Сайт о телевидении

Сайт о телевидении

» » Как переводить двоичную систему в десятичную. Перевод чисел из одной системы счисления в другую. Алгоритм перевода чисел из одной системы счисления в другую

Как переводить двоичную систему в десятичную. Перевод чисел из одной системы счисления в другую. Алгоритм перевода чисел из одной системы счисления в другую

Инструкция

Видео по теме

В той системе счета, которой мы пользуемся каждый день, десять цифр - от нуля до девяти. Поэтому она называется десятичной. Однако в технических расчетах, особенно тех, которые имеют отношение к компьютерам, используются и другие системы , в частности, двоичная и шестнадцатеричная. Поэтому нужно уметь переводить числа из одной системы счисления в другую.

Вам понадобится

  • - листок бумаги;
  • - карандаш или ручка;
  • - калькулятор.

Инструкция

Двоичная система - самая простая. В ней всего две цифры - ноль и единица. Каждая цифра двоичного числа , начиная с конца, соответствует степени двойки. Два в равняется одному, в первой - двум, во второй - четырем, в третьей - восьми, и так далее.

Предположим, что вам дано двоичное число 1010110. Единицы в нем стоят на втором, третьем, пятом и седьмом с конца местах. Поэтому в десятичной системе это число равно 2^1 + 2^2 + 2^4 + 2^6 = 2 + 4 + 16 + 64 = 86.

Обратная задача - десятичного числа систему. Предположим, у вас есть число 57. Чтобы получить его запись, вы должны последовательно делить это число на 2 и записывать остаток от деления. Двоичное число будет строиться от конца к началу.
Первый шаг даст вам последнюю цифру: 57/2 = 28 (остаток 1).
Затем вы получаете вторую с конца: 28/2 = 14 (остаток 0).
Дальнейшие шаги: 14/2 = 7 (остаток 0);
7/2 = 3 (остаток 1);
3/2 = 1 (остаток 1);
1/2 = 0 (остаток 1).
Это последний шаг, потому что результат деления равен нулю. В итоге вы получили двоичное число 111001.
Проверьте правильность ответа: 111001 = 2^0 + 2^3 + 2^4 + 2^5 = 1 + 8 + 16 + 32 = 57.

Вторая , используемая в компьютерных вопросах - шестнадцатеричная. В ней не десять, а шестнадцать цифр. Чтобы не новых условных обозначений, первые десять цифр шестнадцатеричной системы обозначаются обычными цифрами, а остальные шесть - латинскими буквами: A, B, C, D, E, F. десятичной записи они соответствуют числа м от 10 до 15. Во избежание путаницы перед числом, записанным по шестнадцатеричной системе, ставят знак # или символы 0x.

Чтобы число из шестнадцатеричной системы , нужно каждую его цифру умножить на соответствующую степень шестнадцати и сложить результаты. Например, число #11A в десятичной записи равняется 10*(16^0) + 1*(16^1) + 1*(16^2) = 10 + 16 + 256 = 282.

Обратный перевод из десятичной системы в шестнадцатеричную совершается тем же методом остатков, что и в двоичную. Например, возьмите число 10000. Последовательно деля его на 16 и записывая остатки, вы получите:
10000/16 = 625 (остаток 0).
625/16 = 39 (остаток 1).
39/16 = 2 (остаток 7).
2/16 = 0 (остаток 2).
Результатом вычислений станет шестнадцатеричное число #2710.
Проверьте правильность ответа: #2710 = 1*(16^1) + 7*(16^2) + 2*(16^3) = 16 + 1792 + 8192 = 10000.

Переводить числа из шестнадцатеричной системы в двоичную гораздо проще. Число 16 является двойки: 16 = 2^4. Поэтому каждую шестнадцатеричную цифру можно записать как четырехзначное двоичное число. Если у вас в двоичном числе получается меньше четырех знаков, добавляйте в начало нули.
Например, #1F7E = (0001)(1111)(0111)(1110) = 1111101111110.
Проверьте правильность ответа: оба числа в десятичной записи равны 8062.

