Сайт о телевидении

Сайт о телевидении

» » Хабрахабр метод ветвей и границ. Метод ветвей и границ решения целочисленных задач линейного программирования

Хабрахабр метод ветвей и границ. Метод ветвей и границ решения целочисленных задач линейного программирования

Введение

При рассмотрении целого ряда задач, необходимо учитывать требование целочисленности используемых переменных. Методы решения задач линейного программирования не гарантируют целочисленности решения.

Иногда задачи целочисленного линейного программирования решают приближенно. Для этого решают задачу без учета целочисленности переменных, затем в полученном оптимальном решении округляют результаты до ближайших целых значений. Использование таких решений допустимо в тех ситуациях, где значения переменных достаточно велики, и погрешностью округления можно пренебречь. Если значения переменных невелики, то округление может привести к значительному расхождению с оптимальным решением.

Одним из широко распространенных методов решения целочисленных задач является метод ветвей и границ, впервые, он был предложен Ленд и Дойг в 1960 г.

ветвь граница линейное программирование

Метод ветвей и границ

Алгоритм метода ветвей и границ предусматривает декомпозицию исходной задачи линейного программирования (ЗЛП) на последовательность задач, содержащих дополнительные ограничения на переменные, которые затем оптимизируются.

1. Процесс начинают с решения задачи симплексным или графическим методом без учета требования на целочисленность переменных. Эту задачу называют ЗЛП-0. Если все переменные оптимального плана целые, то этот план также является оптимальными для задач целочисленного программирования.

2. Если некоторая переменная, не получила целочисленного значения, то производится ветвление на две новые задачи ЗЛП-1, ЗЛП-2. Одна из задач ЗЛП-1 представляет собой задачу ЗЛП-0, дополненную ограничением где - целая часть числа. Вторая образуется путем добавления к задаче ЗЛП-0 ограничения. Следует отметить, что выбор целочисленной переменной может быть произвольным определяться следующим образом:

по возрастанию или убыванию индексов;

переменная представляет важное решение принимаемое в рамках данной задачи;

коэффициент в целевой функции при этой переменной существенно превосходит все остальные.

3. Задачи ЗЛП-1 и ЗЛП-2 решаются самостоятельно. Ветвь оканчивается, если область допустимых решений пуста, либо её оптимальное решение полностью целочисленное. В противном случае возникает необходимость ветвления с п.2, обозначая следующие номера задач ЗЛП в естественном порядке ЗЛП-3, ЗЛП-4.

Процесс решения можно представить в виде дерева, в котором вершина ЗЛП-0 отвечает начальному плану решения задачи, а каждая из соединенных с ней ветвью вершин отвечает оптимальному плану следующей задачи.

Рассмотрим следующий пример. Максимизировать целевую функцию

при ограничениях

Воспользуемся графическим методом решения задачи линейного программирования.

1. Решим исходную задачу без учета требования целочисленности переменных.

Обозначим эту задачу линейного программирования ЗЛП-0.

На рисунке 1.1 штриховкой выделен многоугольник решений данной задачи. Максимальное значение достигается в точке Решение не является целочисленным.

Следующий шаг метода ветвей и границ состоит в ветвлении по одной из целочисленных переменных, имеющих дробное значение, например. Для этого добавим к задаче ЗЛП-0 два новых ограничения и Этими ограничениями удаляется интервал = в котором нет целых значений. Таким образом, в процессе ветвления создаются две новые задачи ЗЛП-1 и ЗЛП-2.

Рисунок 1.1 Решение задачи ЗЛП-0

2. Решим задачу ЗЛП-1 графически.

На рисунке 1.2 изображена допустимая область задачи ЗЛП-1. Максимальное значение достигается в точке. Решение задачи нецелочисленное.

Рисунок 1.2 Решение задачи ЗЛП-1

3. Решим задачу ЗЛП-2 графически.

В данном случае множество допустимых решений пусто (рисунок 1.2). Система ограничений несовместна, и задачу ЗЛП-2 можно исключить из дальнейшего рассмотрения.

Рисунок 1.3 Решение задачи ЗЛП-2

Теперь продолжим исследование задачи ЗЛП-1, поскольку значение нецелое. Произведем еще одно ветвление, путем введения ограничений и. В результате получаем две новые задачи ЗЛП-3 и ЗЛП-4.

Метод ветвей и границ относится к комбинаторным методам решения целочисленных задач и применим как к полностью, так и к частично целочисленным задачам.

Суть метода ветвей и границ – в направленном частичном переборе допустимых решений. Будем рассматривать . Вначале она решается без ограничений на целочисленность. При этом находится верхняя граница F(x), так как целочисленное решение не может улучшить значение функции цели.

Далее в методе ветвей и границ область допустимых значений переменных (ОДЗП) разбивается на ряд непересекающихся областей (ветвление), в каждой из которых оценивается экстремальное значение функции. Если целое решение не найдено, ветвление продолжается.

Ветвление производится последовательным введением дополнительных ограничений. Пусть x k – целочисленная переменная, значение которой в оптимальном решении получилось дробным. Интервал [β k ] ≤ x k ≤ [β k ]+1 не содержит целочисленных компонентов решения. Поэтому допустимое целое значение x k должно удовлетворять одному из неравенств x k ≥[β k ]+1 или x k ≤[β k ]. Это и есть дополнительные ограничения. Введение их в методе ветвей и границ на каждом шаге порождает две не связанные между собой подзадачи. Каждая подзадача решается как задача линейного программирования с исходной целевой функцией. После конечного числа шагов будет найдено целочисленное оптимальное решение.

Применение метода ветвей и границ рассмотрим на конкретном примере.

Пример 1. Методом ветвей и границ F(x) = 2x 1 + 3x 2 при ограничениях

3x 1 +4x 2 ≤24

2x 1 +5x 2 ≤22

x 1,2 ≥0 - целые

1-й шаг метода ветвей и границ. с отброшенными условиями целочисленности с помощью симплекс-метода (табл. 1 – 3).

