Сайт о телевидении

Сайт о телевидении

» » Функциональное программирование. Выразительный JavaScript: Функции

Функциональное программирование. Выразительный JavaScript: Функции

Functions are one of the fundamental building blocks in JavaScript. A function is a JavaScript procedure-a set of statements that performs a task or calculates a value. To use a function, you must define it somewhere in the scope from which you wish to call it.

A method is a function that is a property of an object. Read more about objects and methods in Working with objects .

Calling functions

Defining a function does not execute it. Defining the function simply names the function and specifies what to do when the function is called. Calling the function actually performs the specified actions with the indicated parameters. For example, if you define the function square , you could call it as follows:

Square(5);

The preceding statement calls the function with an argument of 5. The function executes its statements and returns the value 25.

Functions must be in scope when they are called, but the function declaration can be hoisted (appear below the call in the code), as in this example:

Console.log(square(5)); /* ... */ function square(n) { return n * n; }

The scope of a function is the function in which it is declared, or the entire program if it is declared at the top level.

Note: This works only when defining the function using the above syntax (i.e. function funcName(){}). The code below will not work. That means, function hoisting only works with function declaration and not with function expression.

Console.log(square); // square is hoisted with an initial value undefined. console.log(square(5)); // TypeError: square is not a function var square = function(n) { return n * n; }

The arguments of a function are not limited to strings and numbers. You can pass whole objects to a function. The show_props() function (defined in ) is an example of a function that takes an object as an argument.

A function can call itself. For example, here is a function that computes factorials recursively:

Function factorial(n) { if ((n === 0) || (n === 1)) return 1; else return (n * factorial(n - 1)); }

You could then compute the factorials of one through five as follows:

Var a, b, c, d, e; a = factorial(1); // a gets the value 1 b = factorial(2); // b gets the value 2 c = factorial(3); // c gets the value 6 d = factorial(4); // d gets the value 24 e = factorial(5); // e gets the value 120

There are other ways to call functions. There are often cases where a function needs to be called dynamically, or the number of arguments to a function vary, or in which the context of the function call needs to be set to a specific object determined at runtime. It turns out that functions are, themselves, objects, and these objects in turn have methods (see the Function object). One of these, the apply() method, can be used to achieve this goal.

Function scope

Variables defined inside a function cannot be accessed from anywhere outside the function, because the variable is defined only in the scope of the function. However, a function can access all variables and functions defined inside the scope in which it is defined. In other words, a function defined in the global scope can access all variables defined in the global scope. A function defined inside another function can also access all variables defined in its parent function and any other variable to which the parent function has access.

// The following variables are defined in the global scope var num1 = 20, num2 = 3, name = "Chamahk"; // This function is defined in the global scope function multiply() { return num1 * num2; } multiply(); // Returns 60 // A nested function example function getScore() { var num1 = 2, num2 = 3; function add() { return name + " scored " + (num1 + num2); } return add(); } getScore(); // Returns "Chamahk scored 5"

Scope and the function stack Recursion

A function can refer to and call itself. There are three ways for a function to refer to itself:

  • the function"s name
  • an in-scope variable that refers to the function
  • For example, consider the following function definition:

    Var foo = function bar() { // statements go here };

    Within the function body, the following are all equivalent:

  • bar()
  • arguments.callee()
  • foo()
  • A function that calls itself is called a recursive function . In some ways, recursion is analogous to a loop. Both execute the same code multiple times, and both require a condition (to avoid an infinite loop, or rather, infinite recursion in this case). For example, the following loop:

    Var x = 0; while (x < 10) { // "x < 10" is the loop condition // do stuff x++; }

    can be converted into a recursive function and a call to that function:

    Function loop(x) { if (x >= 10) // "x >= 10" is the exit condition (equivalent to "!(x < 10)") return; // do stuff loop(x + 1); // the recursive call } loop(0);

    However, some algorithms cannot be simple iterative loops. For example, getting all the nodes of a tree structure (e.g. the DOM) is more easily done using recursion:

    Function walkTree(node) { if (node == null) // return; // do something with node for (var i = 0; i < node.childNodes.length; i++) { walkTree(node.childNodes[i]); } }

    Compared to the function loop , each recursive call itself makes many recursive calls here.

    It is possible to convert any recursive algorithm to a non-recursive one, but often the logic is much more complex and doing so requires the use of a stack. In fact, recursion itself uses a stack: the function stack.

    The stack-like behavior can be seen in the following example:

    Function foo(i) { if (i < 0) return; console.log("begin: " + i); foo(i - 1); console.log("end: " + i); } foo(3); // Output: // begin: 3 // begin: 2 // begin: 1 // begin: 0 // end: 0 // end: 1 // end: 2 // end: 3

    Nested functions and closures

    You can nest a function within a function. The nested (inner) function is private to its containing (outer) function. It also forms a closure . A closure is an expression (typically a function) that can have free variables together with an environment that binds those variables (that "closes" the expression).

    Since a nested function is a closure, this means that a nested function can "inherit" the arguments and variables of its containing function. In other words, the inner function contains the scope of the outer function.

    • The inner function can be accessed only from statements in the outer function.
    • The inner function forms a closure: the inner function can use the arguments and variables of the outer function, while the outer function cannot use the arguments and variables of the inner function.

    The following example shows nested functions:

    Function addSquares(a, b) { function square(x) { return x * x; } return square(a) + square(b); } a = addSquares(2, 3); // returns 13 b = addSquares(3, 4); // returns 25 c = addSquares(4, 5); // returns 41

    Since the inner function forms a closure, you can call the outer function and specify arguments for both the outer and inner function:

    Function outside(x) { function inside(y) { return x + y; } return inside; } fn_inside = outside(3); // Think of it like: give me a function that adds 3 to whatever you give // it result = fn_inside(5); // returns 8 result1 = outside(3)(5); // returns 8

    Preservation of variables

    Notice how x is preserved when inside is returned. A closure must preserve the arguments and variables in all scopes it references. Since each call provides potentially different arguments, a new closure is created for each call to outside. The memory can be freed only when the returned inside is no longer accessible.

    This is not different from storing references in other objects, but is often less obvious because one does not set the references directly and cannot inspect them.

    Multiply-nested functions

    Functions can be multiply-nested, i.e. a function (A) containing a function (B) containing a function (C). Both functions B and C form closures here, so B can access A and C can access B. In addition, since C can access B which can access A, C can also access A. Thus, the closures can contain multiple scopes; they recursively contain the scope of the functions containing it. This is called scope chaining . (Why it is called "chaining" will be explained later.)

    Consider the following example:

    Function A(x) { function B(y) { function C(z) { console.log(x + y + z); } C(3); } B(2); } A(1); // logs 6 (1 + 2 + 3)

    In this example, C accesses B "s y and A "s x . This can be done because:

  • B forms a closure including A , i.e. B can access A "s arguments and variables.
  • C forms a closure including B .
  • Because B "s closure includes A , C "s closure includes A , C can access both B and A "s arguments and variables. In other words, C chains the scopes of B and A in that order.
  • The reverse, however, is not true. A cannot access C , because A cannot access any argument or variable of B , which C is a variable of. Thus, C remains private to only B .