Для перевода вам нужно разбить двоичное число на группы по четыре цифры, начиная с конца, и каждую такую группу заменить шестнадцатеричной цифрой.
Например, 11000110101001 превращается в (0011)(0001)(1010)(1001), что в шестнадцатеричной записи дает #31A9. Правильность ответа подтверждается переводом в десятичную запись: оба числа равны 12713.

Совет 5: Как перевести число в двоичную систему исчисления

Благодаря ограниченности в использовании символов двоичная система является наиболее удобной для использования в компьютерах и других цифровых устройствах. Символов всего два: 1 и 0, поэтому эту систему применяют в работе регистров.

Инструкция

Двоичная является позиционной, т.е. позиции каждой цифры в числе соответствует определенный разряд, который равен двум в соответствующей степени. Степень начинается с нуля и увеличивается по мере движения справа налево. Например, число 101 равно 1*2^0 + 0*2^1 + 1*2^2 = 5.

Широким распространением среди позиционных систем пользуются также восьмеричная, шестнадцатеричная и десятичная системы . И если для первых двух более применим второй метод, то для перевода из применимы оба.

Рассмотрим десятичного числа в двоичную систему методом последовательного деления на 2.Чтобы перевести десятичное число 25 в

Самые распространенные в современном мире методы расчетов - десятичный и двоичный. Они используются в совершенно разных областях, но оба одинаково важны. Нередко требуется и перевод из двоичной в десятичную систему или наоборот. Названия произошли от оснований, которые зависят от того, сколько знаков используется в записи чисел. В двоичной это только 0 и 1, а в десятичной - от 0 до 9. В других системах помимо цифр используются буквы, другие значки и даже иероглифы, но практически все они уже давно устарели. Поскольку даже другие разновидности числовых систем гораздо менее распространены, то что речь пойдет прежде всего о двух уже упомянутых. На самом деле удивительно, как все это можно было придумать. Поговорим на эту тему отдельно.

История возникновения

Даже сейчас, когда, казалось бы, весь мир считает одинаково, встречаются самые разные системы. В самых отдаленных уголках земного шара довольствуются лишь понятиями "один", "два" и "много", или чем-то подобным. Что уж говорить о тех временах, когда людям было гораздо сложнее контактировать друг с другом, так что использовалось огромное количество самых разных видов записей и методов подсчетов. Человечество далеко не сразу пришло к существующей системе, и это отражается в том, что час разделен на 60 минут, а не на 100 отрезков времени, что было бы, кажется, логичней. И в то же время люди чаще считают десятками, чем дюжинами. Все это отголоски того времени, когда инструментами для количественной оценки чего-либо служили собственные пальцы или, например, фаланги некоторых из них. Так возникли десятичная и двенадцатиричная системы. Но как же возникла двоичная? Очень просто и логично. Дело в том, что, например, у диодов есть всего два положения: он может быть либо включен, либо выключен. Первое состояние, таким образом, можно записать как 1, а второе - как 0. Однако это не означает, что двоичная система возникла одновременно с электронными приборами. Ее использовали гораздо раньше, например, Лейбниц считал ее крайне удобной, изящной и простой. Даже удивительно, что эта система счисления не стала в итоге основной.

Сферы применения

Для большинства людей две основные системы счисления просто не пересекаются. Так что осуществлять перевод из двоичной в десятичную - задача, посильная не для всех. Дело в том, что последняя система используется в обиходе, общении между людьми, при простых подсчетах и т. д. А вот на языке двоичной говорят все цифровые приборы, в первую очередь компьютеры. Любая информация, находящаяся в памяти каждого настольного ПК, планшета, телефона, ноутбука и многих других приборов - это различные сочетания нулей и единиц.

