Сайт о телевидении

Сайт о телевидении

Функции в JavaScript

Статья в разработке!

Статья, в которой рассмотрим, что такое функция, а также традиционный (классический) вариант работы с ней. Кроме этого, разберем, что такое аргументы (параметры) функции и оператор return.

Что такое функция?

Функция - это некоторый набор инструкций , которому можно дать имя , а затем обратиться к нему по этому имени из любого места программы.

Классический пример использования функции. На веб-странице имеется код JavaScript, некоторый фрагмент в котором повторяется несколько раз . Чтобы этого избежать можно оформить этот фрагмент в виде функции , а затем вызывать его в нужных местах кода по имени этой функции . Вызов этой функции будет обозначать выполнение инструкций , находящихся в ней.

Как организовать выполнение некоторой задачи в JavaScript с использованием функций? Чтобы это выполнить обычно поступают так:

  • разбивают задачу на составные части (подзадачи);
  • подзадачи оформляют через функции;
  • разрабатывают основной код с использованием вызова созданных функций.

В результате такая программа становится более структурированной. В неё более просто вносить различные изменения и добавлять новые возможности.

Объявление и вызов функции

Операции с функцией в JavaScript можно разделить на 2 шага:

  • объявление (создание) функции.
  • вызов (выполнение) этой функции.

Объявление функции. Создание функции в JavaScript начинается с написания ключевого слова function , далее указывается имя функции, затем в круглых скобка х при необходимости перечисляются параметры , после этого указываются инструкции , которые заключаются в фигурные скобки .

// объявление функции someName function someName() { alert("Вы вызвали функцию someName!"); } JavaScript - Синтаксис объявления функции

Функции такого вида в JavaScript называются function declaration statement . Кроме этого вида в JavaScript ещё различают функции function definition expression и arrow function expression .

Составление имени функции выполняется по тем же правилам, что и имя переменной. Т.е. оно может содержать буквы, цифры (0-9), знаки «$» и «_». В качестве букв рекомендуется использовать только буквы английского алфавита (a-z, A-Z). Имя функции, также как и имя переменной не может начинаться с цифры.

Параметров у функции может быть сколько угодно много или не быть вообще. Круглые скобки в любом случае указываются. Если параметров несколько, то их между собой необходимо разделить с помощью запятой . Обращение к параметрам функции осуществляется по их имени.

Набор инструкций , заключенный в фигурные скобки - это код функции , который будет выполнен при её вызове .

Вызов функции. Объявленная функция сама по себе выполняться не будет . Для того чтобы её запустить , её необходимо вызвать . Вызов функции осуществляется посредством указания её имени и двух круглых скобок. Внутри скобок при необходимости указываются аргументы.

// вызов функции, приведённой в предыдущем примере someName(); JavaScript - Синтаксис вызова функции

Является ли функция в JavaScript объектом?

Функции в JavaScript являются объектами. В JavaScript вообще всё является объектами, кроме шести примитивных типов данных. А если функция является объектом, то ссылку на неё можно сохранить в переменную.

// объявление функции someName function someName() { alert("Вы вызвали функцию someName!"); } var reference = someName;

После этого вызвать функцию можно будет так:

Reference();

Параметры и аргументы функции

Аргументы функции - это значения, которые передаются функции на этапе её вызова. Отделяются аргументы друг от друга с помощью запятой.

// вызов функции sayWelcome с передачей ей двух аргументов sayWelcome("Иван", "Иванов"); // ещё один вызов функции sayWelcome с двумя аргументами sayWelcome("Петр", "Петров");

Параметры функции – это один из способов в JavaScript, посредством которого можно обратиться к аргументам внутри функции. Описываются параметры функции на этапе её объявления в круглых скобках.

Другими словами параметры функции - это локальные переменные, которые создаются автоматически на этапе запуска функции. В качестве значений параметры получают соответствующие аргументы, переданные функции во время её вызова. Обратиться к параметрам можно только внутри этой функции, вне её они не существуют.

// объявление функции sayWelcome, которая имеет два параметра function sayWelcome (userFirstName, userLastName) { // инструкция, выводящая в консоль значения параметров «userFirstName» и «userLastName» console.log("Добро пожаловать, " + userLastName + " " + userFirstName); }

В языке JavaScript при вызове функции количество аргументов не обязательно должно совпадать с количеством параметров . Параметры, которым при вызове, не было установлено значение, будут равны undefined .

Например , вызовем функцию из примера, приведённого выше, без указания одного и двух параметров:

// вызов функции sayWelcome и передача ей одного аргумента sayWelcome("Петр"); // Добро пожаловать, undefined Петр // вызов функции sayWelcome без передачи ей аргументов sayWelcome(); // Добро пожаловать, undefined undefined

Пример функции, которая будет просто выводить переданные ей аргументы в консоль браузера:

// объявление функции function outputParam(param1, param2, param3) { console.log(param1 + "; " + param2 + "; " + param3); } // вызовы функции outputParam с передачей ей разного количества параметров outputParam("Дождь","Снег","Туман"); // Дождь; Снег; Туман outputParam(17); // 17; undefined; undefined outputParam(24,33); // 24; 33; undefined outputParam(); // undefined; undefined; undefined

Другой способ обратиться к аргументам внутри функции – это использовать специальный объект arguments . Доступ к аргументам через arguments выполняется точно также как к элементам обычного массива, т.е. по их порядковым номерам. Таким образом, argument - позволит получить первый аргумент, arguments – второй аргумент и т.д.

// объявление функции sum function sum(num1, num2) { /* num1 или arguments – получить значение 1 аргумента num2 или arguments – получить значение 2 аргумента */ var sum1 = num1 + num2, sum2 = arguments + arguments; return "Сумма, полученная 1 способом равна " + sum1 + "; сумма, полученная 2 способом равна " + sum2; } /* выведем результат функции sum в консоль 7 - первый аргумент (к нему можно обратиться как по имени num1, так и с помощью arguments) 4 - второй аргумент (к нему можно обратиться как по имени num2, так и с помощью arguments) */ console.log(sum(7,4));

Основное отличие между этими способами заключается в том, что первый из них позволяет обратиться только к тем аргументам, которым на этапе объявления функции были дали имена. Второй же способ позволяет получить значение любого аргумента, даже если у него нет имени (по порядковому номеру). Это возможность языка JavaScript позволяет создавать универсальные гибкие функции.

Кроме получения аргументов, объект arguments позволяет также узнать их количество. Выполняется это с помощью свойства length.

Перебрать аргументы , переданные функции, можно, например, с помощью цикла for или for...of .