    Name conflicts

    When two arguments or variables in the scopes of a closure have the same name, there is a name conflict . More inner scopes take precedence, so the inner-most scope takes the highest precedence, while the outer-most scope takes the lowest. This is the scope chain. The first on the chain is the inner-most scope, and the last is the outer-most scope. Consider the following:

    Function outside() { var x = 5; function inside(x) { return x * 2; } return inside; } outside()(10); // returns 20 instead of 10

    The name conflict happens at the statement return x and is between inside "s parameter x and outside "s variable x . The scope chain here is { inside , outside , global object}. Therefore inside "s x takes precedences over outside "s x , and 20 (inside "s x) is returned instead of 10 (outside "s x).

    Closures

    Closures are one of the most powerful features of JavaScript. JavaScript allows for the nesting of functions and grants the inner function full access to all the variables and functions defined inside the outer function (and all other variables and functions that the outer function has access to). However, the outer function does not have access to the variables and functions defined inside the inner function. This provides a sort of encapsulation for the variables of the inner function. Also, since the inner function has access to the scope of the outer function, the variables and functions defined in the outer function will live longer than the duration of the outer function execution, if the inner function manages to survive beyond the life of the outer function. A closure is created when the inner function is somehow made available to any scope outside the outer function.

    Var pet = function(name) { // The outer function defines a variable called "name" var getName = function() { return name; // The inner function has access to the "name" variable of the outer //function } return getName; // Return the inner function, thereby exposing it to outer scopes } myPet = pet("Vivie"); myPet(); // Returns "Vivie"

    It can be much more complex than the code above. An object containing methods for manipulating the inner variables of the outer function can be returned.

    Var createPet = function(name) { var sex; return { setName: function(newName) { name = newName; }, getName: function() { return name; }, getSex: function() { return sex; }, setSex: function(newSex) { if(typeof newSex === "string" && (newSex.toLowerCase() === "male" || newSex.toLowerCase() === "female")) { sex = newSex; } } } } var pet = createPet("Vivie"); pet.getName(); // Vivie pet.setName("Oliver"); pet.setSex("male"); pet.getSex(); // male pet.getName(); // Oliver

    In the code above, the name variable of the outer function is accessible to the inner functions, and there is no other way to access the inner variables except through the inner functions. The inner variables of the inner functions act as safe stores for the outer arguments and variables. They hold "persistent" and "encapsulated" data for the inner functions to work with. The functions do not even have to be assigned to a variable, or have a name.

    Var getCode = (function() { var apiCode = "0]Eal(eh&2"; // A code we do not want outsiders to be able to modify... return function() { return apiCode; }; })(); getCode(); // Returns the apiCode

    There are, however, a number of pitfalls to watch out for when using closures. If an enclosed function defines a variable with the same name as the name of a variable in the outer scope, there is no way to refer to the variable in the outer scope again.

    Var createPet = function(name) { // The outer function defines a variable called "name". return { setName: function(name) { // The enclosed function also defines a variable called "name". name = name; // How do we access the "name" defined by the outer function? } } }

    Using the arguments object

    The arguments of a function are maintained in an array-like object. Within a function, you can address the arguments passed to it as follows:

    Arguments[i]

    where i is the ordinal number of the argument, starting at zero. So, the first argument passed to a function would be arguments . The total number of arguments is indicated by arguments.length .

    Using the arguments object, you can call a function with more arguments than it is formally declared to accept. This is often useful if you don"t know in advance how many arguments will be passed to the function. You can use arguments.length to determine the number of arguments actually passed to the function, and then access each argument using the arguments object.

    For example, consider a function that concatenates several strings. The only formal argument for the function is a string that specifies the characters that separate the items to concatenate. The function is defined as follows:

    Function myConcat(separator) { var result = ""; // initialize list var i; // iterate through arguments for (i = 1; i < arguments.length; i++) { result += arguments[i] + separator; } return result; }

    You can pass any number of arguments to this function, and it concatenates each argument into a string "list":

    // returns "red, orange, blue, " myConcat(", ", "red", "orange", "blue"); // returns "elephant; giraffe; lion; cheetah; " myConcat("; ", "elephant", "giraffe", "lion", "cheetah"); // returns "sage. basil. oregano. pepper. parsley. " myConcat(". ", "sage", "basil", "oregano", "pepper", "parsley");

    Note: The arguments variable is "array-like", but not an array. It is array-like in that it has a numbered index and a length property. However, it does not possess all of the array-manipulation methods.

    Two factors influenced the introduction of arrow functions: shorter functions and non-binding of this .

    Shorter functions

    In some functional patterns, shorter functions are welcome. Compare:

    Var a = [ "Hydrogen", "Helium", "Lithium", "Beryllium" ]; var a2 = a.map(function(s) { return s.length; }); console.log(a2); // logs var a3 = a.map(s => s.length); console.log(a3); // logs

    No separate this

    Until arrow functions, every new function defined its own value (a new object in the case of a constructor, undefined in function calls, the base object if the function is called as an "object method", etc.). This proved to be less than ideal with an object-oriented style of programming.

    Function Person() { // The Person() constructor defines `this` as itself. this.age = 0; setInterval(function growUp() { // In nonstrict mode, the growUp() function defines `this` // as the global object, which is different from the `this` // defined by the Person() constructor. this.age++; }, 1000); } var p = new Person();

    In ECMAScript 3/5, this issue was fixed by assigning the value in this to a variable that could be closed over.

    Function Person() { var self = this; // Some choose `that` instead of `self`. // Choose one and be consistent. self.age = 0; setInterval(function growUp() { // The callback refers to the `self` variable of which // the value is the expected object. self.age++; }, 1000); }

    Начнём с того что язык JavaScript поддерживает концепцию ООП (объектное ориентированное программирование). Это концепция состоит в том, что существуют такие элементы как объекты и у этих объектов есть различные свойства и методы(функции), которые позволяют управлять ими.

    Функция - это отдельный блок кода, который состоит из одного или больше операторов. Оно имеет своё собственное(уникальное) название и может принимать различные параметры, в зависимости от которых может выполнит ту или иную операцию.

    Метод - это тоже функция, но, он принадлежит уже какому-то классу или объекту.

    Для того чтобы вызывать какой-то метод , необходимо сначала написать название объекта, потом через точку написать название метода. Исключением этого правила является вызов методов alert(), confirm() и prompt() объекта window. Их можно вызывать без того чтобы указать название объекта. С этими методами мы уже познакомились в этой статье .

    Также, в предыдущих статьях мы познакомились с методом вывода document.write() , который принадлежит объекту document.

    Так вот, в программировании есть очень важная возможность, которая состоит в том, что можно создавать свои собственные функции .

    Синтаксис функции выглядит таким образом:


    Для примера создадим простую функцию, которая добавит переданный текст в абзац и выведет его. И ещё сделает его жирным и курсивным.

    Function writeText(text){ //Добавляем текст в абзаце и выводим его document.write("

    " + text + "

    "); } //Вызов созданной функции writeText("Здравствуйте!");

    Сохраняем документ и открываем его в браузере.


    Замечание! При объявлении функции, фигурные скобки должны быть обязательно, в независимости от того сколько там операторов.