По данным табл. 3 запишем оптимальное нецелое решение

; x * 2 =2 4 ; F max =16 6
7 7

Таблица 1 - симплекс-таблица для задачи ЛП

Таблица 2 - симплекс-таблица для задачи ЛП

Таблица 3 - симплекс-таблица для задачи ЛП

Графическая интерпретация задачи приведена на рис. 1. Здесь ОДЗП представлена четырехугольником ABCD, а координаты вершины С совпадают с x * 1 и x * 2 . Обе переменные в оптимальном решении являются нецелыми, поэтому любая из них может быть выбрана в качестве переменной, инициирующей процесс ветвления.

Пусть это будет x 2 . Выбор x 2 порождает две подзадачи (2 и 3), одна из них получается путем добавления ограничения x 2 ≥3 к исходной задаче, а другая – путем добавления ограничения x 2 ≤2. При этом ОДЗП разбивается на две заштрихованные области (рис. 1), а полоса значений 2 < x 2 < 3 исключается из рассмотрения. Однако множество допустимых целочисленных решений сохраняется, порожденные подзадачи содержат все целочисленные решения исходной задачи.

Рисунок 1 - графическая интерпритация решения примера методом ветвей и границ

2-й шаг метода ветвей и границ. Осуществляется выбор одной из обозначенных ранее подзадач. Не существует точных методов определения, какой из подзадач отдать предпочтение. Случайный выбор приводит к разным последовательностям подзадач и, следовательно, к различным количествам итераций, обеспечивающих получение оптимального решения.

Пусть вначале решается подзадача 3 с дополнительным ограничением x 2 ≤2 или x 2 + x 5 = 2 . Из табл. 3 для переменной x 2 справедливо следующее выражение -2/7x 3 +3/7x 4 +x 2 =18/7 или x 2 =18/7+2/7x 3 -3/7x 4 , тогда 2/7x 3 -3/7x 4 +x 5 =-4/7 . Включаем ограничение в табл. 3, при этом получим новую таблицу (табл. 4).

Осуществляя оптимизацию решения, переходим к табл. 5, которой соответствует решение

; x * 2 =2 ; F max =16 2
3

Переменная x 1 нецелая, поэтому ветвление необходимо продолжить; при этом возникают подзадачи 4 и 5 с ограничениями x 1 ≤5 и x 1 ≥6 соответственно. Полоса значений 5 < x 1 < 6 исключается из рассмотрения.

Таблица 5 - симплекс-таблица для задачи ЛП

3-й шаг метода ветвей и границ. Решаются подзадачи 4 и 5. Из рис. 1 видно, что оптимальное целочисленное решение подзадачи 4 достигается в вершине К с координатами x * 1 =5, x * 2 =2, однако это не означает, что найден оптимум исходной задачи. Причиной такого вывода являются еще не решенные подзадачи 3 и 5, которые также могут дать целочисленные решения. Найденное целочисленное решение F = 16 определяет нижнюю границу значений целевой функции, т.е. меньше этого значения оно быть не должно.

Подзадача 5 предполагает введение дополнительного ограничения x 1 ≥6 в подзадачу 3 . Графическое решение на рис. 1 определяет вершину L с координатами x * 1 =6, x * 2 =3/2 , в которой достигается оптимальное решение подзадачи 5: F max = 16.5 . Дальнейшее ветвление в этом направлении осуществлять нецелесообразно, так как большего, чем 16, целого значения функции цели получить невозможно. Ветвление подзадачи 5 в лучшем случае приведёт к другому целочисленному решению, в котором F = 16.

4-й шаг метода ветвей и границ. Исследуется подзадача 2 с ограничением x 2 ≥3, находится её оптимальное решение, которое соответствует вершине М (рис. 1) с координатами x * 1 =3.5, x * 2 =3. Значение функции цели при этом F max =16, которое не превышает найденного ранее решения. Таким образом, поиск вдоль ветви x 2 ≥3 следует прекратить.

Отметим, что алгоритм метода ветвей и границ является наиболее надёжным средством решения целочисленных задач, он положен в основу большинства прикладных программ для ПЭВМ, используемых для этих целей.

Для решения задач линейного программирования имеется широкий набор разнообразных машинных программ, которые избавляют от трудоёмкого процесса вычислений вручную. Однако интерпретация информации, выведенной на печать, невозможна без чёткого представления о том, почему и как работает .

Коммивояжер (бродячий торговец) желает посетить ряд городов и вернуться в исходный город, минимизируя суммарную длину (стоимость) переездов. Эта задача в математической форме формулируется как задача нахождения во взвешенном графе гамильтонова цикла минимальной длины и называется задачей коммивояжера.

В качестве её практического приложения можно указать следующее. Пусть имеется станок, способный выполнять несколько операций. Его перенастройка с одной операции на другую требует определенных затрат. Требуется использовать станок в циклическом режиме, минимизируя суммарные затраты на перенастройку.

В данной задаче перенастройка с одной операции на другую и обратная перенастройка могут требовать, вообще говоря, различных затрат. Поэтому и в общем случае в задаче коммивояжера рассматривается взвешенный ориентированный граф, дуги которого в прямом и обратном направлении могут иметь различные веса.

Для решения задачи коммивояжера можно попытаться использовать «жадный алгоритм», успешно примененный в задаче о минимальном остовном дереве. Упорядочим предварительно дуги по весам и будем включать дуги минимального веса, следя за тем, чтобы не возникли вершины, полустепень исхода или захода которых превышает единицу, и не появились негамильтоновы циклы. Однако, как легко убедиться, данный подход не гарантирует получение оптимального решения. В качестве простейшего контрпримера можно рассмотреть следующий граф.

Здесь каждому ребру соответствует две дуги такого же веса.

«Жадный алгоритм» прежде всего включит в цикл ребро
, как имеющее минимальный вес. Включение этого ребра, как непосредственно легко проверить, необходимо ведет к гамильтонову циклу
веса 29. Оптимальный

же гамильтонов цикл
имеет вес 12. Поэтому «жадный алгоритм» не гарантирует получения оптимального решения, хотя он может быть использован на практике в качестве полезной эвристики, во многих случаях приводящей к решениям, близким к оптимальным.