// объявление функции sum function sum() { var i = 0; console.log("Вывод всех аргументов с помощью цикла for"); for (i; i < arguments.length; i++) { console.log(i + 1 + " аргумент равен " + arguments[i]); } console.log("Вывод всех аргументов с помощью цикла for...of"); for (arg of arguments) { console.log(arg); } } // вызов функции sum sum(7, 4, 3, 1);

Функция, выводящая в консоль все переданные ей аргументы и их количество:

// объявление функции function myFunction () { var i; console.log("Количество переданных параметров = " + arguments.length); // переберём все параметры с помощью цикла for for (i = 0; i < arguments.length; i++) { console.log(i + " параметр = " + arguments[i]); } } // вызовы функции myFunction myFunction(3, 7, 27, "JavaScript"); myFunction(); myFunction("Яблоки", "Груши", "Апельсины");

Функция, выполняющая сложение все переданных ей аргументов (их количество заранее неизвестно):

// объявление функции var myCalc = function() { // переберём все параметры с помощью цикла for var i, sum = 0; for (i = 0; i lt; arguments.length; i++) { sum += arguments[i]; } // возвратим в качестве результата сумму return sum; } //вызов функции (вывод в консоль) console.log(myCalc(4, 20, 17, -6));

В результате, посредством объекта arguments можно реализовать в теле функции:

  • проверку количества переданных аргументов;
  • обработку какого угодного количества параметров.

Кроме самой функции, доступ к аргументам, которые передаются ей на этапе вызова, имеют также другие функции, находящиеся в ней.

Function mainF(p1, p2) { function childF() { console.log("p1 = " + p1 + "; p2 = " + p2); } childF(); } mainF(3, 5); // p1 = 3; p2 = 5 mainF(4, 7); // p1 = 4; p2 = 7

Значение параметров по умолчанию

Начиная с версии ECMAScript 2015 (6) параметру функции можно задать значение, которое он будет иметь по умолчанию.

Например , установим параметру «color» значение по умолчанию, равное «#009688»:

Function setBGColor(color = "#009688") { document.body.style.backgroundColor = color; } setBGColor(); // цвет фона будет равен #009688 setBGColor("red"); // цвет фона будет равен red

До ECMAScript 2015 задать параметру значение по умолчанию можно, например, было так:

Function setBGColor(color) { color = color !== undefined ? color: "#009688"; // устанавливаем color значение по умолчанию, равное "#009688" document.body.style.backgroundColor = color; }

Оставшиеся параметры (rest parameters)

Если при вызове функции ей передать аргументов больше, чем у неё есть параметров, то получить оставшиеся можно с помощью, так называемых оставшихся параметров (rest patameters) . Данная возможность в языке появилась, начиная с ECMAScript 2015.

// ...nums - оставшиеся параметры, к которым можно обратиться в данном случае по имени nums function doMath(mathAction, ...nums) { var result = 0; nums.forEach(function(value) { switch (mathAction) { case "sum": result += value; break; case "sumCube": result += value**3; break; case "sumSquare": result += value**2; break; deafult: result = 0; } }) return result; } console.log(doMath("sum", 3, 4, 21, -4)); // 24 (3 + 4 + 21 + (-4)) console.log(doMath("sumSquare", 1, 4)); // 17 (1^2 + 4^2) console.log(doMath("sumCube", 3, 2, 4)); // 99 (3^3 + 2^3 + 4^3)

Оператор return

Оператор return предназначен для возвращения значения или результата вычисления выражения текущей функции. Значение или выражение должно быть отделено от return посредством пробела. Кроме этого, оператор return прекращает выполнение функции, т.е. все инструкции, идущие после него, исполнены не будут.

Функция в JavaScript всегда возвращает результат в вне зависимости от того, используется ли оператор return или нет.

// функция, возвращающая результат function sayWelcome (userFirstName, userLastName) { if ((!userFirstName) || (!userLastName)) return "Добро пожаловать, анонимный пользователь"; else return "Добро пожаловать, " + userLastName + " " + userFirstName; } // объявление переменной person var person; // присвоить переменной person результат функции sayWelcome person = sayWelcome("Иван","Иванов"); // вывести значение переменной в консоль console.log(person); //Инструкция, которая выведит в консоль результат работы функции sayWelcome console.log(sayWelcome("Петр","Петров")); //Инструкция, которая выведит в консоль результат работы функции sayWelcome console.log(sayWelcome("Сидоров")); JavaScript - Функция с проверкой параметров

Функция в JavaScript в результате своего выполнения всегда возвращает результат, даже если он явно не определён с помощью оператора return. Этот результат значение undefined.

// 1. функция, не возвращающая никакого результата function sayWelcome (userFirstName, userLastName) { console.log("Добро пожаловать, " + userLastName + " " + userFirstName); } // попробуем получить результат у функции, которая ничего не возвращает console.log(sayWelcome ("Иван", "Иванов")); // 2. функция, содержащая оператор return без значения function sayDay (day) { day = "Сегодня, " + day; return; //эта инструкция не выполнится, т.к. она идёт после оператора return console.log(day); } // попробуем получить результат у функции, которая содержит оператор return без значения console.log(sayDay("21 февраля 2016г.")); JavaScript - Получить значение у функции, которая ничего не возвращает

Такой же результат будет получен, если для оператора return не указать возвращаемое значение.

Перегрузка функций в JavaScript

Перегрузка функций в программировании – это возможность объявлять несколько функций с одинаковыми именами в одной области видимости. Отличаются такие функции друг от друга типом и числом аргументов. Каждая функция имеет свою программную логику. Используется перегрузка функций для того, чтобы с помощью одного имени функции можно было выполнять близкие действия.

Язык JavaScript не поддерживает перегрузку функций в том виде, как это реализовано, например, в Си подобных языках. Т.е. в JavaScript нельзя создать несколько функций с одинаковыми именами, находящихся в одной области видимости.

Подобную функциональность можно реализовать в JavaScript используя следующие действия:

  • Для того чтобы проверить передан аргумент или нет, используйте условие с проверкой его значения на undefined .
  • Для проверки количества переданных аргументов функции используйте свойство объекта arguments length .
  • Чтобы узнать тип переданного значения аргумента используйте операторы typeof или instanceof .
  • Для работы с переменным числом аргументов, используйте объект arguments .
  • Начиная с версии ECMAScript6, Вы можете указывать значения по умолчанию для аргументов.

Например, создадим функцию, при вызове которой можно указывать один или два аргумента:

//объявление функции, которая изменяет цвет заднего фона элементов function setBgColor(bgColor,elements) { //если параметр elements при вызове не указан if (elements=== undefined) { //то приравнять его значение "div" elements = "div"; } //получить все элементы elements = $(elements); //перебрать все элементы и установить им указанный цвет заднего фона elements.each(function(){ $(this).css("background-color",bgColor); }); } /*Вызвать функцию setBgColor, указав один параметр. Т.к. 2 параметр не указан, то данная фукция изменит цвет заднего фона у всех элементов div.*/ setBgColor("green"); /*Вызвать функцию setBgColor, указав 2 параметра. Т.к. 2 параметр задан, то данная функция изменит цвет заднего фона только элементов button.*/ setBgColor("#ff0000","button");

Произведём некоторые изменения в вышепредставленном коде. А именно, укажем для второго параметра значение по умолчанию:

//объявление функции, которая изменяет цвет заднего фона элементов //параметр elements имеет значение "div" по умолчанию function setBgColor(bgColor,elements = "div") { //получить все элементы elements = $(elements); //перебрать все элементы и установить им указанный цвет заднего фона elements.each(function(){ $(this).css("background-color",bgColor); }); } //вызвать функцию setBgColor, указав один параметр setBgColor("green"); //вызвать функцию setBgColor, указав 2 параметра setBgColor("#ff0000","button");