    Для чего нужны функции в программировании?

    Основным плюсом использования функции это сокращение размера исходного кода скрипта .

    Допустим, нам нужно перебрать три одномерных массивов. Как мы знаем из этой статьи: , массив перебирается с помощью цикла. Без функции код данного скрипта получится таким:

    //объявляем три массива var arr1 = ; var arr2 = ["b", 5, 9.2, "h", 8, 2]; var arr2 = ; for(var i = 0; i < arr1.length; i++){ document.write("

    Элемент массива arr1, с индексом " + i + " равен: "+ arr1[i] +"

    "); } for(var i = 0; i < arr2.length; i++){ document.write("

    Элемент массива arr2, с индексом " + i + " равен: "+ arr2[i] +"

    "); } for(var i = 0; i < arr3.length; i++){ document.write("

    Элемент массива arr3, с индексом " + i + " равен: "+ arr3[i] +"

    "); }

    Так вот, для чтобы, не писать для каждого массива свой цикл, лучше использовать функцию в которой передаём массив, а она уже выведет на экран все его элементы. Таким образом мы, во-первых, сокращаем размер кода, а во-вторых избавляемся от повторяющего кода.

    Function printArr(arr){ for(var i = 0; i < arr.length; i++){ document.write("

    Элемент массива, с индексом " + i + " равен: "+ arr[i] +"

    "); } } //объявляем три массива var arr1 = ; var arr2 = ["b", 5, 9.2, "h", 8, 2]; var arr2 = ; //Вызываем созданную функцию, для перебора каждого массива printArr(arr1); printArr(arr2); printArr(arr3);

    Параметры функции

    Функция может принять любое количество параметров , от одного до бесконечности. Либо же, она может быть совсем без параметров.

    Давайте создадим функцию без параметров , которая просто выведет на экран, классическую фразу "Hello world".

    Function helloWorld(){ document.write("Hello World"); } //Вызываем функцию без параметров, helloWorld helloWorld();

    Любой параметр функции, может иметь своё значение по умолчанию. Это значит, что если при вызове функции мы не передадим какое-то значение данному параметру, то он использует своё значение, которая задано по умолчанию.

    Для примера создадим функцию, которая сложит две переданные числа. Если мы передадим только одно число, то, по умолчанию, второе число будет равна 4.

    Function summa(number1, number2 = 4){ document.write("

    Сумма чисел " + number1 + "(Первый параметр) и " + number2 + "(Второй параметр) равна: " + (number1 + number2) + "

    "); } //Вызываем функцию, которая, по умолчанию выведет результат сложения переданного числа, с цифрой 4. summa(5); // Результат: 9 //Если предадим и второй параметр, то функция выведет результат сложения чисел из обоих параметров. summa(5, 20); // Результат: 25

    Ещё допускается чтобы внутри какой-то функции можно было бы вызывать другую существующею функцию.

    Для примера, вызовем первую созданную нами функцию writeText() внутри предыдущей функции summa(). Функции writeText() передадим результат сложения чисел. В таком случае код функции summa() будет выглядеть уже так:

    Function summa(number1, number2 = 4){ writeText(number1 + number2); } //Вызываем функцию summa summa(5); // Результат: 9 summa(5, 20); // Результат: 25

    Функции которые возвращают какое-то значение

    До сих пор мы писали функции, которые выводят результат на экран сразу.

    Теперь же научимся как написать функцию, которая возвращает какой-то результат . Этот результат мы можем добавить в какую-то переменную и работать с ним дальше.

    Для того чтобы лучше понять о чем идёт речь, вспомним такие методы как prompt() и confirm(). Эти методы именно возвращают значение, полученное от пользователя, а не выводят его.

    Для примера создадим свою собственную функцию, которая будет возвращать последний элемент массива , переданного в качестве параметра.

    Function lastElement(arr){ //Возвращаем последний элемент переданного массива return arr; } //Объявляем массив var otherArr = ["iphone", "asus", 2000, 9.8, "twix"]; //Вызываем созданную функцию lastElement и в качестве параметра передаем ей созданный массив otherArr var lastEl = lastElement(otherArr); //Выводим полученный последний элемент массива alert(lastEl);

    В результате мы получим слово ‘twix’, так как именно это слово и есть последний элемент массива otherArr.

    Метод alert() ничего не возвращает . То есть если мы попытаемся выводить переменную которая типа содержит результат вызова метода alert(), то увидим значение undefined . Это тоже самое как попытаться выводить значение пустой переменной.

    Для примера возьмём результат последнего вызова alert() из предыдущего примера, помещаем его в переменную resAlert и используя созданную нами функцию writeText, попытаемся вывести полученный результат.

    //Выводим полученный последний элемент массива var resAlert = alert(lastEl); var test; writeText(resAlert); //undefined writeText(test); //undefined

    Как видим в обоих случаях получили значение undefined.

    Глобальные и локальные переменные

    Глобальные переменные - это те переменные, которые объявлены за пределами функции. То есть все те переменные, которые не объявлены внутри самой функции, являются глобальными . Они видны (действительны) во всем документе.

    Локальные переменные - это те переменные, которые объявлены внутри самой функции . И они действительны только внутри данной функции. За её пределами, локальные переменные уже не будут работать.

    Локальные и глобальные переменные никак не связаны между собой.


    В примере из изображения, если бы мы попытались выводить содержимое переменной x, то получили бы сообщение undefined , потому что мы забыли вызвать функцию other().

    Поэтому, для того чтобы сработали изменения производимые внутри функции, необходимо вызывать данную функцию.

    Вызываем функцию other(), и если теперь попробуем вывести значение переменной x, то в результате увидим цифру 4.

    Чтобы обратиться изнутри функции к глобальной переменной, не нужно нечего делать, надо просто использовать её. Изменения, производимые с глобальными переменными, будут видны за пределами функции.

    Var x = 8; function increment(){ x++; } //Вызываем функцию increment() increment(); alert(x); //Результат: 9

    Если мы не хотим, чтобы глобальная переменная изменилась, необходимо объявить локальную переменную (можно с таким же именем, как и у глобальной) и все действия будут произведены над ней.

    Var g = 100; function func(){ var g = 14; g *= 2; // Это тоже самое что g = g * 2 alert(g);//Результат: 28 } //Вызываем функцию. func(); alert(g);//Результат: 100

    На этом все дорогие читатели, теперь вы знаете что такое функция, как создать свою функцию , как вызывать функцию и какие типы функции существуют. Также Вы узнали что такое глобальные и локальные переменные .

    Как я написал в начале статьи функции являются очень важными элементами , поэтому вы должны знать их на отлично.

    Задачи
  • Создайте функцию, которая принимает в качестве параметров две числа и возвращает результат умножения этих чисел.
  • Выведите полученный результат.
  • Another essential concept in coding is functions , which allow you to store a piece of code that does a single task inside a defined block, and then call that code whenever you need it using a single short command - rather than having to type out the same code multiple times. In this article we"ll explore fundamental concepts behind functions such as basic syntax, how to invoke and define them, scope, and parameters.