Для задачи коммивояжера не известно какого – либо эффективного алгоритма. Весьма вероятно, что такого алгоритма не существует, хотя это и не удалось до сих пор доказать. Подобные задачи не редки в дискретной математике. В случае небольшой размерности их точные решения удается получать на компьютере с помощью метода «ветвей и границ».

Под методом «ветвей и границ» понимается широкий класс методов сокращенного перебора, суть которых сводится к следующему. Множество допустимых решений А разбивается на два подмножества А 0 и А 1 , затем каждое из подмножеств также разбивается на два подмножества и т.д. Схематически это можно представить в виде дерева, начинающегося с множества всех решений и заканчивающегося его одноэлементными подмножествами, т.е. допустимыми решениями, которыми в нашем случае являются гамильтоновы циклы.

Среди допустимых решений выбирается оптимальное по функционалу качества, которым в нашем случае является длина гамильтонова цикла. Смысл метода «ветвей и границ» состоит, однако, в том, чтобы не просматривать все допустимые решения, а отсекать большинство ветвей на возможно более раннем этапе. Для этого с помощью эвристических соображений стараются сразу пойти по ветви, ведущей к решению, близкому по качеству к оптимальному. После этого большинство других ветвей отсекают с помощью границ для функционала качества, когда удается показать, что в подмножестве решений не содержится решения, лучшего по качеству, чем уже имеющееся.

Рассмотрим метод «ветвей и границ» на примере задачи коммивояжера. Пусть взвешенный орграф задан матрицей расстояний. Если некоторая дуга в графе отсутствует, то соответствующий элемент матрицы будем полагать равным ∞. Заметим, что если длины всех дуг, входящих в некоторую вершину, уменьшить на одно и то же число, то и длина оптимального гамильтонова цикла уменьшится на это же число. То же самое относится и к множеству выходящих дуг. Будем последовательно вычитать из строк и столбцов матрицы расстояний положительные числа так, чтобы элементы матрицы оставались неотрицательными. Так как длина оптимального гамильтонова цикла для графа с неотрицательной матрицей расстояний также неотрицательна, то сумма вычтенных количеств будет нижней границей для длины оптимального цикла исходного графа.

Рассмотрим пример. Пусть задан граф G с симметрической матрицей расстояний.

Значки « ∞ » на диагонали соответствуют отсутствию в графе петель – дуг, ведущих из вершины в эту же вершину. Получим, прежде всего, нижнюю границу для длины кратчайшего гамильтонового цикла. Из первой, второй, третьей и четвертой строк можно вычесть по единице, из пятой строки – два, а из пятого столбца можно вычесть ещё единицу. Это дает нижнюю границу 7, а матрица расстояний приобретает вид

Теперь выберем дугу для ветвления, т.е. разобьем множество гамильтоновых циклов на два подмножества: включающих и не включающих эту дугу. Мы рассчитываем, что данная дуга будет входить в оптимальный или близкий к оптимальному цикл. Для этого будем следовать следующему эвристическому правилу: из множества дуг нулевой длины выбирать ту, исключение которой ведет к максимальному росту нижней оценки. В нашем случае такой дугой является дуга (1,2). Запрещение этой дуги приводит к матрице

из первой строки и второго столбца которой можно вычесть по единице, что увеличивает нижнюю границу на 2 и делает её равной 9.

Включение же дуги (1,2) приводит к тому, что исключаются все остальные дуги, ведущие в вершину 2, и все остальные дуги, выходящие из вершины 1. Поэтому первую строку и второй столбец матрицы можно далее не рассматривать, и они вычеркиваются из матрицы. Кроме того, исключается дуга (2,1). Матрица принимает вид

Из её первой строки и первого столбца можно вычесть по единице, что приводит к матрице

Нижняя оценка здесь возрастает на 2 и также становится равной 9.

Нижняя оценка длины оптимального цикла остается неизменной.

Дуга (2,5) должна быть запрещена, как ведущая к появлению негамильтонова цикла, и матрица принимает вид

Нижняя оценка длины гамильтонова цикла остается, по – прежнему, равной 9.

Схематически представим проведенный анализ в виде дерева, где в кружочках стоят нижние оценки длины гамильтонова цикла.

Взглянув на это дерево, непосредственно убеждаемся, что полученный гамильтонов цикл является кратчайшим, т.к. движение по любой другой ветви дерева не может привести к более короткому циклу.

    Существует ли эффективный алгоритм для решения задачи коммивояжера? а) да; б) нет; в) неизвестно.

    Является ли описанный метод « ветвей и границ» эффективным алгоритмом для решения задачи коммивояжера? а) да; б) нет; в) неизвестно.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1 . Описание метода ветвей и границ

В основе метода ветвей и границ лежит идея последовательного разбиения множества допустимых решений на подмножества. На каждом шаге метода элементы разбиения подвергаются проверке для выяснения, содержит данное подмножество оптимальное решение или нет. Проверка осуществляется посредством вычисления оценки снизу для целевой функции на данном подмножестве. Если оценка снизу не меньше рекорда - наилучшего из найденных решений, то подмножество может быть отброшено. Проверяемое подмножество может быть отброшено еще и в том случае, когда в нем удается найти наилучшее решение. Если значение целевой функции на найденном решении меньше рекорда, то происходит смена рекорда. По окончанию работы алгоритма рекорд является результатом его работы.

Если удается отбросить все элементы разбиения, то рекорд - оптимальное решение задачи. В противном случае, из неотброшенных подмножеств выбирается наиболее перспективное (например, с наименьшим значением нижней оценки), и оно подвергается разбиению. Новые подмножества вновь подвергаются проверке и т.д.

При применении метода ветвей и границ к каждой конкретной задаче в первую очередь должны быть определены две важнейшие его процедуры: 1) ветвления множества возможных решений; 2) вычисления нижних и верхних оценок целевой функции.

