числе на механической «руке».

Изначально стальными саперами управляли с помощью веревок. Прогресс не стоит на месте, и скоро в дело пошли кабели. Но они не позволяли роботам уезжать далеко и цеплялись за препятствия. С той же проблемой сталкиваешься, когда орудуешь садовым шлангом. Сегодня большинство роботов-саперов контролируется дистанционно. Рабочий диапазон при этом значительно увеличивается. Однако появляется опасность, что хакеры подключатся к системе, даже несмотря на все защитные протоколы.

В Ираке роботов-саперов использовали для обезвреживания придорожных бомб (GettyImages)

Глава Эдинбургского центра робототехники профессор Сету Виджайакумар объясняет: «Обычно оператор теряет визуальный контакт с роботом-сапером, и кабели только мешают. В таких случаях работа с аппаратом напоминает управление беспилотником с небольшим диапазоном».

Интересно, что дизайн роботов-саперов не сильно изменился с момента их создания. Основная конструкторская идея сохранилась. Механизмы стали меньше и прочнее, но ими по-прежнему управляют операторы из плоти и крови. У каждого аппарата есть «рука» для манипуляции с подозрительным устройством.

Инженеры перепробовали множество вариантов шасси. Сначала аппараты оснащали гусеницами, как у танков. Сегодня роботы могу похвастаться маневренными гусеницами наподобие тракторных, тремя парами колес и множеством других комбинаций. Современные роботы-саперы могут ездить по самым сложным участкам. Некоторые даже умеют взбираться по ступенькам лестницы.

«Рука» робота-сапера дает большую свободу действий. Большинство аппаратов совместимы с целым спектром инструментов. Это позволяет преодолевать самые разные препятствия. Например, столкнувшись с колючей проволокой, робот может прорезать в ней дыру.

Учитывая, что роботы-саперы предназначены для работы в опасных условиях, их делают неуязвимыми для различных воздействий.

«Значительная часть средств уходит на создание электроники и датчиков достаточно прочных, чтобы выдержать самые жесткие условия, — говорит Виджайакумар. — Конечно, это не так, как в космосе, но похоже».

Некоторые из новейших моделей роботов-саперов могут подниматься по лестницам (GettyImages)

Роботы-саперы различаются по своим размерам. Есть разработки, которые умещаются в ранец и могут быть заброшены в здание через окно, а есть аппараты с габаритами газонокосилки, вооруженные рентгеновским зрением и датчиками взрывчатки.

Эволюционировали и контрольные системы. Ранее требовалось проходить специальную подготовку, чтобы управлять аппаратами. Сегодня для манипулирования роботом-сапером годится даже контроллер игровой приставки: компания iRobot, подарившая миру робот-пылесос Roomba, демонстрировала такую возможность для своего военного робота PackBot.

На сегодняшний день тестируется множество ноу-хау в этой области. Есть прототипы, способные прыгать через стены (Sand Flea от Boston Dynamics). Есть варианты с двумя «руками», способные заглядывать в багажники автомобилей. Также прорабатываются варианты с использованием целых роботизированных команд, где каждое устройство берет на себя часть функций.

Виджайакумар резюмирует: «Одна из главных целей — использовать роботов в опасных ситуациях. Роботов можно подвести к взрывному

Тем не менее многие из нас не имеют ни малейшего представления о том, как их делают, из чего, с какими проблемами сталкиваются инженеры и как их преодолеть. В этой статье мы подробно разберем, как устроены роботы и как они работают. На самом базовом уровне люди состоят из пяти основных компонентов:

структура тела;

система мышц, которая движет телом;

система органов чувств, которая получает информацию о теле и окружающей среде;

источник энергии, питающий мышцы и органы чувств;

мозговая система, которая обрабатывает информацию от органов чувств и дающая указания мышцам.