    Prerequisites: Objective:
    Basic computer literacy, a basic understanding of HTML and CSS, JavaScript first steps .
    To understand the fundamental concepts behind JavaScript functions.
    Where do I find functions?

    In JavaScript, you"ll find functions everywhere. In fact, we"ve been using functions all the way through the course so far; we"ve just not been talking about them very much. Now is the time, however, for us to start talking about functions explicitly, and really exploring their syntax.

    Pretty much anytime you make use of a JavaScript structure that features a pair of parentheses - () - and you"re not using a common built-in language structure like a for loop , while or do...while loop , or if...else statement , you are making use of a function.

    Built-in browser functions

    We"ve made use of functions built in to the browser a lot in this course. Every time we manipulated a text string, for example:

    Var myText = "I am a string"; var newString = myText.replace("string", "sausage"); console.log(newString); // the replace() string function takes a string, // replaces one substring with another, and returns // a new string with the replacement made

    Or every time we manipulated an array:

    Var myArray = ["I", "love", "chocolate", "frogs"]; var madeAString = myArray.join(" "); console.log(madeAString); // the join() function takes an array, joins // all the array items together into a single // string, and returns this new string

    Or every time we generated a random number:

    Var myNumber = Math.random(); // the random() function generates a random // number between 0 and 1, and returns that // number

    We were using a function!

    Note : Feel free to enter these lines into your browser"s JavaScript console to re-familiarize yourself with their functionality, if needed.

    The JavaScript language has many built-in functions to allow you to do useful things without having to write all that code yourself. In fact, some of the code you are calling when you invoke (a fancy word for run, or execute) a built in browser function couldn"t be written in JavaScript - many of these functions are calling parts of the background browser code, which is written largely in low-level system languages like C++, not web languages like JavaScript.

    Bear in mind that some built-in browser functions are not part of the core JavaScript language - some are defined as part of browser APIs, which build on top of the default language to provide even more functionality (refer to this early section of our course for more descriptions). We"ll look at using browser APIs in more detail in a later module.

    Functions versus methods

    One thing we need to clear up before we move on - technically speaking, built in browser functions are not functions - they are methods . This sounds a bit scary and confusing, but don"t worry - the words function and method are largely interchangeable, at least for our purposes, at this stage in your learning.

    The distinction is that methods are functions defined inside objects. Built-in browser functions (methods) and variables (which are called properties ) are stored inside structured objects, to make the code more efficient and easier to handle.

    You don"t need to learn about the inner workings of structured JavaScript objects yet - you can wait until our later module that will teach you all about the inner workings of objects, and how to create your own. For now, we just wanted to clear up any possible confusion of method versus function - you are likely to meet both terms as you look at the available related resources across the Web.

    Custom functions

    You"ve also seen a lot of custom functions in the course so far - functions defined in your code, not inside the browser. Anytime you saw a custom name with parentheses straight after it, you were using a custom function. In our random-canvas-circles.html example (see also the full ) from our loops article , we included a custom draw() function that looked like this:

    Function draw() { ctx.clearRect(0,0,WIDTH,HEIGHT); for (var i = 0; i < 100; i++) { ctx.beginPath(); ctx.fillStyle = "rgba(255,0,0,0.5)"; ctx.arc(random(WIDTH), random(HEIGHT), random(50), 0, 2 * Math.PI); ctx.fill(); } }

    This function draws 100 random circles inside an element. Every time we want to do that, we can just invoke the function with this

    rather than having to write all that code out again every time we want to repeat it. And functions can contain whatever code you like - you can even call other functions from inside functions. The above function for example calls the random() function three times, which is defined by the following code:

    Function random(number) { return Math.floor(Math.random()*number); }

    We needed this function because the browser"s built-in Math.random() function only generates a random decimal number between 0 and 1. We wanted a random whole number between 0 and a specified number.

    Invoking functions

    You are probably clear on this by now, but just in case ... to actually use a function after it has been defined, you"ve got to run - or invoke - it. This is done by including the name of the function in the code somewhere, followed by parentheses.

    Function myFunction() { alert("hello"); } myFunction() // calls the function once

    Anonymous functions

    You may see functions defined and invoked in slightly different ways. So far we have just created a function like so:

    Function myFunction() { alert("hello"); }

    But you can also create a function that doesn"t have a name:

    Function() { alert("hello"); }

    This is called an anonymous function - it has no name! It also won"t do anything on its own. You generally use an anonymous function along with an event handler, for example the following would run the code inside the function whenever the associated button is clicked:

    Var myButton = document.querySelector("button"); myButton.onclick = function() { alert("hello"); }

    The above example would require there to be a element available on the page to select and click. You"ve already seen this structure a few times throughout the course, and you"ll learn more about and see it in use in the next article.

    You can also assign an anonymous function to be the value of a variable, for example:

    Var myGreeting = function() { alert("hello"); }

    This function could now be invoked using:

    MyGreeting();

    This effectively gives the function a name; you can also assign the function to be the value of multiple variables, for example:

    Var anotherGreeting = function() { alert("hello"); }

    This function could now be invoked using either of

    MyGreeting(); anotherGreeting();

    But this would just be confusing, so don"t do it! When creating functions, it is better to just stick to this form:

    Function myGreeting() { alert("hello"); }

    You will mainly use anonymous functions to just run a load of code in response to an event firing - like a button being clicked - using an event handler. Again, this looks something like this:

    MyButton.onclick = function() { alert("hello"); // I can put as much code // inside here as I want }

    Function parameters

    Some functions require parameters to be specified when you are invoking them - these are values that need to be included inside the function parentheses, which it needs to do its job properly.

    Note : Parameters are sometimes called arguments, properties, or even attributes.

    As an example, the browser"s built-in Math.random() function doesn"t require any parameters. When called, it always returns a random number between 0 and 1:

    Var myNumber = Math.random();

    The browser"s built-in string replace() function however needs two parameters - the substring to find in the main string, and the substring to replace that string with:

    Var myText = "I am a string"; var newString = myText.replace("string", "sausage");

    Note : When you need to specify multiple parameters, they are separated by commas.

    It should also be noted that sometimes parameters are optional - you don"t have to specify them. If you don"t, the function will generally adopt some kind of default behavior. As an example, the array join() function"s parameter is optional:

    Var myArray = ["I", "love", "chocolate", "frogs"]; var madeAString = myArray.join(" "); // returns "I love chocolate frogs" var madeAString = myArray.join(); // returns "I,love,chocolate,frogs"

    If no parameter is included to specify a joining/delimiting character, a comma is used by default.

    Function scope and conflicts

    Let"s talk a bit about scope - a very important concept when dealing with functions. When you create a function, the variables and other things defined inside the function are inside their own separate scope , meaning that they are locked away in their own separate compartments, unreachable from inside other functions or from code outside the functions.

    The top level outside all your functions is called the global scope . Values defined in the global scope are accessible from everywhere in the code.

    JavaScript is set up like this for various reasons - but mainly because of security and organization. Sometimes you don"t want variables to be accessible from everywhere in the code - external scripts that you call in from elsewhere could start to mess with your code and cause problems because they happen to be using the same variable names as other parts of the code, causing conflicts. This might be done maliciously, or just by accident.