1 . 1 Правила ветвления

В зависимости от особенностей задачи для организации ветвления обычно используется один из двух способов:

1. ветвление множества допустимых решений исходной задачи D;

2. ветвление множества D" получаемого из D путем снятия условия целочисленноти на переменные.

Первый способ ветвления обычно применяется для задач целочисленного программирования и заключается в выделении подобластей возможных решений путем фиксации значений отдельных компонент целочисленных оптимизационных переменных (рис. 1). На рис. 1-а дана геометрическая интерпретация области допустимых решений задачи целочисленного программирования, определяемой двумя линейными ограничениями и условиями неотрицательности переменных, и образующихся при ветвлении подобластей, а на рис. 1-б показана соответствующая схема ветвления.

Второй способ ветвления - более универсальный, чем первый. Для осуществления ветвления некоторой области D i " этим способом на D i " решается оптимизационная задача с целевой функцией исходной задачи и действительными переменными.

Ветвление осуществляется, если в оптимальном решении значение хотя бы одной целочисленной по исходной постановке задача переменной не является целочисленным. Среди этих переменных выбирается одна, например j - я. Обозначим ее значение в найденном оптимальном решении x 0 [j]. Говорят, что ветвление осуществляется по переменной x[j]. Область D i " разделяется на две подобласти D i1 " и D i2 " следующим образом:

где ] - целая часть значения x 0 [j]

На рис. 2 условно дана геометрическая интерпретация такого ветвления.

Размещено на http://www.allbest.ru/

Рис. 2. Геометрическая интерпретация ветвления

Видно, что при этом из области D i " удаляется часть между плоскостями вновь введенных ограничений. Так как переменная x[j] по условиям области допустимых решений исходной задачи - целочисленная, то из подобласти допустимых решений исходной задачи. D i (D i D i ") при таком изъятии не исключается ни одного решения.

1 . 2 Формирование нижних и верхних оценок целевой функции

Прежде чем начать обсуждение данного вопроса, необходимо сказать, что общепринятым является применение метода ветвей и границ для задачи, в которой направление оптимизации приведено к виду минимизации. Для компактности дальнейших обозначений и выкладок запишем задачу дискретного программирования, для которой будем применять метод ветвей и границ, в следующей обобщенной форме:

где х - вектор оптимизационных переменных, среди которых часть действительных, а часть целочисленных; f(x) - в общем случае нелинейная целевая функция; D - область допустимых решений задачи дискретного программирования общего вида.

Нижние оценки целевой дикции в зависимости от выбранного способа ветвления могут определяться либо для подобластей D i D либо для подобластей D i " D" (D i " и D" получены из соответствующих множеств D i и D путем снятия условий целочисленности на дискретные переменные).

Нижней оценкой целевой функции f(x) на множестве D i (или D i ") будем называть величину:

Вычисление нижних оценок в каждом конкретном случае может осуществляться с учетом особенностей решаемой задачи. При этом чтобы оценки наиболее эффективно, выполняли свою функцию, они должны быть как можно большими, т.е. быть как можно ближе к действительным значениям min f(x). Это необходимо в первую очередь для того, чтобы нижние оценки как можно точнее отражали действительное соотношение min f(x) на образовавшихся при ветвлении подмножествах и позволяли более точно определять направление дальнейшего поиска оптимального решения исходной задачи.

На рис. 3 показан такой идеальный случай, когда нижние оценки (соединены ломаной штрихпунктирной линией) правильно отражают соотношения между действительными минимальными значениями f(x) (соединены штриховой линией) для четырех подмножеств допустимых решений D 1 , D 2 , D 3 , D 4 .

Один из универсальных способов вычисления нижних оценок заключается в решении следующей задачи:

Определенная таким образом о i является нижней оценкой f(x) на D i (или D i "), так как D i D i ".

Если при решении задачи (4) установлено, что, то для общности будем полагать, что.

Необходимо отметить одно важное свойство нижних оценок, заключающееся в том, что их значения для образовавшихся при ветвлении подмножеств не могут быть меньше нижней оценки целевой функции на множестве, подвергавшемся ветвлению.

Совместно с нижней оценкой в методе ветвей и границ используются верхние оценки f(x). Как правило, вычисляют лишь одно значение верхней оценки, которую определяют как значение целевой функции для лучшего найденного допустимого решения исходной задачи. Такую верхнюю оценку иногда называют рекордом. Если же можно для решаемой задачи достаточно просто и точно получить верхние оценки f(x) для отдельных множеств, образующихся при ветвлении, то их необходимо использовать в методе для уменьшения вычислительной сложности процесса решения. При использовании единой верхней оценки ее первоначальное значение обычно полагают равным бесконечности (), если, конечно, из априорных соображений не известно ни одного допустимого решения исходной задачи. При нахождении первого допустимого решения:

Затем при определении более лучшего допустимого решения верхнюю оценку корректируют:

Таким образом, значение верхней оценки может лишь уменьшаться в процессе решения задачи.

1 .3 Алгоритм метода ветвей и границ

Основные правила алгоритма могут быть сформулированы следующим образом:

1. Ветвлению в первую очередь подвергается подмножество с номером, которому соответствует наименьшее значение нижней оценки целевой функции (I - это множество номеров всех подмножеств, (или), находящихся на концах ветвей и ветвление которых еще не прекращено). Если реализуется изложенный выше способ ветвления множеств, то может возникнуть неоднозначность относительно выбора компоненты, по которой необходимо осуществлять очередной шаг ветвления. К сожалению, вопрос о «наилучшем» способе такого выбора с общих позиций пока не решен, и поэтому в конкретных задачах используются некоторые эвристические правила.

2. Если для некоторого i-го подмножества выполняется условие, то ветвление его необходимо прекратить, так как потенциальные возможности нахождения хорошего решения в этом подмножестве (их характеризует) оказываются хуже, чем значение целевой функции для реального, найденного к данному моменту времени, допустимого решения исходной задачи (оно характеризует).

3. Ветвление подмножества прекращается, если найденное в задаче (4) оптимальное решение. Обосновывается это тем, что, и, следовательно, лучшего допустимого решения, чем в этом подмножестве не существует. В этом случае рассматривается возможность корректировки.