Отличия и особенности

Когда речь идет о системах счисления, обязательно необходимо как-то разграничить их. Ведь отличить 11 или 100 в разных методах записи просто так совершенно невозможно. Именно поэтому используется указатель ниже и правее самого числа. Так что, увидев запись 11 2 или 100 10 , можно понять, о чем идет речь. Обе системы являются позиционными, то есть от места той или иной цифры зависит ее значение. О разрядах десятичной системы рассказывают в школе: там есть единицы, десятки, сотни, тысячи и т. д. В двоичной все то же самое. Но в связи с тем, что ее основание - 2 - меньше 10, то разрядов ей нужно гораздо больше, то есть запись чисел получается гораздо длиннее. Кстати, в двоичной, как и во всех других системах, кроме десятичной, как самой распространенной, чтение происходит особым образом. Если основание 10 дает возможность прочесть 101 как "сто один", то для 2 это будет "один ноль один".

Возвращаясь к вопросу разрядов, необходимо повторить, что в связи с гораздо меньшим основанием требуется больше разрядов. Так, например, 8 10 - это 1000 2 . Разница очевидна - один разряд и четыре. Еще одно серьезное отличие - в двоичной системе не существует отрицательных чисел. Разумеется, записать его можно, но храниться и зашифровываться оно все равно будет иначе. Итак, как же производится перевод из двоичной системы счисления в десятичную и наоборот?

Алгоритм

Достаточно редко, но все-таки иногда приходится осуществлять переход от одного основания к другому. Иными словами, возникает потребность в том, чтобы произвести перевод из двоичной системы в десятичную и наоборот. Современные компьютеры делают это легко и быстро, даже если записи очень длинные и объемные. Люди тоже могут это делать, хоть и гораздо медленнее и менее эффективно. Провести и одну, и вторую операцию не так уж и сложно, но требуются знания, как это делать, внимательность и практика. Для того чтобы перейти от основания 2 к 10, необходимо проделать следующие шаги:

2) последовательно умножить значение на 2, возведенное в степень, равную номеру позиции;

3) сложить полученные результаты.

Еще один способ - начать суммировать произведения цифр последовательно справа налево. Это называется преобразованием методом Горнера и многим кажется более удобным, чем обычный алгоритм.

Для того чтобы провести обратную операцию, то есть перейти от десятичной системы к двоичной, нужно сделать вот что:

1) разделить изначальное число на 2 и записать остаток (1 или 0);

2) повторять шаг 1 до момента, когда останется только 0 или 1;

3) записать полученные значения по порядку.

Существуют и другие способы провести перевод из двоичной в десятичную систему счисления и наоборот. Но они не имеют никакого преимущества перед описанным алгоритмом, не являются более эффективными. Зато они требуют навыков осуществления арифметических действий в двоичной системе, что доступно очень немногим.

Дроби

К счастью или сожалению, но факт остается фактом - в двоичной системе используются не только целые числа. Перевод дробей - не слишком сложная, но зачастую трудоемкая для человека задача. Если изначальное число представлено в десятичной системе, то после преобразования целого числа все, что после запятой, нужно уже не делить, а умножать на 2, записывая целые части. Если же производится перевод из двоичной в десятичную систему, то все еще проще. В этом случае, когда начнется преобразование части после запятой, степень, в которую возводится 2, будет последовательно равняться -1, -2, -3 и т. д. Лучше всего будет рассмотреть это на практике.

Пример

Для того чтобы понять, как применять описанные алгоритмы, необходимо проделать все операции самостоятельно. Практикой всегда можно закрепить теорию, так что лучше всего будет рассмотреть следующие примеры:

  • перевод 1000101 2 в десятичную систему: 1х2 6 + 0х2 5 + 0х2 4 + 0х2 3 + 1х2 2 + 0х2 1 + 1х2 0 = 64+0+0+0+4+1 = 69 10 ;
  • с помощью метода Горнера. 00110111010 2 = 0х2+0=0х2+0=0х2+1=1х2+1=3х2+0=6х2+1=13х2+1=27х2+1=55х2+0=110х2+1=221х2+0=442 10 ;
  • 1110,01 2: 1х2 3 + 1х2 2 + 1х2 1 + 0х2 0 + 0х2 -1 + 1х2 -2 = 8+4+2+0,25 = 14,25 10 ;
  • из десятичной системы: 15 10 = 15/2=7(1)/2=3(1)/2=1(1)/2=0(1)= 1111 2 ;

Как не запутаться?