    For example, say you have an HTML file that is calling in two external JavaScript files, and both of them have a variable and a function defined that use the same name:

    greeting(); // first.js var name = "Chris"; function greeting() { alert("Hello " + name + ": welcome to our company."); } // second.js var name = "Zaptec"; function greeting() { alert("Our company is called " + name + "."); }

    Both functions you want to call are called greeting() , but you can only ever access the second.js file"s greeting() function - it is applied to the HTML later on in the source code, so its variable and function overwrite the ones in first.js .

    Keeping parts of your code locked away in functions avoids such problems, and is considered best practice.

    It is a bit like a zoo. The lions, zebras, tigers, and penguins are kept in their own enclosures, and only have access to the things inside their enclosures - in the same manner as the function scopes. If they were able to get into other enclosures, problems would occur. At best, different animals would feel really uncomfortable inside unfamiliar habitats - a lion or tiger would feel terrible inside the penguins" watery, icy domain. At worst, the lions and tigers might try to eat the penguins!

    The zoo keeper is like the global scope - he or she has the keys to access every enclosure, to restock food, tend to sick animals, etc.

    Active learning: Playing with scope

    Let"s look at a real example to demonstrate scoping.

  • First, make a local copy of our function-scope.html example. This contains two functions called a() and b() , and three variables - x , y , and z - two of which are defined inside the functions, and one in the global scope. It also contains a third function called output() , which takes a single parameter and outputs it in a paragraph on the page.
  • Open the example up in a browser and in your text editor.
  • Open the JavaScript console in your browser developer tools. In the JavaScript console, enter the following command: output(x); You should see the value of variable x output to the screen.
  • Now try entering the following in your console output(y); output(z); Both of these should return an error along the lines of "ReferenceError: y is not defined ". Why is that? Because of function scope - y and z are locked inside the a() and b() functions, so output() can"t access them when called from the global scope.
  • However, what about when it"s called from inside another function? Try editing a() and b() so they look like this: function a() { var y = 2; output(y); } function b() { var z = 3; output(z); } Save the code and reload it in your browser, then try calling the a() and b() functions from the JavaScript console: a(); b(); You should see the y and z values output in the page. This works fine, as the output() function is being called inside the other functions - in the same scope as the variables it is printing are defined in, in each case. output() itself is available from anywhere, as it is defined in the global scope.
  • Now try updating your code like this: function a() { var y = 2; output(x); } function b() { var z = 3; output(x); } Save and reload again, and try this again in your JavaScript console:
  • a(); b(); Both the a() and b() call should output the value of x - 1. These work fine because even though the output() calls are not in the same scope as x is defined in, x is a global variable so is available inside all code, everywhere.
  • Finally, try updating your code like this: function a() { var y = 2; output(z); } function b() { var z = 3; output(y); } Save and reload again, and try this again in your JavaScript console:
  • a(); b(); This time the a() and b() calls will both return that annoying "
  • Функции

    Функция - это блок программного кода на языке JavaScript, который определяется один раз и может выполняться, или вызываться, многократно. Возможно, вы уже знакомы с понятием «функция» под другим названием, таким как подпрограмма, или процедура. Функции могут иметь параметры: определение функции может включать список идентификаторов, которые называются параметрами и играют роль локальных переменных в теле функции.

    При вызове функций им могут передаваться значения, или аргументы, соответствующие их параметрам. Функции часто используют свои аргументы для вычисления возвращаемого значения, которое является значением выражения вызова функции. В дополнение к аргументам при вызове любой функции ей передается еще одно значение, определяющее контекст вызова - значение в ключевом слове this .

    Функции в языке JavaScript являются объектами и могут использоваться разными способами. Например, функции могут присваиваться переменным и передаваться другим функциям. Поскольку функции являются объектами, имеется возможность присваивать значения их свойствам и даже вызывать их методы.

    В JavaScript допускается создавать определения функций, вложенные в другие функции, и такие функции будут иметь доступ ко всем переменным, присутствующим в области видимости определения.

    Определение функций

    Определение функции начинается с ключевого слова function , за которым указываются следующие компоненты:

    Идентификатор, определяющий имя функции

    Имя является обязательной частью инструкции объявления функции: оно будет использовано для создания новой переменной, которой будет присвоен объект новой функции. В выражениях определения функций имя может отсутствовать: при его наличии имя будет ссылаться на объект функции только в теле самой функции.

    Пара круглых скобок вокруг списка из нуля или более идентификаторов, разделенных запятыми

    Эти идентификаторы будут определять имена параметров функции и в теле функции могут использоваться как локальные переменные.

    Пара фигурных скобок с нулем или более инструкций JavaScript внутри

    Эти инструкции составляют тело функции: они выполняются при каждом вызове функции.

    В следующем примере показано несколько определений функций в виде инструкций и выражений. Обратите внимание, что определения функций в виде выражений удобно использовать, только если они являются частью более крупных выражений, таких как присваивание или вызов функции, которые выполняют некоторые действия с помощью вновь объявленной функции:

    // Выводит имена и значения всех свойств объекта obj function printprops(obj) { for(var p in obj) console.log(p + ": " + obj[p] + "\n"); } // Вычисляет расстояние между точками (x1,y1) и (x2,y2) function distance(x1, y1, x2, y2) { var dx = x2 - x1; var dy = y2 - y1; return Math.sqrt(dx*dx + dy*dy); } // Рекурсивная функция (вызывающая сама себя), вычисляющая факториал function factorial(x) { if (x

    Обратите внимание, что в выражениях определения функций имя функции может отсутствовать. Инструкция объявления функции фактически объявляет переменную и присваивает ей объект функции.

    Выражение определения функции, напротив, не объявляет переменную. Однако в выражениях определения допускается указывать имя функции, как в функции вычисления факториала выше, которое может потребоваться в теле функции для вызова себя самой. Если выражение определения функции включает имя, данное имя будет ссылаться на объект функции в области видимости этой функции. Фактически имя функции становится локальной переменной, доступной только в теле функции. В большинстве случаев имя функции не требуется указывать в выражениях определения, что делает определения более компактными.

    Обратите внимание, что большинство (но не все) функций в примере содержат инструкцию return. Инструкция return завершает выполнение функции и выполняет возврат значения своего выражения (если указано) вызывающей программе. Если выражение в инструкции return отсутствует, она возвращает значение undefined. Если инструкция return отсутствует в функции, интерпретатор просто выполнит все инструкции в теле функции и вернет вызывающей программе значение undefined.

    Большинство функций в примере вычисляют некоторое значение, и в них инструкция return используется для возврата этого значения вызывающей программе. Функция printprops() несколько отличается в этом смысле: ее работа заключается в том, чтобы вывести имена свойств объекта. Ей не нужно возвращать какое-либо значение, поэтому в функции отсутствует инструкция return. Функция printprops() всегда будет возвращать значение undefined. (Функции, не имеющие возвращаемого значения, иногда называются процедурами.)

    Вызов функций

    Программный код, образующий тело функции, выполняется не в момент определения функции, а в момент ее вызова. Вызов функций выполняется с помощью выражения вызова. Выражение вызова состоит из выражения обращения к функции, которое возвращает объект функции, и следующими за ним круглыми скобками со списком из нуля или более выражений-аргументов, разделенных запятыми, внутри.