4. Если, где, то выполняются условия оптимальности для найденного к этому моменту лучшего допустимого решения. Обоснование такое же, как и пункта 2 настоящих правил.

5. После нахождения хотя бы одного допустимого решения исходной задачи может быть рассмотрена возможность остановки работы алгоритма с оценкой близости лучшего из полученных допустимых решений к оптимальному (по значению целевой функции):

1 .4 Решение задачи методом ветвей и границ

Первоначально находим симплексным методом или методом искусственного базиса оптимальный план задачи без учета целочисленности переменных.

Если среди компонент этого плана нет дробных чисел, то тем самым найдено искомое решение данной задачи.

Если среди компонент плана имеются дробные числа, то необходимо осуществить переход к новым планам, пока не будет найдено решение задачи.

Метод ветвей и границ основан на предположении, что наш оптимальный нецелочисленный план дает значение функции, большее, чем всякий последующий план перехода.

Пусть переменная в плане - дробное число. Тогда в оптимальном плане ее значение будет по крайней мере либо меньше или равно ближайшему меньшему целому числу, либо больше или равно ближайшему большему целому числу.

Определяя эти числа, находим симплексным методом решение двух задач линейного программирования

Возможны четыре случая при решении этой пары задач:

Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции дают решение исходной задачи.

Одна из задач неразрешима, а другая имеет нецелочисленный оптимальный план. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу и строим две задачи, аналогичные предыдущим.

Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции от планов и сравниваем их между собой. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и дает искомое решение.

Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда рассматриваем ту из задач, для которой значение целевой функции является наибольшим. И строим две задачи.

Таким образом, при решении задачи получаем схему:

Находим решение задачи линейного программирования без учета целочисленности.

Составляет дополнительные ограничения на дробную компоненту плана.

Находим решение двух задач с ограничениями на компоненту.

Строим в случае необходимости дополнительные ограничения, согласно возможным четырем случаям получаем оптимальный целочисленный план либо устанавливаем неразрешимость задачи.

Найдем решение задачи

Решение. Находим решение без учет целочисленности задачи симплексным методом.

Рассмотрим следующую пару задач:

Первая задача имеет оптимальный план

вторая - неразрешима.

Проверяем на целочисленность план первой задачи. Это условие не выполняется, поэтому строим следующие задачи:

Задача 1.1

Задача 1.2

Задача 1.2 неразрешима, а задача №1.1 имеет оптимальный план, на котором значение целевой функции.

В результате получили, что исходная задача целочисленного программирования имеет оптимальный план и.

2. Решение задачи коммивояжера методом ветвей и границ

Рассмотрим теперь класс прикладных задач оптимизации. Метод ветвей и границ используется в очень многих из них. Предлагается рассмотреть одну из самых популярных задач - задача коммивояжера. Вот ее формулировка. Имеется несколько городов, соединенных некоторым образом дорогами с известной длиной; требуется установить, имеется ли путь, двигаясь по которому можно побывать в каждом городе только один раз и при этом вернуться в город, откуда путь был начат («обход коммивояжера»), и, если таковой путь имеется, установить кратчайший из таких путей.

2.1 Постановка задачи

Формализуем условие в терминах теории графов. Города будут вершинами графа, а дороги между городами - ориентированными (направленными) ребрами графа, на каждом из которых задана весовая функция: вес ребра - это длина соответствующей дороги. Путь, который требуется найти, это - ориентированный остовный простой цикл минимального веса в орграфе (напомним: цикл называется остовным, если он проходит по всем вершинам графа; цикл называется простым, если он проходит по каждой своей вершине только один раз; цикл называется ориентированным, если начало каждого последующего ребра совпадает с концом предыдущего; вес цикла - это сумма весов его ребер; наконец, орграф называется полным, если в нем имеются все возможные ребра); такие циклы называются также гамильтоновыми.

Очевидно, в полном орграфе циклы указанного выше типа есть. Заметим, что вопрос о наличии в орграфе гамильтонова цикла достаточно рассмотреть как частный случай задачи о коммивояжере для полных орграфов. Действительно, если данный орграф не является полным, то его можно дополнить до полного недостающими ребрами и каждому из добавленных ребер приписать вес Ґ, считая, что Ґ - это «компьютерная бесконечность», т.е. максимальное из всех возможных в рассмотрениях чисел. Если во вновь построенном полном орграфе найти теперь легчайший гамильтонов цикл, то при наличии у него ребер с весом Ґ можно будет говорить, что в данном, исходном графе «цикла коммивояжера» нет. Если же в полном орграфе легчайший гамильтонов цикл окажется конечным по весу, то он и будет искомым циклом в исходном графе.

Отсюда следует, что задачу о коммивояжере достаточно решить для полных орграфов с весовой функцией. Сформулируем теперь это в окончательном виде:

пусть - полный ориентированный граф и - весовая функция; найти простой остовный ориентированный цикл («цикл коммивояжера») минимального веса.

Пусть конкретный состав множества вершин и - весовая матрица данного орграфа, т.е. , причем для любого.

Рассмотрение метода ветвей и границ для решения задачи о коммивояжере удобнее всего проводить на фоне конкретного примера. Пользуясь введенными здесь обозначениями, мы проводим это описание в следующей лекции.

Введем некоторые термины. Пусть имеется некоторая числовая матрица. Привести строку этой матрицы означает выделить в строке минимальный элемент (его называют константой приведения) и вычесть его из всех элементов этой строки. Очевидно, в результате в этой строке на месте минимального элемента окажется ноль, а все остальные элементы будут неотрицательными. Аналогичный смысл имеют слова привести столбец матрицы.

Слова привести матрицу по строкам означают, что все строки матрицы приводятся. Аналогичный смысл имеют слова привести матрицу по столбцам.

Наконец, слова привести матрицу означают, что матрица сначала приводится по строкам, а потом приводится по столбцам.

Весом элемента матрицы называют сумму констант приведения матрицы, которая получается из данной матрицы заменой обсуждаемого элемента на Ґ. Следовательно, слова самый тяжелый нуль в матрице означают, что в матрице подсчитан вес каждого нуля, а затем фиксирован нуль с максимальным весом.