Пример, как в JavaScript можно реализовать «перегруженную» функцию, вычисляющую количество калорий, которых необходимо человеку в день:

// описание функции function countCal(sex, height) { // параметры: sex (пол) и height (рост) var result; if ((sex === 0) || (sex === "man")) { result = (height - 100) * 20; } else if ((sex === 1) || (sex === "woman")) { result = (height - 105) * 19; } if (result) { // arguments - уровень активности if (arguments) { result *= arguments; } console.log("Количество ккал для нормальной жизнедеятельности: " + result); } else { console.log("Неверно указаны параметры"); } } /* вызов функции и передаче ей 2 аргументов (1 - "man", к нему можно обратиться с помощью имени sex и arguments; 2 - значение 185, к нему можно обратиться с помощью имени sex и arguments) */ countCal("man", 185); /* вызов функции и передаче ей 3 параметров, хотя в описании функции присутствуют только 2 (получить значение 3 параметра в данном случае можно только как arguments) */ countCal(0, 185, 2);

Рекурсия

Рекурсия – это вызов внутри тела некоторой функции самой себя.

Вызов функции обычно осуществляется в зависимости от способа её объявления по имени или посредством переменной, содержащей ссылку на эту функцию.

Function fact(n) { if (n === 1) { return 1; } return fact(n-1) * n; } console.log(fact(5)); // 120

Вызвать функцию внутри её тела можно не только по имени, но также с помощью свойства callee объекта arguments. Но данное свойство лучше не использовать, т.к. оно является устаревшим. Кроме этого в строгом режиме оно вообще не работает.

Что такое встроенные (стандартные) функции?

В JavaScript имеется огромный набор встроенных (стандартных) функций. Данные функции уже описаны в самом движке браузера. Практически все они являются методами того или иного объекта.

Например, для того чтобы вызвать встроенную функцию (метод) alert, её не надо предварительно объявлять. Она уже описана в браузере. Вызов метода alert осуществляется посредством указания имени, круглых скобок и аргумента внутри них. Данный метод предназначен для вывода сообщения на экран в форме диалогового окна. Текстовое сообщение берётся из значения параметра данной функции.

// вызов функции alert alert("Некоторый текст"); JavaScript - Вызов функции alert

24 мая 2011 в 01:13 Пять способов вызвать функцию
  • JavaScript
  • Перевод

Мне часто приходится сталкиваться с JavaScript-кодом, ошибки в котором вызваны неправильным понимаем того, как работают функции в JavaScript (кстати, значительная часть такого кода была написана мной самим). JavaScript - язык мультипарадигменный, и в нем имеются механизмы функционального программирования. Пора изучить эти возможности. В этой статье я расскажу вам о пяти способах вызова функций в JavaScript.

На первых этапах изучения JavaScript новички обычно думают, что функции в нем работают примерно так же, как, скажем, в C#. Но механизмы вызова функций в JavaScript имеют ряд важных отличий, и незнание их может вылиться в ошибки, которые будет непросто найти.

Давайте напишем простую функцию, которая возвращает массив из трех элементов - текущего значения this и двух аргументов, переданных в функцию.
function makeArray(arg1, arg2){ return [ this, arg1, arg2 ]; }

Самый распространенный способ: глобальный вызов Новички часто объявляют функции так, как показано в примере выше. Вызвать эту функцию не составляет труда:
makeArray("one", "two"); // => [ window, "one", "two" ]
Погодите. Откуда взялся объект window ? Почему это у нас this равен window ?

В JavaScript, неважно, выполняется ли скрипт в браузере или в ином окружении, всегда определен глобальный объект . Любой код в нашем скрипте, не «привязанный» к чему-либо (т.е. находящийся вне объявления объекта) на самом деле находится в контексте глобального объекта. В нашем случае, makeArray - не просто функция, «гуляющая» сама по себе. На самом деле, makeArray - метод глобального объекта (в случае исполнения кода в браузере) window . Доказать это легко:
alert(typeof window.methodThatDoesntExist); // => undefined alert(typeof window.makeArray); // => function
То есть вызов makeArray("one", "two"); равносилен вызову window.makeArray("one", "two"); .

Меня печалит тот факт, что этот способ вызова функций наиболее распространен, ведь он подразумевает наличие глобальной функции. А мы все знаем, что глобальные функции и переменные - не самый хороший тон в программировании. Особенно это справедливо для JavaScript. Избегайте глобальных определений, и не пожалеете.

Правило вызова функций №1: Если функция вызывается напрямую, без указания объекта (например, myFunction()), значением this будет глобальный объект (window в случае исполнения кода в браузере).

Вызов метода Давайте создадим простой объект и сделаем makeArray его методом. Объект объявим с помощью литеральной нотации, а после вызовем наш метод:
// создаем объект var arrayMaker = { someProperty: "какое-то значение", make: makeArray }; // вызываем метод make() arrayMaker.make("one", "two"); // => [ arrayMaker, "one", "two" ] // альтернативный синтаксис, используем квадратные скобки arrayMaker["make"]("one", "two"); // => [ arrayMaker, "one", "two" ]
Видите разницу? Значение this в этом случае - сам объект. Почему не window , как в предыдущем случае, ведь объявление функции не изменилось? Весь секрет в том, как передаются функции в JavaScript. Function - это стандартный тип JavaScript, являющийся на самом деле объектом, и как и любой другой объект, функции можно передавать и копировать. В данном случае, мы как бы скопировали всю функцию, включая список аргументов и тело, и присвоили получившийся объект свойству make объекта arrayMaker . Это равносильно такому объявлению:
var arrayMaker = { someProperty: "Какое-то значение"; make: function (arg1, arg2) { return [ this, arg1, arg2]; } };
Правило вызова функций №2: В функции, вызванной с использованием синтаксиса вызова метода, например, obj.myFunction() или obj["myFunction"]() , this будет иметь значение obj .

Непонимание этого простого, в общем-то, принципа часто приводит к ошибкам при обработке событий:
function buttonClicked(){ var text = (this === window) ? "window" : this.id; alert(text); } var button1 = document.getElementById("btn1"); var button2 = document.getElementById("btn2"); button1.onclick = buttonClicked; button2.onclick = function(){ buttonClicked(); };
Щелчок по первой кнопке покажет сообщение «btn1» , потому что в данном случае мы вызываем функцию как метод, и this внутри функции получит значение объекта, которому этот метод принадлежит. Щелчок по второй кнопке выдаст «window» , потому что в этом случае мы вызываем buttonClicked напрямую (т.е. не как obj.buttonClicked()). То же самое происходит, когда мы назначаем обработчик события в тэге элемента, как в случае третьей кнопки. Щелчок по третьей кнопке покажет то же самое сообщение, что и для второй.