    Если выражение обращения к функции является выражением обращения к свойству - если функция является свойством объекта или элементом массива (т.е. методом) - тогда выражение вызова является выражением вызова метода. В следующем фрагменте демонстрируется несколько примеров выражений вызова обычных функций:

    Printprops({x:4, age: 24}); var d = distance(1,1,5,6); var f = factorial(5) / factorial(12); f = square(5);

    При вызове функции вычисляются все выражения-аргументы (указанные между скобками), и полученные значения используются в качестве аргументов функции. Эти значения присваиваются параметрам, имена которых перечислены в определении функции. В теле функции выражения обращений к параметрам возвращают значения соответствующих аргументов.

    При вызове обычной функции возвращаемое функцией значение становится значением выражения вызова. Если возврат из функции происходит по достижении ее конца интерпретатором, возвращается значение undefined. Если возврат из функции происходит в результате выполнения инструкции return, возвращается значение выражения, следующего за инструкцией return, или undefined, если инструкция return не имеет выражения.

    Метод - это не что иное, как функция, которая хранится в виде свойства объекта. Если имеется функция func и объект obj, то можно определить метод объекта obj с именем method, как показано ниже:

    // Определим простой объект и функцию var obj = {}; function func(a, b) { return a+b;} // Добавим в объект obj метод obj.method = func; // Теперь можно вызвать этот метод var result = obj.method(4, 5);

    Чаще всего при вызове методов используется форма обращения к свойствам с помощью оператора точки, однако точно так же можно использовать форму обращения к свойствам с помощью квадратных скобок. Например, оба следующих выражения являются выражениями вызова методов:

    Result = obj.method(4, 5); result = obj["method"](4, 5);

    Аргументы и возвращаемое значение при вызове метода обрабатываются точно так же, как при вызове обычной функции. Однако вызов метода имеет одно важное отличие: контекст вызова. Выражение обращения к свойству состоит из двух частей: объекта (в данном случае obj) и имени свойства (method). В подобных выражениях вызова методов объект obj становится контекстом вызова, и тело функции получает возможность ссылаться на этот объект с помощью ключевого слова this. Например:

    Var obj = { x: 0, y: 0, // Метод add: function(a, b) { this.x = a; this.y = b; }, // Еще один метод sum: function() { return this.x + this.y } }; // Вызов методов obj.add(15, 4); console.log(obj.sum()); // 19

    Методы и ключевое слово this занимают центральное место в парадигме объектно-ориентированного программирования. Любая функция, используемая как метод, фактически получает неявный аргумент - объект, относительно которого она была вызвана. Как правило, методы выполняют некоторые действия с объектом, и синтаксис вызова метода наглядно отражает тот факт, что функция оперирует объектом.

    Обратите внимание: this - это именно ключевое слово, а не имя переменной или свойства. Синтаксис JavaScript не допускает возможность присваивания значений элементу this.

    Аргументы и параметры функций

    В языке JavaScript, в определениях функций не указываются типы параметров, а при вызове функций не выполняется никаких проверок типов передаваемых значений аргументов. Фактически при вызове функций в языке JavaScript не проверяется даже количество аргументов. В подразделах ниже описывается, что происходит, если число аргументов в вызове функции меньше или больше числа объявленных параметров. В них также демонстрируется, как можно явно проверить типы аргументов функции, если необходимо гарантировать, что функция не будет вызвана с некорректными аргументами.

    Необязательные аргументы

    Когда число аргументов в вызове функции меньше числа объявленных параметров, недостающие аргументы получают значение undefined. Часто бывает удобным писать функции так, чтобы некоторые аргументы были необязательными и могли опускаться при вызове функции. В этом случае желательно предусмотреть возможность присваивания достаточно разумных значений по умолчанию параметрам, которые могут быть опущены. Например:

    // Добавить в массив arr перечислимые имена // свойств объекта obj и вернуть его. Если аргумент // arr не не был передан, создать и вернуть новый массив function getPropertyNames(obj, /* необязательный */ arr) { if (arr === undefined) arr = ; // Если массив не определен, создать новый for(var property in obj) arr.push(property); return arr; } // Эта функция может вызываться с 1 или 2 аргументами: var a = getPropertyNames({x:1, y:1}); // Получить свойства объекта в новом массиве getPropertyNames({z:5},a); // добавить свойства нового объекта в этот массив console.log(a); // ["x", "y", "z"]

    Обратите внимание, что при объявлении функций необязательные аргументы должны завершать список аргументов, чтобы их можно было опустить. Программист, который будет писать обращение к вашей функции, не сможет передать второй аргумент и при этом опустить первый: он будет вынужден явно передать в первом аргументе значение undefined. Обратите также внимание на комментарий /* необязательный */ в определении функции, который подчеркивает тот факт, что параметр является необязательным.

    Списки аргументов переменной длины

    Если число аргументов в вызове функции превышает число имен параметров, функция лишается возможности напрямую обращаться к неименованным значениям. Решение этой проблемы предоставляет объект Arguments . В теле функции идентификатор arguments ссылается на объект Arguments, присутствующий в вызове. Объект Arguments - это объект, подобный массиву, позволяющий извлекать переданные функции значения по их номерам, а не по именам.

    Предположим, что была определена функция func, которая требует один аргумент x. Если вызвать эту функцию с двумя аргументами, то первый будет доступен внутри функции по имени параметра x или как arguments. Второй аргумент будет доступен только как arguments. Кроме того, подобно настоящим массивам, arguments имеет свойство length, определяющее количество содержащихся элементов. То есть в теле функции func, вызываемой с двумя аргументами, arguments.length имеет значение 2.

    Объект Arguments может использоваться с самыми разными целями. Следующий пример показывает, как с его помощью проверить, была ли функция вызвана с правильным числом аргументов, - ведь JavaScript этого за вас не сделает:

    Function func(x, y, z) { // Сначала проверяется, правильное ли количество аргументов передано if (arguments.length != 3) { throw new Error("Функция func вызвана с " + arguments.length + " аргументами, а требуется 3."); } // А теперь сам код функции... }

    Обратите внимание, что зачастую нет необходимости проверять количество аргументов, как в данном примере. Поведение по умолчанию интерпретатора JavaScript отлично подходит для большинства случаев: отсутствующие аргументы замещаются значением undefined, а лишние аргументы просто игнорируются.

    Объект Arguments иллюстрирует важную возможность JavaScript-функций: они могут быть написаны таким образом, чтобы работать с любым количеством аргументов. Следующая функция принимает любое число аргументов и возвращает значение самого большого из них (аналогично ведет себя встроенная функция Math.max()):

    Function maxNumber() { var m = Number.NEGATIVE_INFINITY; // Цикл по всем аргументам, поиск и // сохранение наибольшего из них for(var i = 0; i m) m = arguments[i]; // Вернуть наибольшее значение return m; } var largest = maxNumber(1, 10, 100, 2, 3, 1000, 4, 5, 10000, 6); // 10000

    Функции, подобные этой и способные принимать произвольное число аргументов, называются функциями с переменным числом аргументов (variadic functions, variable arity functions или varargs functions) . Этот термин возник вместе с появлением языка программирования C.