Приступим теперь к описанию метода ветвей и границ для решения задачи о коммивояжере.

Первый шаг. Фиксируем множество всех обходов коммивояжера (т.е. всех простых ориентированных остовных циклов). Поскольку граф - полный, это множество заведомо не пусто. Сопоставим ему число, которое будет играть роль значения на этом множестве оценочной функции: это число равно сумме констант приведения данной матрицы весов ребер графа. Если множество всех обходов коммивояжера обозначить через G, то сумму констант приведения матрицы весов обозначим через j(G). Приведенную матрицу весов данного графа следует запомнить; обозначим ее через M 1 ; таким образом, итог первого шага:

множеству G всех обходов коммивояжера сопоставлено чис-ло j(G) и матрица M 1 .

Второй шаг. Выберем в матрице M 1 самый тяжелый нуль; пусть он стоит в клетке; фиксируем ребро графа и разделим множество G на две части: на часть, состоящую из обходов, которые проходят через ребро, и на часть, состоящую из обходов, которые не проходят через ребро.

Сопоставим множеству следующую матрицу M 1,1: в матрице M 1 заменим на Ґ число в клетке. Затем в полученной матрице вычеркнем строку номер i и столбец номер j, причем у оставшихся строк и столбцов сохраним их исходные номера. Наконец, приведем эту последнюю матрицу и запомним сумму констант приведения. Полученная приведенная матрица и будет матрицей M 1,1 ; только что запомненную сумму констант приведения прибавим к j(G) и результат, обозначаемый в дальнейшем через j(), сопоставим множеству.

Теперь множеству тоже сопоставим некую матрицу M 1,2 . Для этого в матрице M 1 заменим на Ґ число в клетке и полученную в результате матрицу приведем. Сумму констант приведения запомним, а полученную матрицу обозначим через M 1,2 . Прибавим запомненную сумму констант приведения к числу j(G) и полученное число, обозначаемое в дальнейшем через j(), сопоставим множеству.

Теперь выберем между множествами и то, на котором минимальна функция j (т.е. то из множеств, которому соответствует меньшее из чисел j() и j()).

Заметим теперь, что в проведенных рассуждениях использовался в качестве исходного только один фактический объект - приведенная матрица весов данного орграфа. По ней было выделено определенное ребро графа и были построены новые матрицы, к которым, конечно, можно все то же самое применить.

При каждом таком повторном применении будет фиксироваться очередное ребро графа. Условимся о следующем действии: перед тем, как в очередной матрице вычеркнуть строку и столбец, в ней надо заменить на Ґ числа во всех тех клетках, которые соответствуют ребрам, заведомо не принадлежащим тем гамильтоновым циклам, которые проходят через уже отобранные ранее ребра.

К выбранному множеству с сопоставленными ему матрицей и числом j повторим все то же самое и так далее, пока это возможно.

Доказывается, что в результате получится множество, состоящее из единственного обхода коммивояжера, вес которого равен очередному значению функции j; таким образом, оказываются выполненными все условия, обсуждавшиеся при описании метода ветвей и границ.

После этого осуществляется улучшение рекорда вплоть до получения окончательного ответа.

2.2 Условие задачи

Студенту Иванову поручили разнести некоторые важные документы из 12-ого корпуса. Но, как назло, у него на это очень мало времени, да и еще надо вернуться обратно. Нужно найти кротчайший путь. Расстояния между объектами даны в таблице

2.3 Математическая модель задачи

Для решения задачи присвоим каждому пункту маршрута определенный номер: 12-ый корпус - 1, Белый дом - 2, КРК «Премьер» - 3, Администрация - 4 и 5-ый корпус - 5. Соответственно общее количество пунктов. Далее введем альтернативных переменных, принимающих значение 0, если переход из i-того пункта в j-тый не входит в маршрут и 1 в противном случае. Условия прибытия в каждый пункт и выхода из каждого пункта только по одному разу выражаются равенствами (8) и (9).

Для обеспечения непрерывности маршрута вводятся дополнительно n переменных и дополнительных ограничений (10).

Суммарная протяженность маршрута F , которую необходимо минимизировать, запишется в следующем виде:

В нашем случае эти условия запишутся в следующем виде:

2.4 Решение задачи методом ветвей и границ

1) Анализ множества D.

Найдем оценку снизу Н . Для этого определяем матрицу минимальных расстояний по строкам (1 где расстояние минимально в строке).

Аналогично определяем матрицу минимальных расстояний по столбцам.

Выберем начальный план: . Тогда верхняя оценка:

Очевидно, что, где означает переход из первого пункта в j-тый. Рассмотрим эти подмножества по порядку.

2) Анализ подмножества D 12 .

3) Анализ подмножества D 13 .

4) Анализ подмножества D 14 .

5) Анализ подмножества D 15 .

6) Отсев неперспективных подмножеств.

Подмножества D 13 и D 15 неперспективные. Т.к. , но, то далее будем рассматривать подмножество D 14 .

7) Анализ подмножества D 142 .

8) Анализ подмножества D 143 .

9) Анализ подмножества D 145 .

10) Отсев неперспективных подмножеств

Подмножество D 143 неперспективное. Т.к. , но, то далее будем рассматривать подмножество D 145 .

11) Анализ подмножества D 1452 .

ветвь граница целевой алгоритм

12) Анализ подмножества D 1453 .

Оптимальное решение: .

Таким образом, маршрут студента: 12-ый корпус - Администрация - 5-ый корпус - Белый дом - КРК Премьер - 12-ый корпус.

Размещено на http://www.allbest.ru/

Список использованной литературы

1. Абрамов Л.А., Капустин В.Ф. Математическое программирование. - Л.: Изд-во ЛГУ, 1981. -328 с.

2. Алексеев О.Г. Комплексное применение методов дискретной оптимизации. - М.: Наука, 1987. -294 с.