При использовании библиотек вроде jQuery думать об этом не надо. jQuery позаботится о том, чтобы переписать значение this в обработчике события так, чтобы значением this был элемент, вызвавший событие:
// используем jQuery $("#btn1").click(function() { alert(this.id); // jQuery позаботится о том, чтобы "this" являлась кнопкой });
Каким образом jQuery удается изменить значение this ? Читайте ниже.

Еще два способа: apply() и call() Логично, что чем чаще вы используете функции, тем чаще вам приходится передавать их и вызывать в разных контекстах. Зачастую возникает необходимость переопределить значение this . Если вы помните, функции в JavaScript являются объектами. На практике это означает, что у функций есть предопределенные методы. apply() и call() - два из них. Они позволяют переопределять значение this:
var car = { year: 2008, model: "Dodge Bailout" }; makeArray.apply(car, [ "one", "two" ]); // => [ car, "one", "two" ] makeArray.call(car, "one", "two"); // => [ car, "one", "two" ]
Эти два метода очень похожи. Первый параметр переопределяет this . Различия между ними заключаются в последющих аргументах: Function.apply() принимает массив значений, которые будут переданы функции, а Function.call() принимает аргументы раздельно. На практике, по моему мнению, удобнее применять apply() .

Правило вызова функций №3: Если требуется переопределить значение this , не копируя функцию в другой объект, можно использовать myFunction.apply(obj) или myFunction.call(obj) .

Конструкторы Я не буду подробно останавливаться на объявлении собственных типов в JavaScript, но считаю необходимым напомнить, что в JavaScript нет классов, а любой пользовательский тип нуждается в конструкторе. Кроме того, методы пользовательского типа лучше объявлять через prototype , который является свойством фукции-конструктора. Давайте создадим свой тип:
// объявляем конструктор function ArrayMaker(arg1, arg2) { this.someProperty = "неважно"; this.theArray = [ this, arg1, arg2 ]; } // объявляем методы ArrayMaker.prototype = { someMethod: function () { alert("Вызван someMethod"); }, getArray: function () { return this.theArray; } }; var am = new ArrayMaker("one", "two"); var other = new ArrayMaker("first", "second"); am.getArray(); // => [ am, "one", "two" ]
Важным в этом примере является наличие оператора new перед вызовом функции. Если бы не он, это был бы глобальный вызов, и создаваемые в конструкторе свойства относились бы к глобальному объекту. Нам такого не надо. Кроме того, в конструкторах обычно не возвращают значения явно. Без оператора new конструктор вернул бы undefined , с ним он возвращает this . Хорошим стилем считается наименование конструкторов с заглавной буквы; это позволит вспомнить о необходимости оператора new .

В остальном, код внутри конструктора, скорее всего, будет похож на код, который вы написали бы на другом языке. Значение this в данном случае - это новый объект, который вы создаете.

Правило вызова функций №4: При вызове функции с оператором new , значением this будет новый объект, созданный средой исполнения JavaScript. Если эта функция не возвращает какой-либо объект явно, будет неявно возвращен this .

Заключение Надеюсь, понимание разницы между разными способами вызова функций возволит вам улучшить ваш JavaScript-код. Иногда непросто отловить ошибки, связанные со значением this , поэтому имеет смысл предупреждать их возникновение заранее.

Функции

Функция - это блок программного кода на языке JavaScript, который определяется один раз и может выполняться, или вызываться, многократно. Возможно, вы уже знакомы с понятием «функция» под другим названием, таким как подпрограмма, или процедура. Функции могут иметь параметры: определение функции может включать список идентификаторов, которые называются параметрами и играют роль локальных переменных в теле функции.

При вызове функций им могут передаваться значения, или аргументы, соответствующие их параметрам. Функции часто используют свои аргументы для вычисления возвращаемого значения, которое является значением выражения вызова функции. В дополнение к аргументам при вызове любой функции ей передается еще одно значение, определяющее контекст вызова - значение в ключевом слове this .

Функции в языке JavaScript являются объектами и могут использоваться разными способами. Например, функции могут присваиваться переменным и передаваться другим функциям. Поскольку функции являются объектами, имеется возможность присваивать значения их свойствам и даже вызывать их методы.

В JavaScript допускается создавать определения функций, вложенные в другие функции, и такие функции будут иметь доступ ко всем переменным, присутствующим в области видимости определения.

Определение функций

Определение функции начинается с ключевого слова function , за которым указываются следующие компоненты:

Идентификатор, определяющий имя функции

Имя является обязательной частью инструкции объявления функции: оно будет использовано для создания новой переменной, которой будет присвоен объект новой функции. В выражениях определения функций имя может отсутствовать: при его наличии имя будет ссылаться на объект функции только в теле самой функции.

Пара круглых скобок вокруг списка из нуля или более идентификаторов, разделенных запятыми

Эти идентификаторы будут определять имена параметров функции и в теле функции могут использоваться как локальные переменные.

Пара фигурных скобок с нулем или более инструкций JavaScript внутри

Эти инструкции составляют тело функции: они выполняются при каждом вызове функции.

В следующем примере показано несколько определений функций в виде инструкций и выражений. Обратите внимание, что определения функций в виде выражений удобно использовать, только если они являются частью более крупных выражений, таких как присваивание или вызов функции, которые выполняют некоторые действия с помощью вновь объявленной функции:

// Выводит имена и значения всех свойств объекта obj function printprops(obj) { for(var p in obj) console.log(p + ": " + obj[p] + "\n"); } // Вычисляет расстояние между точками (x1,y1) и (x2,y2) function distance(x1, y1, x2, y2) { var dx = x2 - x1; var dy = y2 - y1; return Math.sqrt(dx*dx + dy*dy); } // Рекурсивная функция (вызывающая сама себя), вычисляющая факториал function factorial(x) { if (x

Обратите внимание, что в выражениях определения функций имя функции может отсутствовать. Инструкция объявления функции фактически объявляет переменную и присваивает ей объект функции.

Выражение определения функции, напротив, не объявляет переменную. Однако в выражениях определения допускается указывать имя функции, как в функции вычисления факториала выше, которое может потребоваться в теле функции для вызова себя самой. Если выражение определения функции включает имя, данное имя будет ссылаться на объект функции в области видимости этой функции. Фактически имя функции становится локальной переменной, доступной только в теле функции. В большинстве случаев имя функции не требуется указывать в выражениях определения, что делает определения более компактными.

Обратите внимание, что большинство (но не все) функций в примере содержат инструкцию return. Инструкция return завершает выполнение функции и выполняет возврат значения своего выражения (если указано) вызывающей программе. Если выражение в инструкции return отсутствует, она возвращает значение undefined. Если инструкция return отсутствует в функции, интерпретатор просто выполнит все инструкции в теле функции и вернет вызывающей программе значение undefined.

Большинство функций в примере вычисляют некоторое значение, и в них инструкция return используется для возврата этого значения вызывающей программе. Функция printprops() несколько отличается в этом смысле: ее работа заключается в том, чтобы вывести имена свойств объекта. Ей не нужно возвращать какое-либо значение, поэтому в функции отсутствует инструкция return. Функция printprops() всегда будет возвращать значение undefined. (Функции, не имеющие возвращаемого значения, иногда называются процедурами.)