    Обратите внимание, что функции с переменным числом аргументов не должны допускать возможность вызова с пустым списком аргументов. Будет вполне разумным использовать объект arguments при написании функции, ожидающей получить фиксированное число обязательных именованных аргументов, за которыми может следовать произвольное число необязательных неименованных аргументов.

    Не следует забывать, что arguments фактически не является массивом - это объект Arguments. В каждом объекте Arguments имеются пронумерованные элементы массива и свойство length, но с технической точки зрения это не массив. Лучше рассматривать его как объект, имеющий некоторые пронумерованные свойства.

    Помимо элементов своего массива объект Arguments определяет свойства callee и caller . При попытке изменить значения этих свойств в строгом режиме ECMAScript 5 гарантированно возбуждается исключение TypeError. Однако в нестрогом режиме стандарт ECMAScript утверждает, что свойство callee ссылается на выполняемую в данный момент функцию. Свойство caller не является стандартным, но оно присутствует во многих реализациях и ссылается на функцию, вызвавшую текущую.

    Свойство caller можно использовать для доступа к стеку вызовов, а свойство callee особенно удобно использовать для рекурсивного вызова неименованных функций:

    Var factorial = function(x) { if (x

    Свойства и методы функций

    Мы видели, что в JavaScript-программах функции могут использоваться как значения. Оператор typeof возвращает для функций строку «function», однако в действительности функции в языке JavaScript - это особого рода объекты. А раз функции являются объектами, то они имеют свойства и методы, как любые другие объекты. Существует даже конструктор Function(), который создает новые объекты функций. В следующих подразделах описываются свойства и методы функций.

    Свойство length

    В теле функции свойство arguments.length определяет количество аргументов, переданных функции. Однако свойство length самой функции имеет иной смысл. Это свойство, доступное только для чтения, возвращает количество аргументов, которое функция ожидает получить - число объявленных параметров.

    В следующем фрагменте определяется функция с именем check(), получающая массив аргументов arguments от другой функции. Она сравнивает свойство arguments.length (число фактически переданных аргументов) со свойством arguments.callee.length (число ожидаемых аргументов), чтобы определить, передано ли функции столько аргументов, сколько она ожидает. Если значения не совпадают, генерируется исключение. За функцией check() следует тестовая функция func(), демонстрирующая порядок использования функции check():

    // Эта функция использует arguments.callee, поэтому она // не будет работать в строгом режиме function check(args) { var actual = args.length; // Фактическое число аргументов var expected = args.callee.length; // Ожидаемое число аргументов if (actual !== expected) // Если не совпадают, генерируется исключение throw new Error("ожидается: " + expected + "; получено " + actual); } function func(x, y, z) { // Проверить число ожидаемых и фактически переданных аргументов check(arguments); // Теперь выполнить оставшуюся часть функции return x + y + z; }

    Свойство prototype

    Любая функция имеет свойство prototype, ссылающееся на объект, известный как объект прототипа. Каждая функция имеет свой объект прототипа. Когда функция используется в роли конструктора, вновь созданный объект наследует свойства этого объекта прототипа.

    Прототипы и свойство prototype обсуждались в предыдущей статье.

    Методы call() и apply()

    Методы call() и apply() позволяют выполнять косвенный вызов функции, как если бы она была методом некоторого другого объекта. Первым аргументом обоим методам, call() и apply(), передается объект, относительно которого вызывается функция; этот аргумент определяет контекст вызова и становится значением ключевого слова this в теле функции. Чтобы вызвать функцию func() (без аргументов) как метод объекта obj, можно использовать любым из методов, call() или apply():

    Func.call(obj); func.apply(obj);

    Любой из этих способов вызова эквивалентен следующему фрагменту (где предполагается, что объект obj не имеет свойства с именем m):

    Obj.m = func; // Временно сделать func методом obj obj.m(); // Вызывать его без аргументов. delete obj.m; // Удалить временный метод.

    В строгом режиме ECMAScript 5 первый аргумент методов call() и apply() становится значением this, даже если это простое значение, null или undefined. В ECMAScript 3 и в нестрогом режиме значения null и undefined замещаются глобальным объектом, а простое значение - соответствующим объектом-оберткой.

    Все остальные аргументы метода call(), следующие за первым аргументом, определяющим контекст вызова, передаются вызываемой функции. Метод apply() действует подобно методу call(), за исключением того, что аргументы для функции передаются в виде массива. Если функция способна обрабатывать произвольное число аргументов, метод apply() может использоваться для вызова такой функции в контексте массива произвольной длины.

    В следующем примере демонстрируется практическое применение метода call():

    // Ниже определены две функции, отображающие свойства и // значения свойств произвольного объекта. Способ // отображения передаются в виде аргумента func function print1(func, obj) { for (n in obj) func(n +": " + obj[n]); } function print2(func, objDevice, obj) { for (n in obj) func.call(objDevice, n +": " + obj[n]); } var obj = {x:5, y:10}; print2(document.write, document, obj); // Работает корректно print2(console.log, console, obj); print1(document.write, obj); // Возникнет исключение Illegal invocation, т.к. print1(console.log, obj); // невозможно вызвать эти методы без объекта контекста

    Метод bind()

    Метод bind() впервые появился в ECMAScript 5, но его легко имитировать в ECMAScript 3. Как следует из его имени, основное назначение метода bind() состоит в том, чтобы связать (bind) функцию с объектом. Если вызвать метод bind() функции func и передать ему объект obj, он вернет новую функцию. Вызов новой функции (как обычной функции) выполнит вызов оригинальной функции func как метода объекта obj. Любые аргументы, переданные новой функции, будут переданы оригинальной функции. Например:

    // Функция, которую требуется привязать function func(y) { return this.x + y; } var obj = {x:1}; // Объект, к которому выполняется привязка var g = func.bind(obj); // Вызов g(x) вызовет obj.func(x)

    Такой способ связывания легко реализовать в ECMAScript 3, как показано ниже:

    // Возвращает функцию, которая вызывает func как метод объекта obj // и передает ей все свои аргументы function bind(func, obj) { if (func.bind) return func.bind(obj); // Использовать метод bind, если имеется else return function() { // Иначе связать, как показано ниже return func.apply(obj, arguments); }; }

    Метод bind() в ECMAScript 5 не просто связывает функцию с объектом. Он также выполняет частичное применение: помимо значения this связаны будут все аргументы, переданные методу bind() после первого его аргумента. Частичное применение - распространенный прием в функциональном программировании и иногда называется каррингом (currying) .

    • Перевод

    Мне часто приходится сталкиваться с JavaScript-кодом, ошибки в котором вызваны неправильным понимаем того, как работают функции в JavaScript (кстати, значительная часть такого кода была написана мной самим). JavaScript - язык мультипарадигменный, и в нем имеются механизмы функционального программирования. Пора изучить эти возможности. В этой статье я расскажу вам о пяти способах вызова функций в JavaScript.

    На первых этапах изучения JavaScript новички обычно думают, что функции в нем работают примерно так же, как, скажем, в C#. Но механизмы вызова функций в JavaScript имеют ряд важных отличий, и незнание их может вылиться в ошибки, которые будет непросто найти.