3. Корбут А.А., Финкелгейн Ю.Ю. Дискретное программирование. М.: Наука. 1969. -240 с

4. Кузнецов Ю.Н. и др. Математическое программирование: Учебное пособие. - 2-е изд., перераб и доп. - М.: Высшая школа, 1980. -300 с.

5. Пападимитриу Х., Стайглиц К. Комбинаторная оптимизация. Алгоритмы и сложность. - М.: Мир, 1985. -213 с.

Размещено на Allbest.ru

...

Подобные документы

    Постановка и решение дискретных оптимизационных задач методом дискретного программирования и методом ветвей и границ на примере классической задачи коммивояжера. Этапы построения алгоритма ветвей и границ и его эффективность, построение дерева графов.

    курсовая работа , добавлен 08.11.2009

    Постановка задачи о коммивояжере. Нахождение оптимального решения с применением метода ветвей и границ. Основной принцип этого метода, порядок его применения. Использование метода верхних оценок в процедуре построения дерева возможных вариантов.

    курсовая работа , добавлен 01.10.2009

    Особенности метода ветвей и границ как одного из распространенных методов решения целочисленных задач. Декомпозиция задачи линейного программирования в алгоритме метода ветвей и границ. Графический, симплекс-метод решения задач линейного программирования.

    курсовая работа , добавлен 05.03.2012

    Моделирование передвижения муравьев. Метод ветвей и границ, ближайшего соседа. Ограничения, накладываемые на агента в стандартной постановке задачи коммивояжера. Использование графа видимости в алгоритме муравья. Структура данных алгоритма муравья.

    дипломная работа , добавлен 07.02.2013

    Методы ветвей и границ первого и второго порядка. Оптимальный и пассивный поиск. Недостатки метода Ньютона. Метод золотого сечения. Примеры унимодальных функций. Динамическое и линейное программирование. Метод Жордана-Гаусса. Решение задачи коммивояжера.

    курсовая работа , добавлен 20.07.2012

    Сущность теории графов и сетевого моделирования. Выбор оптимального пути и стоимости переезда коммивояжера с помощью метода ветвей и границ. Разработка программы выбора самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу.

    курсовая работа , добавлен 08.08.2013

    Оптимизация решения задачи с помощью алгоритма отжига. Анализ теории оптимизации как целевой функции. Метод градиентного спуска. Переменные и описание алгоритма отжига. Представление задачи коммивояжера через граф. Сведение задачи к переменным и решение.

    курсовая работа , добавлен 21.05.2015

    Постановка линейной целочисленной задачи. Метод отсекающих плоскостей. Дробный алгоритм решения полностью целочисленных задач. Эффективность отсечения Гомори. Сравнение вычислительных возможностей метода отсекающих плоскостей и метода ветвей и границ.

    курсовая работа , добавлен 25.11.2011

    Задача о ранце как задача комбинаторной оптимизации. Задача о загрузке, рюкзаке, ранце. Постановка и NP-полнота задачи. Классификация методов решения задачи о рюкзаке. Динамическое программирование. Метод ветвей и границ. Сравнительный анализ методов.

    курсовая работа , добавлен 18.01.2011

    Поиск верхних и нижних границ для оптимального значения на подобласти допустимых решений. Методы и проблемы решения задач нелинейного программирования. Написание и отладка программы. Создание программы для решения задачи "коммивояжёра" прямым алгоритмом.

Решение будем вести с использованием калькулятора . Возьмем в качестве произвольного маршрута:
X 0 = (1,2);(2,3);(3,4);(4,5);(5,1)
Тогда F(X 0) = 90 + 40 + 60 + 50 + 20 = 260
Для определения нижней границы множества воспользуемся операцией редукции или приведения матрицы по строкам, для чего необходимо в каждой строке матрицы D найти минимальный элемент.
d i = min(j) d ij
i j 1 2 3 4 5 d i
1 M 90 80 40 100 40
2 60 M 40 50 70 40
3 50 30 M 60 20 20
4 10 70 20 M 50 10
5 20 40 50 20 M 20

Затем вычитаем d i из элементов рассматриваемой строки. В связи с этим во вновь полученной матрице в каждой строке будет как минимум один ноль.
i j 1 2 3 4 5
1 M 50 40 0 60
2 20 M 0 10 30
3 30 10 M 40 0
4 0 60 10 M 40
5 0 20 30 0 M

Такую же операцию редукции проводим по столбцам, для чего в каждом столбце находим минимальный элемент:
d j = min(i) d ij
i j 1 2 3 4 5
1 M 50 40 0 60
2 20 M 0 10 30
3 30 10 M 40 0
4 0 60 10 M 40
5 0 20 30 0 M
d j 0 10 0 0 0

После вычитания минимальных элементов получаем полностью редуцированную матрицу, где величины d i и d j называются константами приведения .
i j 1 2 3 4 5
1 M 40 40 0 60
2 20 M 0 10 30
3 30 0 M 40 0
4 0 50 10 M 40
5 0 10 30 0 M

Сумма констант приведения определяет нижнюю границу H:
H = ∑d i + ∑d j
H = 40+40+20+10+20+0+10+0+0+0 = 140
Элементы матрицы d ij соответствуют расстоянию от пункта i до пункта j.
Поскольку в матрице n городов, то D является матрицей nxn с неотрицательными элементами d ij >=0
Каждый допустимый маршрут представляет собой цикл, по которому коммивояжер посещает город только один раз и возвращается в исходный город.
Длина маршрута определяется выражением:
F(M k) = ∑d ij
Причем каждая строка и столбец входят в маршрут только один раз с элементом d ij .
Шаг №1 .
Определяем ребро ветвления
i j 1 2 3 4 5 d i
1 M 40 40 0(40) 60 40
2 20 M 0(20) 10 30 10
3 30 0(10) M 40 0(30) 0
4 0(10) 50 10 M 40 10
5 0(0) 10 30 0(0) M 0
d j 0 10 10 0 30 0

d(1,4) = 40 + 0 = 40; d(2,3) = 10 + 10 = 20; d(3,2) = 0 + 10 = 10; d(3,5) = 0 + 30 = 30; d(4,1) = 10 + 0 = 10; d(5,1) = 0 + 0 = 0; d(5,4) = 0 + 0 = 0;
Наибольшая сумма констант приведения равна (40 + 0) = 40 для ребра (1,4), следовательно, множество разбивается на два подмножества (1,4) и (1*,4*).