Вызов функций

Программный код, образующий тело функции, выполняется не в момент определения функции, а в момент ее вызова. Вызов функций выполняется с помощью выражения вызова. Выражение вызова состоит из выражения обращения к функции, которое возвращает объект функции, и следующими за ним круглыми скобками со списком из нуля или более выражений-аргументов, разделенных запятыми, внутри.

Если выражение обращения к функции является выражением обращения к свойству - если функция является свойством объекта или элементом массива (т.е. методом) - тогда выражение вызова является выражением вызова метода. В следующем фрагменте демонстрируется несколько примеров выражений вызова обычных функций:

Printprops({x:4, age: 24}); var d = distance(1,1,5,6); var f = factorial(5) / factorial(12); f = square(5);

При вызове функции вычисляются все выражения-аргументы (указанные между скобками), и полученные значения используются в качестве аргументов функции. Эти значения присваиваются параметрам, имена которых перечислены в определении функции. В теле функции выражения обращений к параметрам возвращают значения соответствующих аргументов.

При вызове обычной функции возвращаемое функцией значение становится значением выражения вызова. Если возврат из функции происходит по достижении ее конца интерпретатором, возвращается значение undefined. Если возврат из функции происходит в результате выполнения инструкции return, возвращается значение выражения, следующего за инструкцией return, или undefined, если инструкция return не имеет выражения.

Метод - это не что иное, как функция, которая хранится в виде свойства объекта. Если имеется функция func и объект obj, то можно определить метод объекта obj с именем method, как показано ниже:

// Определим простой объект и функцию var obj = {}; function func(a, b) { return a+b;} // Добавим в объект obj метод obj.method = func; // Теперь можно вызвать этот метод var result = obj.method(4, 5);

Чаще всего при вызове методов используется форма обращения к свойствам с помощью оператора точки, однако точно так же можно использовать форму обращения к свойствам с помощью квадратных скобок. Например, оба следующих выражения являются выражениями вызова методов:

Result = obj.method(4, 5); result = obj["method"](4, 5);

Аргументы и возвращаемое значение при вызове метода обрабатываются точно так же, как при вызове обычной функции. Однако вызов метода имеет одно важное отличие: контекст вызова. Выражение обращения к свойству состоит из двух частей: объекта (в данном случае obj) и имени свойства (method). В подобных выражениях вызова методов объект obj становится контекстом вызова, и тело функции получает возможность ссылаться на этот объект с помощью ключевого слова this. Например:

Var obj = { x: 0, y: 0, // Метод add: function(a, b) { this.x = a; this.y = b; }, // Еще один метод sum: function() { return this.x + this.y } }; // Вызов методов obj.add(15, 4); console.log(obj.sum()); // 19

Методы и ключевое слово this занимают центральное место в парадигме объектно-ориентированного программирования. Любая функция, используемая как метод, фактически получает неявный аргумент - объект, относительно которого она была вызвана. Как правило, методы выполняют некоторые действия с объектом, и синтаксис вызова метода наглядно отражает тот факт, что функция оперирует объектом.

Обратите внимание: this - это именно ключевое слово, а не имя переменной или свойства. Синтаксис JavaScript не допускает возможность присваивания значений элементу this.

Аргументы и параметры функций

В языке JavaScript, в определениях функций не указываются типы параметров, а при вызове функций не выполняется никаких проверок типов передаваемых значений аргументов. Фактически при вызове функций в языке JavaScript не проверяется даже количество аргументов. В подразделах ниже описывается, что происходит, если число аргументов в вызове функции меньше или больше числа объявленных параметров. В них также демонстрируется, как можно явно проверить типы аргументов функции, если необходимо гарантировать, что функция не будет вызвана с некорректными аргументами.

Необязательные аргументы

Когда число аргументов в вызове функции меньше числа объявленных параметров, недостающие аргументы получают значение undefined. Часто бывает удобным писать функции так, чтобы некоторые аргументы были необязательными и могли опускаться при вызове функции. В этом случае желательно предусмотреть возможность присваивания достаточно разумных значений по умолчанию параметрам, которые могут быть опущены. Например:

// Добавить в массив arr перечислимые имена // свойств объекта obj и вернуть его. Если аргумент // arr не не был передан, создать и вернуть новый массив function getPropertyNames(obj, /* необязательный */ arr) { if (arr === undefined) arr = ; // Если массив не определен, создать новый for(var property in obj) arr.push(property); return arr; } // Эта функция может вызываться с 1 или 2 аргументами: var a = getPropertyNames({x:1, y:1}); // Получить свойства объекта в новом массиве getPropertyNames({z:5},a); // добавить свойства нового объекта в этот массив console.log(a); // ["x", "y", "z"]

Обратите внимание, что при объявлении функций необязательные аргументы должны завершать список аргументов, чтобы их можно было опустить. Программист, который будет писать обращение к вашей функции, не сможет передать второй аргумент и при этом опустить первый: он будет вынужден явно передать в первом аргументе значение undefined. Обратите также внимание на комментарий /* необязательный */ в определении функции, который подчеркивает тот факт, что параметр является необязательным.

Списки аргументов переменной длины

Если число аргументов в вызове функции превышает число имен параметров, функция лишается возможности напрямую обращаться к неименованным значениям. Решение этой проблемы предоставляет объект Arguments . В теле функции идентификатор arguments ссылается на объект Arguments, присутствующий в вызове. Объект Arguments - это объект, подобный массиву, позволяющий извлекать переданные функции значения по их номерам, а не по именам.

Предположим, что была определена функция func, которая требует один аргумент x. Если вызвать эту функцию с двумя аргументами, то первый будет доступен внутри функции по имени параметра x или как arguments. Второй аргумент будет доступен только как arguments. Кроме того, подобно настоящим массивам, arguments имеет свойство length, определяющее количество содержащихся элементов. То есть в теле функции func, вызываемой с двумя аргументами, arguments.length имеет значение 2.

Объект Arguments может использоваться с самыми разными целями. Следующий пример показывает, как с его помощью проверить, была ли функция вызвана с правильным числом аргументов, - ведь JavaScript этого за вас не сделает:

Function func(x, y, z) { // Сначала проверяется, правильное ли количество аргументов передано if (arguments.length != 3) { throw new Error("Функция func вызвана с " + arguments.length + " аргументами, а требуется 3."); } // А теперь сам код функции... }

Обратите внимание, что зачастую нет необходимости проверять количество аргументов, как в данном примере. Поведение по умолчанию интерпретатора JavaScript отлично подходит для большинства случаев: отсутствующие аргументы замещаются значением undefined, а лишние аргументы просто игнорируются.

Объект Arguments иллюстрирует важную возможность JavaScript-функций: они могут быть написаны таким образом, чтобы работать с любым количеством аргументов. Следующая функция принимает любое число аргументов и возвращает значение самого большого из них (аналогично ведет себя встроенная функция Math.max()):

Function maxNumber() { var m = Number.NEGATIVE_INFINITY; // Цикл по всем аргументам, поиск и // сохранение наибольшего из них for(var i = 0; i m) m = arguments[i]; // Вернуть наибольшее значение return m; } var largest = maxNumber(1, 10, 100, 2, 3, 1000, 4, 5, 10000, 6); // 10000

Функции, подобные этой и способные принимать произвольное число аргументов, называются функциями с переменным числом аргументов (variadic functions, variable arity functions или varargs functions) . Этот термин возник вместе с появлением языка программирования C.