    Давайте напишем простую функцию, которая возвращает массив из трех элементов - текущего значения this и двух аргументов, переданных в функцию.
    function makeArray(arg1, arg2){ return [ this, arg1, arg2 ]; }

    Самый распространенный способ: глобальный вызов Новички часто объявляют функции так, как показано в примере выше. Вызвать эту функцию не составляет труда:
    makeArray("one", "two"); // => [ window, "one", "two" ]
    Погодите. Откуда взялся объект window ? Почему это у нас this равен window ?

    В JavaScript, неважно, выполняется ли скрипт в браузере или в ином окружении, всегда определен глобальный объект . Любой код в нашем скрипте, не «привязанный» к чему-либо (т.е. находящийся вне объявления объекта) на самом деле находится в контексте глобального объекта. В нашем случае, makeArray - не просто функция, «гуляющая» сама по себе. На самом деле, makeArray - метод глобального объекта (в случае исполнения кода в браузере) window . Доказать это легко:
    alert(typeof window.methodThatDoesntExist); // => undefined alert(typeof window.makeArray); // => function
    То есть вызов makeArray("one", "two"); равносилен вызову window.makeArray("one", "two"); .

    Меня печалит тот факт, что этот способ вызова функций наиболее распространен, ведь он подразумевает наличие глобальной функции. А мы все знаем, что глобальные функции и переменные - не самый хороший тон в программировании. Особенно это справедливо для JavaScript. Избегайте глобальных определений, и не пожалеете.

    Правило вызова функций №1: Если функция вызывается напрямую, без указания объекта (например, myFunction()), значением this будет глобальный объект (window в случае исполнения кода в браузере).

    Вызов метода Давайте создадим простой объект и сделаем makeArray его методом. Объект объявим с помощью литеральной нотации, а после вызовем наш метод:
    // создаем объект var arrayMaker = { someProperty: "какое-то значение", make: makeArray }; // вызываем метод make() arrayMaker.make("one", "two"); // => [ arrayMaker, "one", "two" ] // альтернативный синтаксис, используем квадратные скобки arrayMaker["make"]("one", "two"); // => [ arrayMaker, "one", "two" ]
    Видите разницу? Значение this в этом случае - сам объект. Почему не window , как в предыдущем случае, ведь объявление функции не изменилось? Весь секрет в том, как передаются функции в JavaScript. Function - это стандартный тип JavaScript, являющийся на самом деле объектом, и как и любой другой объект, функции можно передавать и копировать. В данном случае, мы как бы скопировали всю функцию, включая список аргументов и тело, и присвоили получившийся объект свойству make объекта arrayMaker . Это равносильно такому объявлению:
    var arrayMaker = { someProperty: "Какое-то значение"; make: function (arg1, arg2) { return [ this, arg1, arg2]; } };
    Правило вызова функций №2: В функции, вызванной с использованием синтаксиса вызова метода, например, obj.myFunction() или obj["myFunction"]() , this будет иметь значение obj .

    Непонимание этого простого, в общем-то, принципа часто приводит к ошибкам при обработке событий:
    function buttonClicked(){ var text = (this === window) ? "window" : this.id; alert(text); } var button1 = document.getElementById("btn1"); var button2 = document.getElementById("btn2"); button1.onclick = buttonClicked; button2.onclick = function(){ buttonClicked(); };
    Щелчок по первой кнопке покажет сообщение «btn1» , потому что в данном случае мы вызываем функцию как метод, и this внутри функции получит значение объекта, которому этот метод принадлежит. Щелчок по второй кнопке выдаст «window» , потому что в этом случае мы вызываем buttonClicked напрямую (т.е. не как obj.buttonClicked()). То же самое происходит, когда мы назначаем обработчик события в тэге элемента, как в случае третьей кнопки. Щелчок по третьей кнопке покажет то же самое сообщение, что и для второй.

    При использовании библиотек вроде jQuery думать об этом не надо. jQuery позаботится о том, чтобы переписать значение this в обработчике события так, чтобы значением this был элемент, вызвавший событие:
    // используем jQuery $("#btn1").click(function() { alert(this.id); // jQuery позаботится о том, чтобы "this" являлась кнопкой });
    Каким образом jQuery удается изменить значение this ? Читайте ниже.

    Еще два способа: apply() и call() Логично, что чем чаще вы используете функции, тем чаще вам приходится передавать их и вызывать в разных контекстах. Зачастую возникает необходимость переопределить значение this . Если вы помните, функции в JavaScript являются объектами. На практике это означает, что у функций есть предопределенные методы. apply() и call() - два из них. Они позволяют переопределять значение this:
    var car = { year: 2008, model: "Dodge Bailout" }; makeArray.apply(car, [ "one", "two" ]); // => [ car, "one", "two" ] makeArray.call(car, "one", "two"); // => [ car, "one", "two" ]
    Эти два метода очень похожи. Первый параметр переопределяет this . Различия между ними заключаются в последющих аргументах: Function.apply() принимает массив значений, которые будут переданы функции, а Function.call() принимает аргументы раздельно. На практике, по моему мнению, удобнее применять apply() .

    Правило вызова функций №3: Если требуется переопределить значение this , не копируя функцию в другой объект, можно использовать myFunction.apply(obj) или myFunction.call(obj) .

    Конструкторы Я не буду подробно останавливаться на объявлении собственных типов в JavaScript, но считаю необходимым напомнить, что в JavaScript нет классов, а любой пользовательский тип нуждается в конструкторе. Кроме того, методы пользовательского типа лучше объявлять через prototype , который является свойством фукции-конструктора. Давайте создадим свой тип:
    // объявляем конструктор function ArrayMaker(arg1, arg2) { this.someProperty = "неважно"; this.theArray = [ this, arg1, arg2 ]; } // объявляем методы ArrayMaker.prototype = { someMethod: function () { alert("Вызван someMethod"); }, getArray: function () { return this.theArray; } }; var am = new ArrayMaker("one", "two"); var other = new ArrayMaker("first", "second"); am.getArray(); // => [ am, "one", "two" ]
    Важным в этом примере является наличие оператора new перед вызовом функции. Если бы не он, это был бы глобальный вызов, и создаваемые в конструкторе свойства относились бы к глобальному объекту. Нам такого не надо. Кроме того, в конструкторах обычно не возвращают значения явно. Без оператора new конструктор вернул бы undefined , с ним он возвращает this . Хорошим стилем считается наименование конструкторов с заглавной буквы; это позволит вспомнить о необходимости оператора new .

    В остальном, код внутри конструктора, скорее всего, будет похож на код, который вы написали бы на другом языке. Значение this в данном случае - это новый объект, который вы создаете.

    Правило вызова функций №4: При вызове функции с оператором new , значением this будет новый объект, созданный средой исполнения JavaScript. Если эта функция не возвращает какой-либо объект явно, будет неявно возвращен this .

    Заключение Надеюсь, понимание разницы между разными способами вызова функций возволит вам улучшить ваш JavaScript-код. Иногда непросто отловить ошибки, связанные со значением this , поэтому имеет смысл предупреждать их возникновение заранее.