H(1*,4*) = 140 + 40 = 180
Исключение ребра (1,4) проводим путем замены элемента d 14 = 0 на M, после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества (1*,4*), в результате получим редуцированную матрицу.
i j 1 2 3 4 5 d i
1 M 40 40 M 60 40
2 20 M 0 10 30 0
3 30 0 M 40 0 0
4 0 50 10 M 40 0
5 0 10 30 0 M 0
d j 0 0 0 0 0 40

Включение ребра (1,4) проводится путем исключения всех элементов 1-ой строки и 4-го столбца, в которой элемент d 41 заменяем на М, для исключения образования негамильтонова цикла.
В результате получим другую сокращенную матрицу (4 x 4), которая подлежит операции приведения.

∑d i + ∑d j = 10
i j 1 2 3 5 d i
2 20 M 0 30 0
3 30 0 M 0 0
4 M 50 10 40 10
5 0 10 30 M 0
d j 0 0 0 0 10

Нижняя граница подмножества (1,4) равна:
H(1,4) = 140 + 10 = 150 ≤ 180
Поскольку нижняя граница этого подмножества (1,4) меньше, чем подмножества (1*,4*), то ребро (1,4) включаем в маршрут с новой границей H = 150
Шаг №2 .
Определяем ребро ветвления и разобьем все множество маршрутов относительно этого ребра на два подмножества (i,j) и (i*,j*).
С этой целью для всех клеток матрицы с нулевыми элементами заменяем поочередно нули на М(бесконечность) и определяем для них сумму образовавшихся констант приведения, они приведены в скобках.
i j 1 2 3 5 d i
2 20 M 0(20) 30 20
3 30 0(10) M 0(30) 0
4 M 40 0(30) 30 30
5 0(30) 10 30 M 10
d j 20 10 0 30 0

d(2,3) = 20 + 0 = 20; d(3,2) = 0 + 10 = 10; d(3,5) = 0 + 30 = 30; d(4,3) = 30 + 0 = 30; d(5,1) = 10 + 20 = 30;
Наибольшая сумма констант приведения равна (0 + 30) = 30 для ребра (3,5), следовательно, множество разбивается на два подмножества (3,5) и (3*,5*).
Нижняя граница гамильтоновых циклов этого подмножества:
H(3*,5*) = 150 + 30 = 180
Исключение ребра (3,5) проводим путем замены элемента d 35 = 0 на M, после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества (3*,5*), в результате получим редуцированную матрицу.
i j 1 2 3 5 d i
2 20 M 0 30 0
3 30 0 M M 0
4 M 40 0 30 0
5 0 10 30 M 0
d j 0 0 0 30 30

Включение ребра (3,5) проводится путем исключения всех элементов 3-ой строки и 5-го столбца, в которой элемент d 53 заменяем на М, для исключения образования негамильтонова цикла.
В результате получим другую сокращенную матрицу (3 x 3), которая подлежит операции приведения.
Сумма констант приведения сокращенной матрицы:
∑d i + ∑d j = 10
После операции приведения сокращенная матрица будет иметь вид:
i j 1 2 3 d i
2 20 M 0 0
4 M 40 0 0
5 0 10 M 0
d j 0 10 0 10

Нижняя граница подмножества (3,5) равна:
H(3,5) = 150 + 10 = 160 ≤ 180
Поскольку нижняя граница этого подмножества (3,5) меньше, чем подмножества (3*,5*), то ребро (3,5) включаем в маршрут с новой границей H = 160
Шаг №3 .
Определяем ребро ветвления и разобьем все множество маршрутов относительно этого ребра на два подмножества (i,j) и (i*,j*).
С этой целью для всех клеток матрицы с нулевыми элементами заменяем поочередно нули на М(бесконечность) и определяем для них сумму образовавшихся констант приведения, они приведены в скобках.
i j 1 2 3 d i
2 20 M 0(20) 20
4 M 30 0(30) 30
5 0(20) 0(30) M 0
d j 20 30 0 0

d(2,3) = 20 + 0 = 20; d(4,3) = 30 + 0 = 30; d(5,1) = 0 + 20 = 20; d(5,2) = 0 + 30 = 30;
Наибольшая сумма констант приведения равна (0 + 30) = 30 для ребра (5,2), следовательно, множество разбивается на два подмножества (5,2) и (5*,2*).
Нижняя граница гамильтоновых циклов этого подмножества:
H(5*,2*) = 160 + 30 = 190
Исключение ребра (5,2) проводим путем замены элемента d 52 = 0 на M, после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества (5*,2*), в результате получим редуцированную матрицу.
i j 1 2 3 d i
2 20 M 0 0
4 M 30 0 0
5 0 M M 0
d j 0 30 0 30

Включение ребра (5,2) проводится путем исключения всех элементов 5-ой строки и 2-го столбца, в которой элемент d 25 заменяем на М, для исключения образования негамильтонова цикла.
В результате получим другую сокращенную матрицу (2 x 2), которая подлежит операции приведения.
Сумма констант приведения сокращенной матрицы:
∑d i + ∑d j = 20
После операции приведения сокращенная матрица будет иметь вид:
i j 1 3 d i
2 20 0 0
4 M 0 0
d j 20 0 20

Нижняя граница подмножества (5,2) равна:
H(5,2) = 160 + 20 = 180 ≤ 190
Поскольку нижняя граница этого подмножества (5,2) меньше, чем подмножества (5*,2*), то ребро (5,2) включаем в маршрут с новой границей H = 180
В соответствии с этой матрицей включаем в гамильтонов маршрут ребра (2,1) и (4,3).
В результате по дереву ветвлений гамильтонов цикл образуют ребра:
(1,4), (4,3), (3,5), (5,2), (2,1),
Длина маршрута равна F(Mk) = 180