Обратите внимание, что функции с переменным числом аргументов не должны допускать возможность вызова с пустым списком аргументов. Будет вполне разумным использовать объект arguments при написании функции, ожидающей получить фиксированное число обязательных именованных аргументов, за которыми может следовать произвольное число необязательных неименованных аргументов.

Не следует забывать, что arguments фактически не является массивом - это объект Arguments. В каждом объекте Arguments имеются пронумерованные элементы массива и свойство length, но с технической точки зрения это не массив. Лучше рассматривать его как объект, имеющий некоторые пронумерованные свойства.

Помимо элементов своего массива объект Arguments определяет свойства callee и caller . При попытке изменить значения этих свойств в строгом режиме ECMAScript 5 гарантированно возбуждается исключение TypeError. Однако в нестрогом режиме стандарт ECMAScript утверждает, что свойство callee ссылается на выполняемую в данный момент функцию. Свойство caller не является стандартным, но оно присутствует во многих реализациях и ссылается на функцию, вызвавшую текущую.

Свойство caller можно использовать для доступа к стеку вызовов, а свойство callee особенно удобно использовать для рекурсивного вызова неименованных функций:

Var factorial = function(x) { if (x

Свойства и методы функций

Мы видели, что в JavaScript-программах функции могут использоваться как значения. Оператор typeof возвращает для функций строку «function», однако в действительности функции в языке JavaScript - это особого рода объекты. А раз функции являются объектами, то они имеют свойства и методы, как любые другие объекты. Существует даже конструктор Function(), который создает новые объекты функций. В следующих подразделах описываются свойства и методы функций.

Свойство length

В теле функции свойство arguments.length определяет количество аргументов, переданных функции. Однако свойство length самой функции имеет иной смысл. Это свойство, доступное только для чтения, возвращает количество аргументов, которое функция ожидает получить - число объявленных параметров.

В следующем фрагменте определяется функция с именем check(), получающая массив аргументов arguments от другой функции. Она сравнивает свойство arguments.length (число фактически переданных аргументов) со свойством arguments.callee.length (число ожидаемых аргументов), чтобы определить, передано ли функции столько аргументов, сколько она ожидает. Если значения не совпадают, генерируется исключение. За функцией check() следует тестовая функция func(), демонстрирующая порядок использования функции check():

// Эта функция использует arguments.callee, поэтому она // не будет работать в строгом режиме function check(args) { var actual = args.length; // Фактическое число аргументов var expected = args.callee.length; // Ожидаемое число аргументов if (actual !== expected) // Если не совпадают, генерируется исключение throw new Error("ожидается: " + expected + "; получено " + actual); } function func(x, y, z) { // Проверить число ожидаемых и фактически переданных аргументов check(arguments); // Теперь выполнить оставшуюся часть функции return x + y + z; }

Свойство prototype

Любая функция имеет свойство prototype, ссылающееся на объект, известный как объект прототипа. Каждая функция имеет свой объект прототипа. Когда функция используется в роли конструктора, вновь созданный объект наследует свойства этого объекта прототипа.

Прототипы и свойство prototype обсуждались в предыдущей статье.

Методы call() и apply()

Методы call() и apply() позволяют выполнять косвенный вызов функции, как если бы она была методом некоторого другого объекта. Первым аргументом обоим методам, call() и apply(), передается объект, относительно которого вызывается функция; этот аргумент определяет контекст вызова и становится значением ключевого слова this в теле функции. Чтобы вызвать функцию func() (без аргументов) как метод объекта obj, можно использовать любым из методов, call() или apply():

Func.call(obj); func.apply(obj);

Любой из этих способов вызова эквивалентен следующему фрагменту (где предполагается, что объект obj не имеет свойства с именем m):

Obj.m = func; // Временно сделать func методом obj obj.m(); // Вызывать его без аргументов. delete obj.m; // Удалить временный метод.

В строгом режиме ECMAScript 5 первый аргумент методов call() и apply() становится значением this, даже если это простое значение, null или undefined. В ECMAScript 3 и в нестрогом режиме значения null и undefined замещаются глобальным объектом, а простое значение - соответствующим объектом-оберткой.

Все остальные аргументы метода call(), следующие за первым аргументом, определяющим контекст вызова, передаются вызываемой функции. Метод apply() действует подобно методу call(), за исключением того, что аргументы для функции передаются в виде массива. Если функция способна обрабатывать произвольное число аргументов, метод apply() может использоваться для вызова такой функции в контексте массива произвольной длины.

В следующем примере демонстрируется практическое применение метода call():

// Ниже определены две функции, отображающие свойства и // значения свойств произвольного объекта. Способ // отображения передаются в виде аргумента func function print1(func, obj) { for (n in obj) func(n +": " + obj[n]); } function print2(func, objDevice, obj) { for (n in obj) func.call(objDevice, n +": " + obj[n]); } var obj = {x:5, y:10}; print2(document.write, document, obj); // Работает корректно print2(console.log, console, obj); print1(document.write, obj); // Возникнет исключение Illegal invocation, т.к. print1(console.log, obj); // невозможно вызвать эти методы без объекта контекста

Метод bind()

Метод bind() впервые появился в ECMAScript 5, но его легко имитировать в ECMAScript 3. Как следует из его имени, основное назначение метода bind() состоит в том, чтобы связать (bind) функцию с объектом. Если вызвать метод bind() функции func и передать ему объект obj, он вернет новую функцию. Вызов новой функции (как обычной функции) выполнит вызов оригинальной функции func как метода объекта obj. Любые аргументы, переданные новой функции, будут переданы оригинальной функции. Например:

// Функция, которую требуется привязать function func(y) { return this.x + y; } var obj = {x:1}; // Объект, к которому выполняется привязка var g = func.bind(obj); // Вызов g(x) вызовет obj.func(x)

Такой способ связывания легко реализовать в ECMAScript 3, как показано ниже:

// Возвращает функцию, которая вызывает func как метод объекта obj // и передает ей все свои аргументы function bind(func, obj) { if (func.bind) return func.bind(obj); // Использовать метод bind, если имеется else return function() { // Иначе связать, как показано ниже return func.apply(obj, arguments); }; }

Метод bind() в ECMAScript 5 не просто связывает функцию с объектом. Он также выполняет частичное применение: помимо значения this связаны будут все аргументы, переданные методу bind() после первого его аргумента. Частичное применение - распространенный прием в функциональном программировании и иногда называется каррингом (currying) .

Люди считают, что компьютерные науки – это искусство для гениев. В реальности всё наоборот – просто множество людей делают вещи, которые стоят друг на друге, будто составляя стену из маленьких камушков.