Даже на примере лишь двоичной и десятичной систем становится ясно, что смена основания вручную - нетривиальная задача. А ведь есть еще и другие: шестнадцатиричная, восьмеричная, шестидесятиричная и т. д. При ручном переводе из одной системы счисления в другую крайне необходима внимательность. Не запутаться действительно сложно, особенно если запись длинная. Кроме того, нельзя забывать, что разряды считаются с 0, а не 1, то есть количество цифр всегда будет на одну больше. Разумеется, нужно внимательно подсчитывать число разрядов и не допускать ошибок в арифметических действиях и, конечно, не пропускать шаги в алгоритме. В конечном итоге, существуют способы осуществлять переход между основаниями программными методами. Но здесь проще самостоятельно написать скрипт, чем искать его на просторах всемирной сети. В любом случае, навыки ручного перевода, как и теоретическое представление о том, как это делается, тоже должны быть.

Замечание 1

Если вы хотите перевести число из одной системы счисления в другую, то удобнее для начала перевести его в десятичную систему счисления, и уже только потом из десятичной перевести в любую другую систему счисления.

Правила перевода чисел из любой системы счисления в десятичную

В вычислительной технике, использующей машинную арифметику, большую роль играет преобразование чисел из одной системы счисления в другую. Ниже приведем основные правила таких преобразований (переводов).

    При переводе двоичного числа в десятичное требуется представить двоичное число в виде многочлена , каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $2$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_2=A_n \cdot 2^{n-1} + A_{n-1} \cdot 2^{n-2} + A_{n-2} \cdot 2^{n-3} + ... + A_2 \cdot 2^1 + A_1 \cdot 2^0$

Рисунок 1. Таблица 1

Пример 1

Число $11110101_2$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $1$ степеней основания $2$, представим число в виде многочлена:

$11110101_2 = 1 \cdot 27 + 1 \cdot 26 + 1 \cdot 25 + 1 \cdot 24 + 0 \cdot 23 + 1 \cdot 22 + 0 \cdot 21 + 1 \cdot 20 = 128 + 64 + 32 + 16 + 0 + 4 + 0 + 1 = 245_{10}$

    Для перевода числа из восьмеричной системы счисления в десятичную требуется представить его в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $8$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_8 = A_n \cdot 8^{n-1} + A_{n-1} \cdot 8^{n-2} + A_{n-2} \cdot 8^{n-3} + ... + A_2 \cdot 8^1 + A_1 \cdot 8^0$

Рисунок 2. Таблица 2

Пример 2

Число $75013_8$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $2$ степеней основания $8$, представим число в виде многочлена:

$75013_8 = 7\cdot 8^4 + 5 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 3 \cdot 8^0 = 31243_{10}$

    Для перевода числа из шестнадцатеричной системы счисления в десятичную необходимо его представить в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $16$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_{16} = A_n \cdot 16^{n-1} + A_{n-1} \cdot 16^{n-2} + A_{n-2} \cdot 16^{n-3} + ... + A_2 \cdot 16^1 + A_1 \cdot 16^0$

Рисунок 3. Таблица 3

Пример 3

Число $FFA2_{16}$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $3$ степеней основания $8$, представим число в виде многочлена:

$FFA2_{16} = 15 \cdot 16^3 + 15 \cdot 16^2 + 10 \cdot 16^1 + 2 \cdot 16^0 =61440 + 3840 + 160 + 2 = 65442_{10}$

Правила перевода чисел из десятичной системы счисления в другую

  • Для перевода числа из десятичной системы счисления в двоичную его необходимо последовательно делить на $2$ до тех пор, пока не останется остаток, меньший или равный $1$. Число в двоичной системе представить как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример 4

Число $22_{10}$ перевести в двоичную систему счисления.