Конечно, у нас есть ряд нематериальных атрибутов вроде интеллекта и морали, но на чисто физическом уровне список выше включает это. Роботы делаются из аналогичных компонентов. Обычный робот обладает подвижной физической структурой, электродвигателем определенного рода, системой сенсоров (датчиков, органов чувств), блоком питания и компьютерным «мозгом», который контролирует все эти элементы. По существу, роботы - это техногенные версии животной жизни. Это машины, которые копируют поведение людей и животных. Джозеф Энгельбергер, пионер промышленной робототехники, однажды заметил: «Я не могу дать определение роботу, но я точно узнаю его, когда увижу». Если вы задумаетесь обо всех возможных машинах, которые люди называют роботами, вы поймете, что невозможно придумать всеобъемлющее определение. У каждого есть свое представление о том, что представляют собой роботы. Вам наверняка известны эти роботы:

R2D2 и C-3PO: умные говорящие роботы с ярко выраженной индивидуальностью из фильмов серии «Звездные войны»

AIBO от Sony: собака-робот, которая обучается в процессе взаимодействия с людьми

ASIMO от Honda: робот, который может ходить на двух ногах

Промышленные роботы: автоматизированные машины, работающие на сборочных конвейерах

Дейта : почти человекоподобный андроид из «Звездного пути»

Роботы-саперы

Марсоходы NASA

HAL : бортовой компьютер из «Космической Одиссеи 2001 года» Стэнли Кубрика

MindStorm : популярный роботизированный комплект от LEGO

Все вышеперечисленное можно назвать роботами. Роботом, как правило, называется то, что люди считают роботом. Большинство робототехников (людей, которые делают роботов) использует более точное определение. Они указывают, что роботы обладают перепрограммируемым мозгом (компьютером), который движет тело. Согласно этому определению, роботы отличаются от других подвижных машин вроде автомобилей, поскольку у них есть компьютерный элемент. У большинства новых автомобилей есть бортовой компьютер, но в него можно внести не так много нового. Вы управляете большинством элементов в автомобиле непосредственно при помощи механических устройств разного рода. Роботы отличаются от обычных компьютеров по своей физической природе - у обычных компьютеров нет физического тела, они могут существовать и без него.

Основы роботов

У подавляющего большинства роботов действительно есть общие черты. Прежде всего, почти у всех роботов есть подвижное тело. Некоторые обладают только моторизованными колесами, у других есть десятки подвижных сегментов, как правило, из металла или пластика. Как кости в вашем теле, отдельные сегменты соединяются вместе с помощью суставов. Колеса робота и поворотные суставные сегменты активизируются при помощи приводов разного рода. Некоторые роботы используют электродвигатели и соленоиды в качестве актуаторов (приводов); некоторые используют гидравлическую систему; некоторые - пневматическую систему (на основе сжатых газов). Роботы могут использовать все эти типы приводов. Робот нуждается в источнике питания, чтобы управлять этими приводами. Большинство роботов либо оснащены батареей, либо работают от розетки. Гидравлическим роботам нужен насос для создания давления в гидравлической системе, а пневматическим роботам нужен воздушный компрессор или баллоны со сжатым воздухом. Все приводы подключаются к электрической цепи. Цепь напрямую питает электродвигатели и соленоиды, что активизирует гидравлическую систему при помощи электрических клапанов. Клапаны направляют сжатую жидкость через машину. Для перемещения гидравлической ноги, например, оператор робота должен открыть клапан, ведущий от жидкостного насоса к поршневому цилиндру, закрепленному на ноге. Жидкость под давлением будет двигать поршень, толкая ногу вперед. Чтобы двигать конечностями в обоих направлениях, роботы используют поршни, которые могут толкаться в обе стороны. Компьютер робота управляет всем, что подключено к цепи. Чтобы передвигать робота, компьютер активирует все необходимые двигатели и клапаны. Большинство роботов можно перепрограммировать, чтобы изменить поведение - достаточно просто ввести новую программу в компьютер. Не у всех роботов есть система сенсоров, и лишь некоторые обладают способностью видеть, слышать, чувствовать запах или вкус. Самая распространенная способность робота - способность ходить и наблюдать за своим перемещением. Стандартная конструкция использует колеса с щелью в суставах робота. Светодиод на одной стороне колеса пускает луч света через щель, чтобы подсветить датчик света на другой стороне колеса. Когда робот движет определенным суставом, колесо с щелью крутится. Щель разбивает луч света по мере вращения колеса. Световой датчик считывает поведение светового луча и передает данные на компьютер. Компьютер точно может сказать, как вращается сустав в определенной модели. По тому же принципу работает компьютерная мышь. Это основы робототехники. Робототехники могут комбинировать эти элементы в бесконечное число способов создания роботов неограниченной сложности.