Дональд Кнут

Вы уже видели вызовы функций, таких как alert . Функции – это хлеб с маслом программирования на JavaScript. Идея оборачивания куска программы и вызова её как переменной очень востребована. Это инструмент для структурирования больших программ, уменьшения повторений, назначения имён подпрограммам, и изолирование подпрограмм друг от друга.

Самое очевидное использование функций – создание нового словаря. Придумывать слова для обычной человеческой прозы – дурной тон. В языке программирования это необходимо.

Средний взрослый русскоговорящий человек знает примерно 10000 слов. Редкий язык программирования содержит 10000 встроенных команд. И словарь языка программирования определён чётче, поэтому он менее гибок, чем человеческий. Поэтому нам обычно приходится добавлять в него свои слова, чтобы избежать излишних повторений.

Определение функции Определение функции – обычное определение переменной, где значение, которое получает переменная, является функцией. Например, следующий код определяет переменную square, которая ссылается на функцию, подсчитывающую квадрат заданного числа:

Var square = function(x) { return x * x; }; console.log(square(12)); // → 144

Функция создаётся выражением, начинающимся с ключевого слова function . У функций есть набор параметров (в данном случае, только x), и тело, содержащее инструкции, которые необходимо выполнить при вызове функции. Тело функции всегда заключают в фигурные скобки, даже если оно состоит из одной инструкции.

У функции может быть несколько параметров, или вообще их не быть. В следующем примере makeNoise не имеет списка параметров, а у power их целых два:

Var makeNoise = function() { console.log("Хрясь!"); }; makeNoise(); // → Хрясь! var power = function(base, exponent) { var result = 1; for (var count = 0; count < exponent; count++) result *= base; return result; }; console.log(power(2, 10)); // → 1024

Некоторые функции возвращают значение, как power и square, другие не возвращают, как makeNoise, которая производит только побочный эффект. Инструкция return определяет значение, возвращаемое функцией. Когда обработка программы доходит до этой инструкции, она сразу же выходит из функции, и возвращает это значение в то место кода, откуда была вызвана функция. return без выражения возвращает значение undefined .

Параметры и область видимости Параметры функции – такие же переменные, но их начальные значения задаются при вызове функции, а не в её коде.

Важное свойство функций в том, что переменные, созданные внутри функции (включая параметры), локальны внутри этой функции. Это означает, что в примере с power переменная result будет создаваться каждый раз при вызове функции, и эти отдельные её инкарнации никак друг с другом не связаны.

Эта локальность переменных применяется только к параметрам и созданным внутри функций переменным. Переменные, заданные снаружи какой бы то ни было функции, называются глобальными, поскольку они видны на протяжении всей программы. Получить доступ к таким переменным можно и внутри функции, если только вы не объявили локальную переменную с тем же именем.

Следующий код иллюстрирует это. Он определяет и вызывает две функции, которые присваивают значение переменной x. Первая объявляет её как локальную, тем самым меняя только локальную переменную. Вторая не объявляет, поэтому работа с x внутри функции относится к глобальной переменной x, заданной в начале примера.

Var x = "outside"; var f1 = function() { var x = "inside f1"; }; f1(); console.log(x); // → outside var f2 = function() { x = "inside f2"; }; f2(); console.log(x); // → inside f2

Такое поведение помогает предотвратить случайное взаимодействие между функциями. Если бы все переменные использовались в любом месте программы, было бы очень трудно убедиться, что одна переменная не используется по разным назначениям. А если бы вы использовали переменную повторно, вы бы столкнулись со странными эффектами, когда сторонний код портит значения вашей переменной. Относясь к локальным для функций переменным так, что они существуют только внутри функции, язык делает возможным работу с функциями будто с отдельными маленькими вселенными, что позволяет не волноваться про весь код целиком.

Вложенные области видимости JavaScript различает не только глобальные и локальные переменные. Функции можно задавать внутри функций, что приводит к нескольким уровням локальности.

К примеру, следующая довольно бессмысленная функция содержит внутри ещё две:

Var landscape = function() { var result = ""; var flat = function(size) { for (var count = 0; count < size; count++) result += "_"; }; var mountain = function(size) { result += "/"; for (var count = 0; count < size; count++) result += """; result += "\\"; }; flat(3); mountain(4); flat(6); mountain(1); flat(1); return result; }; console.log(landscape()); // → ___/""""\______/"\_

Функции flat и mountain видят переменную result, потому что они находятся внутри функции, в которой она определена. Но они не могут видеть переменные count друг друга, потому что переменные одной функции находятся вне области видимости другой. А окружение снаружи функции landscape не видит ни одной из переменных, определённых внутри этой функции.

Короче говоря, в каждой локальной области видимости можно увидеть все области, которые её содержат. Набор переменных, доступных внутри функции, определяется местом, где эта функция описана в программе. Все переменные из блоков, окружающих определение функции, видны – включая и те, что определены на верхнем уровне в основной программе. Этот подход к областям видимости называется лексическим.

Люди, изучавшие другие языки программирования, могут подумать, что любой блок, заключённый в фигурные скобки, создаёт своё локальное окружение. Но в JavaScript область видимости создают только функции. Вы можете использовать отдельно стоящие блоки:

Var something = 1; { var something = 2; // Делаем что-либо с переменной something... } // Вышли из блока...

Но something внутри блока – это та же переменная, что и снаружи. Хотя такие блоки и разрешены, имеет смысл использовать их только для команды if и циклов.

Если это кажется вам странным – так кажется не только вам. В версии JavaScript 1.7 появилось ключевое слово let, которое работает как var, но создаёт переменные, локальные для любого данного блока, а не только для функции.

Функции как значения Имена функций обычно используют как имя для кусочка программы. Такая переменная однажды задаётся и не меняется. Так что легко перепутать функцию и её имя.

Но это – две разные вещи. Вызов функции можно использовать, как простую переменную – например, использовать их в любых выражениях. Возможно хранить вызов функции в новой переменной, передавать её как параметр другой функции, и так далее. Также переменная, хранящая вызов функции, остаётся обычной переменной и её значение можно поменять:

Var launchMissiles = function(value) { missileSystem.launch("пли!"); }; if (safeMode) launchMissiles = function(value) {/* отбой */};

В главе 5 мы обсудим чудесные вещи, которые возможно сделать, передавая вызовы функций другим функциям.

Объявление функций Есть более короткая версия выражения “var square = function…”. Ключевое слово function можно использовать в начале инструкции:

Function square(x) { return x * x; }

Это объявление функции. Инструкция определяет переменную square и присваивает ей заданную функцию. Пока всё ок. Есть только один подводный камень в таком определении.

Console.log("The future says:", future()); function future() { return "We STILL have no flying cars."; }

Такой код работает, хотя функция объявляется ниже того кода, который её использует. Это происходит оттого, что объявления функций не являются частью обычного исполнения программ сверху вниз. Они «перемещаются» наверх их области видимости и могут быть вызваны в любом коде в этой области. Иногда это удобно, потому что вы можете писать код в таком порядке, который выглядит наиболее осмысленно, не беспокоясь по поводу необходимости определять все функции выше того места, где они используются.