Решение:

Рисунок 4.

$22_{10} = 10110_2$

  • Для перевода числа из десятичной системы счисления в восьмеричную его необходимо последовательно делить на $8$ до тех пор, пока не останется остаток, меньший или равный $7$. Число в восьмеричной системе счисления представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 5

Число $571_{10}$ перевести в восьмеричную систему счисления.

Решение:

Рисунок 5.

$571_{10} = 1073_8$

  • Для перевода числа из десятичной системы счисления в шестнадцатеричную систему его необходимо последовательно делить на $16$ до тех пор, пока не останется остаток, меньший или равный $15$. Число в шестнадцатеричной системе представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 6

Число $7467_{10}$ перевести в шестнадцатеричную систему счисления.

Решение:

Рисунок 6.

$7467_{10} = 1D2B_{16}$

    Для того чтобы перевести правильную дробь из десятичной системы счисления в недесятичную, необходимо дробную часть преобразуемого числа последовательно умножить на основание той системы, в которую ее требуется перевести. Дробь в новой системе будет представлена в виде целых частей произведений, начиная с первого.

    Например: $0,3125_{(10)}$ в восьмеричной системе счисления будет выглядеть как $0,24_{(8)}$.

    В данном случае можно столкнуться с проблемой, когда конечной десятичной дроби может соответствовать бесконечная (периодическая) дробь в недесятичной системе счисления. В данном случае количество знаков в дроби, представленной в новой системе, будет зависеть от требуемой точности. Также нужно отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.

Правила перевода чисел из двоичной системы счисления в другую

  • Чтобы перевести число из двоичной системы счисления в восьмеричную, его необходимо разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, затем каждую триаду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Рисунок 7. Таблица 4

Пример 7

Число $1001011_2$ перевести в восьмеричную систему счисления.

Решение . Используя таблицу 4, переведем число из двоичной системы счисления в восьмеричную:

$001 001 011_2 = 113_8$

  • Чтобы перевести число из двоичной системы счисления в шестнадцатеричную, его следует разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, затем каждую тетраду заменить соответствующей восьмеричной цифрой согласно таблице 4.
Для микросхем компьютера важно лишь одно. Либо сигнал есть (1), либо его нет (0). Но записывать программы в двоичном коде - дело нелегкое. На бумаге получаются очень длинные комбинации из нулей и единиц. Человеку их тяжело.

Использование привычной всем десятичной системы в компьютерной документации и программировании очень неудобно. Преобразования из двоичной в десятичную системы и обратно - весьма трудоемкие процессы.

Происхождение восьмеричной системы, так же как и десятичной, связывают со счетом на пальцах. Но считать нужно не пальцы, а промежутки между ними. Их как раз восемь.

Решением проблемы стала восьмеричная . По крайней мере на заре компьютерной техники. Когда разрядность процессоров была невелика. Восьмеричная система позволила с легкостью переводить как двоичные числа в восьмеричные, так и наоборот.

Восьмеричная система счисления - система счисления с основанием 8. Для представления чисел в ней используются цифры от 0 до 7.

Преобразование

Для того чтобы перевести число в двоичное, необходимо заменить каждую цифру восьмеричного числа на тройку из двоичных цифр. Важно лишь запомнить, какая двоичная комбинация соответствует цифрам числа. Их совсем немного. Всего восемь!
Во всех системах счисления, кроме десятичной, знаки читаются по одному. Например, в восьмеричной системе число 610 произносится «шесть, один, ноль».

Видео по теме

У компонентов электронных машин, к которым относятся и компьютеры, есть только два различимых состояния: есть ток и нет тока. Их обозначают "1" и "0" соответственно. Поскольку таких состояний только два, многие процессы и операции в электронике можно описать с помощью двоичных чисел.