Роботизированный манипулятор

Термин «робот» пришел к нам от чешского слова «robota», что означает буквально «принудительный труд». В принципе, это слово отлично описывает большинство роботов. Чаще всего роботы делают тяжелую работу, монотонно трудятся на производстве. Также они решают задачи, которые сложны, опасны или скучны для людей. Наиболее распространенный вид робота - это роботизированный манипулятор. Типичный манипулятор состоит из семи металлических сегментов, соединенных шестью суставами. Компьютер управляет роботом, вращая отдельные шаговые двигатели, подключенные к каждому суставу (некоторые крупные манипуляторы используют гидравлику или пневматику). В отличие от обычных двигателей, шаговые двигатели двигаются точными шажками. Это позволяет роботу перемещать руку очень точно, в точности повторяя одно и то же движение снова и снова. Робот использует датчики движения, чтобы убедиться, что совершает движения правильно. Промышленный робот с шестью суставами напоминает человеческую руку - у него есть подобия плечу, локтю и запястью. Как правило, плечо установлено на неподвижной базовой структуре, а не на подвижном теле. У такого типа робота есть шесть степеней свободы, то есть он может поворачиваться в шести разных направлениях. Для сравнения, человеческая рука имеет семь степеней свободы. Задача вашей руки - перемещаться с места на место. Аналогичным образом, задача манипулятора - перемещать концевой эффектор с места на место. Вы можете оснастить манипулятор разными концевыми эффекторами, предназначенными для конкретных задач. Один из распространенных эффекторов - упрощенная версия руки, которая может хватать и переносить разные объекты. Манипуляторы часто обладают встроенными датчиками давления, которые предписывают компьютеру, с какой силой захватывать конкретный объект. Это позволяет роботу не ломать все, что он хватает. Другие конечные эффекторы включают паяльные лампы, дрели и распылители порошка или краски. Промышленные роботы предназначены для того, чтобы делать одни и те же вещи, в контролируемой среде, снова и снова. Например, робот может закручивать колпачки на тюбиках с зубной пастой. Чтобы научить робота делать это, программист описывает порядок движения, используя ручной контроллер. Робот записывает последовательность движений в память и делает это снова и снова, когда новый продукт поступает на конвейер. Большинство промышленных роботов работает на конвейерах, собирая автомобили. Роботы делают это более эффективно, чем люди, поскольку более точны. Они всегда сверлят в одном и том же месте, затягивают болты с одной и той же силой, независимо от того, сколько часов проработали. Сборочные роботы также важны для компьютерной отрасли. Весьма сложно точно собрать крошечный микрочип силами человека.

Мобильные роботы

Манипуляторы весьма просто собрать и написать для них программу, поскольку они работают в ограниченном пространстве. Но все становится немного сложнее, если вы отправляете робота в мир. Первое препятствие заключается в том, чтобы дать роботу рабочую систему передвижения. Если робот будет двигаться только по гладкой земле, колеса или гусеницы будут лучшим вариантом. Колеса или гусеницы также могут работать на грубой земле, если будут достаточно большими. Но чаще всего робототехники задумываются о ногах, поскольку их легче адаптировать. Строительство роботов с ногами также помогает ученым понимать естественное движение - полезное упражнение для биологов. Как правило, гидравлические или пневматические поршни перемещают ноги робота вперед и назад. Поршни крепятся к разным сегментам ног так же, как мышцы крепятся к разным костям. Но заставить все эти поршни работать должным образом - сложная задача. Когда вы были ребенком, ваш мозг пытался выяснить, как нужно точно двигать мышцами, чтобы стоять на двух ногах и не падать. Аналогичным образом, конструктор робота должен определить правильную комбинацию поршневых движений, участвующих в ходьбе и запрограммировать эту информацию в компьютер робота. Многие мобильные роботы оснащены встроенной системой баланса (набором гироскопов, например), которая подсказывает компьютеру, когда нужно исправить движение. Прямохождение (ходьба на двух ногах) - довольно нестабильно, поэтому ему сложно научить роботов. Чтобы создать стабильного робота-ходока, конструкторы часто наблюдают за миром животных, особенно насекомых. Шестиногие насекомые обладают невероятно хорошим балансом и адаптируются к широкому набору местностей. Некоторые мобильные роботы управляются дистанционно - человек говорит им, что делать и когда. может осуществляться с помощью провода, радио или инфракрасных сигналов. Роботы с удаленным управлением часто называются кукольными роботами, и они полезны для работы в опасных или труднодоступных условиях - например, в глубокой воде или в жерле вулкана. Некоторые роботы управляются дистанционно лишь отчасти. Например, оператор может отправить робота в определенное место, а обратно робот уже сам найдет дорогу. Как видите, роботы чертовски похожи на нас.