Инструкция

Делим десятичное число на два до тех пор, пока не получим неделимый на два остаток. На шаге получим остаток 1 (если число было нечетным) или 0 (если делимое делится на два без остатка). Все эти остатки обязательно должны быть учтены. Последнее частное, полученное в результате такого пошагового деления, всегда будет единицей.
Записываем последнюю единицу в старший разряд искомого двоичного , а полученные в процессе остатки записываем за этой единицей в обратном порядке. Здесь надо быть внимательным и не пропускать нули.
Таким образом, числу 235 в двоичном коде будет соответствовать число 11101011.

Теперь переведем в двоичную систему счисления дробную часть десятичного числа. Для этого последовательно умножаем дробную часть числа на 2 и фиксируем целые полученных . Эти целые части дописываем к полученному в предыдущем шаге числу после двоичной в прямом порядке.
Тогда десятичному дробному числу 235.62 соответствует двоичное дробное 11101011.100111.

Видео по теме

Обратите внимание

Двоичная дробная часть числа будет конечной, только если дробная часть исходного числа конечна и заканчивается на 5. Простейший случай: 0.5 х 2 = 1, следовательно 0.5 в десятичной системе - это 0.1 в двоичной.

Источники:

  • Перевод десятичных чисел в двоичную систему счисления в 2019

Совет 4: Как перевести в десятичную систему двоичные числа

Двоичная или бинарная система счисления применяется для отображения электронной информации. Любое число можно записать в двоичном виде. Двоичная система используется во всех вычислительных машинах. Каждая запись в них кодируется по определенным правилам с помощью набора двух символов: 0 и 1. Перевести двоичное число в его десятичное представление, более удобное пользователю, можно с помощью разработанного алгоритма.

Инструкция

Представьте число в виде записи степеней по 2. Для этого все восемь цифр последовательно умножаем на число 2, возведенное в . Степень должна соответствовать разряду цифры. Разряд считается от нуля, начиная с младшего, самого правого символа двоичного числа . Все восемь составленных произведений запишите в .

Совет 5: Как записывать десятичное число в двоичной системе счисления

Десятичная система счисления – одна из самых распространенных в математической теории. Однако с появлением информационных технологий, двоичная система получила не менее широкое распространение, поскольку она является основным способом представления информации в компьютерной памяти.

Инструкция

Преобразование из десятичной системы в двоичную реализуется как для целых чисел, так и для дробных. Перевод целого десятичного числа производится методом последовательного деления его на 2. При этом количество итераций (действий) увеличивается до тех пор, пока частное не станет равно нулю, а итоговое двоичное число записывается в виде полученных остатков справа налево.

Например, преобразования числа 19 выглядит так:19/2 = 18/2 + 1 = 9, в остатке – 1, пишем 1;9/2 = 8/2 + 1 = 4, в остатке – 1, пишем 1;4/2 = 2, остаток отсутствует, пишем 0;2/2 = 1, остаток отсутствует, пишем 0;1/2 = 0 + 1, в остатке – 1, пишем 1.Итак, после метода последовательного деления к числу 19 получилось двоичное число 10011.

Фраза о том, что все новое - это не что иное, как хорошо забытое старое, в полной мере относится к Оказывается, что еще в древнем Китае уже применяли нечто, напоминающее наши «единичка-нолик», правда не для арифметики, а для написания текстов книги Перемен. Ближе всех к пониманию разных систем счисления были инки: они использовали и десятичную, и двоичную системы, правда, последнюю только для текстовых и кодированных сообщений. Можно предположить, что уже тогда, 4 тыс. лет назад, инки знали, как делается перевод из двоичной в десятичную систему.

Современный вариант был предложен Лейбницем всего-то около 300 лет назад, а спустя еще полтора века оставил свое имя в памяти потомков работой по алгебре логики. Двоичная арифметика совместно с алгеброй логики стала фундаментом нынешней цифровой техники. А началось все в 1937 году, когда был предложен метод символического анализа релейных и переключательных схем. Эта работа Клода Шенона стала «мамой» для релейного компьютера, выполнявшего двоичное сложение уже в 1937 году. И, конечно же, одной из задач этого «прадедушки» современных компьютеров был перевод из двоичной в десятичную систему.