Что общего у человека, изучающего мехатронику и высшую математику, с программистом андроидов, интересующегося бихевиористикой и психологией? Правильно: оба занимаются робототехникой. Что это за зверь такой? Почему эта отрасль в последнее время является самой востребованной и высокооплачиваемой?

Итак, начинаем цикл статей по профессиям. И первой в списке идет робототехника - работа мечты!

Ситуация сегодня

На сегодняшний день эта отрасль на просторах стран бывшего СНГ совершено не развита. А развиваться есть куда, притом не только в области промышленности, но и в домашней, мобильной, боевой, антропоморфной отрасли.

Если хотите найти работу мечты и стать инженером-робототехником (работа не из легких, следует сказать), нужно знать, что, кто, где и как предлагают в этой сфере, а также с чего нужно начинать.

Создание роботов: тонкости дела

Создание роботов имеет 2 важные составляющие: железо и инженерные задумки с одной стороны, и софт и обработка данных – с другой. И чтобы стать робототехником, придется разбираться в обоих вопросах, причем одинаково хорошо.

Робот – это тот же компьютер, только снабженный сенсорами и моторами. Роботы – это воплощенная в жизнь информатика. И чтобы начать в них разбираться, придется сначала вникнуть в особенности разработки ПО, а значит – изучить языки программирования.

Кстати! Для наших читателей сейчас действует скидка 10% на

С чего начинать?

Если с самого начала – то купите себе конструктор LEGO. Он поможет развить конструкторские способности, выстраивать причинно-следственные связи и развивать логическое мышление.

Тем, кто с этими направлениями уже дружит, рекомендуется познакомиться с Robotics Bioloid или LEGO EV3. Они идеально подходят для погружения в детали и тренировок приобретенных навыков.

Как только у вас выработаются основные алгоритмы, можно искать место стажера в робототехнической компании. Здесь вас научат всему, что нужно.

Робота создать не сложно. Сложно создать такого робота, который решил бы реальную проблему. Найдите проблему, а уж потом создавайте робота.

Как изучить робототехнику самостоятельно?

Чтобы получить эту специальность, придется получить знания во многих отраслях науки: инженерные конструкции, схемотехника, работа с реле и светодатчиками, программирование, электроника, биология, механика, эстетика.

А вообще, заниматься робототехникой стоит. И не только потому, что это очень перспективное занятие. Просто эта отрасль представляет собой непаханое поле для специалистов всех мастей – даже для психологов и биологов.

Кстати, а вот список некоторых мест, где можно выучиться на робототехника и найти работу мечты:

  • МИРЭА,
  • МГТУ им. Баумана,
  • МЭМ НИУ ВШЭ, Лаборатория «Робототехника».

Существуют также определенные курсы по обучению этой тематике. Правда, все они англоязычные. Так что если у вас нет проблем с английским языком, дерзайте:

  • Introduction to Robotics | Mechanical Engineering | MIT
  • Artificial Intelligence: How To Build A Robot – Udacity
  • Robotics courses – Plymouth
  • Artificial Intelligence: Principles and Techniques
  • Computer Science: Artificial Intelligence - Courses | Coursera
  • UC BerkeleyX: CS188.1x: Artificial Intelligence | edX

Ну а пока вы будете стремиться найти работу мечты, штудировать кучу специализированной литературы, учебный сервис поможет вам учиться по вашей основной специальности путем