Прошло всего три года и очередная модель релейного «компьютера» посылала команды калькулятору используя телефонную линию и телетайп - ну прямо древний интернет в действии.

Что же представляют собой двоичная, десятичная, шестнадцатеричная и, вообще говоря, любая N-ичная система? Да ничего сложного. Возьмем трехзначное число в нашей любимой десятичной системе, оно изображается при помощи 10 знаков - от 0 до 9 с учетом их расположения. Определимся, что цифры этого числа находятся на позициях 0, 1, 2 (порядок идет от последней цифры к первой). На каждой из позиций может находиться любое из чисел системы, однако величина этого числа определяется не только его начертанием, но и местом положения. Например, для числа 365 (соответственно, позиция 0 - цифра 5, позиция 1 - цифра 6, и позиция 2 - цифра 3) значение числа на нулевой позиции - просто 5, на первой позиции - 6*10, и на второй - 3*10*10. Здесь любопытно, что начиная с первой позиции, число содержит значащую цифру (от 0 до 9) и основание системы в степени равной номеру позиции, т.е. можно записать, что 345 = 3*10*10 + 6*10 +3 = 3*102 + 6*101 + 5*100.

Еще пример:

260974 = 2*105 + 6*104 + 0*103 + 9*102 + 7*101 + 4*100.

Как видим, каждое позиционное место содержит значащее число из набора данной системы, и множитель из основания системы в степени равной позиции данного числа (разрядность числа это есть количество позиций, но на +1 больше).

С точки зрения представления числа, его двоичная форма озадачивает своей простотой - только 2 числа в системе - 0 и 1. Но красота математики в том, что даже в усеченном виде, как может показаться, двоичные числа такие же полноценные и равноправные, как и их более «рослые товарищи». Но как же их сравнивать, например, с десятичным числом? Как вариант, нужно сделать, и не торопясь, перевод из двоичной в десятичную. Задачу не назовешь трудной, но эта кропотливая работа требует внимания. Итак, начнем.

Исходя из сказанного выше о порядке представления чисел в любой системе, и имея в виду простейшую из них - двоичную, возьмем любую последовательность «единичек-ноликов». Назовем это число VO (по-русски ВО), и попробуем узнать, что это такое - перевод из двоичной в десятичную систему. Пусть это будет VO=11001010010. На первый взгляд, число как число. Посмотрим!

В первой строке расположим само число в растянутом виде, а вторую распишем как сумму каждой позиции в виде сомножителей - значащей цифры (здесь выбор небольшой - 0 или 1) и числа 2 в степени, равной позиционному числу в десятичной системе, мы же делаем перевод из двоичной в десятичную. Теперь во второй строке нужно просто выполнить вычисления. Для наглядности можно дописать еще и третью строку с промежуточными вычислениями.

VO = 1 1 0 0 1 0 1 0 0 1 0;

VO = 1*210 + 1*29 + 0*28 + 0*27 + 1*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*21 + 0*20;

VO=1*1024 + 1*512+0*256+0*128+ 1*64 + 0*32 + 1*16 + 0*8 +0*4 + 1*2 + 0*1.

Вычисляем «арифметику» в третьей строке и имеем то, что искали: VO = 1618. Ну и что же тут замечательного? А то, что это число - самое знаменитое из всех, которые известны людям: с ним связаны пропорции египетских пирамид, знаменитой Джоконды, музыкальных нот и человеческого тела, но… Но с небольшим уточнением - зная, что хорошего должно быть много, его величество случай дал нам это число в 1000 раз больше настоящего значения - 1,618. Наверное, чтобы всем досталось. А попутно перевод из двоичной системы в десятичную помог из бесконечного моря чисел «выловить» самое замечательное - его еще называют «золотая пропорция».