А что будет, если мы поместим объявление функции внутрь условного блока или цикла? Не надо так делать. Исторически разные платформы для запуска JavaScript обрабатывали такие случаи по разному, а текущий стандарт языка запрещает так делать. Если вы хотите, чтобы ваши программы работали последовательно, используйте объявления функций только внутри других функций или основной программы.

Function example() { function a() {} // Нормуль if (something) { function b() {} // Ай-яй-яй! } }

Стек вызовов Полезным будет присмотреться к тому, как порядок выполнения работает с функциями. Вот простая программа с несколькими вызовами функций:

Function greet(who) { console.log("Привет, " + who); } greet("Семён"); console.log("Покеда");

Обрабатывается она примерно так: вызов greet заставляет проход прыгнуть на начало функции. Он вызывает встроенную функцию console.log, которая перехватывает контроль, делает своё дело и возвращает контроль. Потом он доходит до конца greet, и возвращается к месту, откуда его вызвали. Следующая строчка опять вызывает console.log.

Схематично это можно показать так:

Top greet console.log greet top console.log top

Поскольку функция должна вернуться на то место, откуда её вызвали, компьютер должен запомнить контекст, из которого была вызвана функция. В одном случае, console.log должна вернуться обратно в greet. В другом, она возвращается в конец программы.

Место, где компьютер запоминает контекст, называется стеком. Каждый раз при вызове функции, текущий контекст помещается наверх стека. Когда функция возвращается, она забирает верхний контекст из стека и использует его для продолжения работы.

Хранение стека требует места в памяти. Когда стек слишком сильно разрастается, компьютер прекращает выполнение и выдаёт что-то вроде “stack overflow” или “ too much recursion”. Следующий код это демонстрирует – он задаёт компьютеру очень сложный вопрос, который приводит к бесконечным прыжкам между двумя функциями. Точнее, это были бы бесконечные прыжки, если бы у компьютера был бесконечный стек. В реальности стек переполняется.

Function chicken() { return egg(); } function egg() { return chicken(); } console.log(chicken() + " came first."); // → ??

Необязательные аргументы Следующий код вполне разрешён и выполняется без проблем:

Alert("Здрасьте", "Добрый вечер", "Всем привет!");

Официально функция принимает один аргумент. Однако, при таком вызове она не жалуется. Она игнорирует остальные аргументы и показывает «Здрасьте».

JavaScript очень лоялен по поводу количества аргументов, передаваемых функции. Если вы передадите слишком много, лишние будут проигнорированы. Слишком мало – отсутствующим будет назначено значение undefined.

Минус этого подхода в том, что возможно,- и даже вероятно,- передать функции неправильное количество аргументов, и вам никто на это не пожалуется.

Плюс в том, что вы можете создавать функции, принимающие необязательные аргументы. К примеру, в следующей версии функции power её можно вызывать как с двумя, так и с одним аргументом,- в последнем случае экспонента будет равна двум, и функция работает как квадрат.

Function power(base, exponent) { if (exponent == undefined) exponent = 2; var result = 1; for (var count = 0; count < exponent; count++) result *= base; return result; } console.log(power(4)); // → 16 console.log(power(4, 3)); // → 64

В следующей главе мы увидим, как в теле функции можно узнать точное число переданных ей аргументов. Это полезно, т.к. позволяет создавать функцию, принимающую любое количество аргументов. К примеру, console.log использует это свойство, и выводит все переданные ему аргументы:

Console.log("R", 2, "D", 2); // → R 2 D 2

Замыкания Возможность использовать вызовы функций как переменные вкупе с тем фактом, что локальные переменные каждый раз при вызове функции создаются заново, приводит нас к интересному вопросу. Что происходит с локальными переменными, когда функция перестаёт работать?

Следующий пример иллюстрирует этот вопрос. В нём объявляется функция wrapValue, которая создаёт локальную переменную. Затем она возвращает функцию, которая читает эту локальную переменную и возвращает её значение.

Function wrapValue(n) { var localVariable = n; return function() { return localVariable; }; } var wrap1 = wrapValue(1); var wrap2 = wrapValue(2); console.log(wrap1()); // → 1 console.log(wrap2()); // → 2

Это допустимо и работает так, как должно – доступ к переменной остаётся. Более того, в одно и то же время могут существовать несколько экземпляров одной и той же переменной, что ещё раз подтверждает тот факт, что с каждым вызовом функции локальные переменные пересоздаются.

Эта возможность работать со ссылкой на какой-то экземпляр локальной переменной называется замыканием. Функция, замыкающая локальные переменные, называется замыкающей. Она не только освобождает вас от забот, связанных с временем жизни переменных, но и позволяет творчески использовать функции.

С небольшим изменением мы превращаем наш пример в функцию, умножающую числа на любое заданное число.

Function multiplier(factor) { return function(number) { return number * factor; }; } var twice = multiplier(2); console.log(twice(5)); // → 10

Отдельная переменная вроде localVariable из примера с wrapValue уже не нужна. Так как параметр – сам по себе локальная переменная.

Потребуется практика, чтобы начать мыслить подобным образом. Хороший вариант мысленной модели – представлять, что функция замораживает код в своём теле и обёртывает его в упаковку. Когда вы видите return function(...) {...}, представляйте, что это пульт управления куском кода, замороженным для употребления позже.

В нашем примере multiplier возвращает замороженный кусок кода, который мы сохраняем в переменной twice. Последняя строка вызывает функцию, заключённую в переменной, в связи с чем активируется сохранённый код (return number * factor;). У него всё ещё есть доступ к переменной factor, которая определялась при вызове multiplier, к тому же у него есть доступ к аргументу, переданному во время разморозки (5) в качестве числового параметра.

Рекурсия Функция вполне может вызывать сама себя, если она заботится о том, чтобы не переполнить стек. Такая функция называется рекурсивной. Вот пример альтернативной реализации возведения в степень:

Function power(base, exponent) { if (exponent == 0) return 1; else return base * power(base, exponent - 1); } console.log(power(2, 3)); // → 8

Примерно так математики определяют возведение в степень, и, возможно, это описывает концепцию более элегантно, чем цикл. Функция вызывает себя много раз с разными аргументами для достижения многократного умножения.

Однако, у такой реализации есть проблема – в обычной среде JavaScript она раз в 10 медленнее, чем версия с циклом. Проход по циклу выходит дешевле, чем вызов функции.

Дилемма «скорость против элегантности» довольно интересна. Есть некий промежуток между удобством для человека и удобством для машины. Любую программу можно ускорить, сделав её больше и замысловатее. От программиста требуется находить подходящий баланс.

В случае с первым возведением в степень, неэлегантный цикл довольно прост и понятен. Не имеет смысла заменять его рекурсией. Часто, однако, программы работают с такими сложными концепциями, что хочется уменьшить эффективность путём повышения читаемости.

Основное правило, которое уже не раз повторяли, и с которым я полностью согласен – не беспокойтесь насчёт быстродействия, пока вы точно не уверены, что программа тормозит. Если так, найдите те части, которые работают дольше всех, и меняйте там элегантность на эффективность.

Конечно, мы не должны сразу же полностью игнорировать быстродействие. Во многих случаях, как с возведением в степень, особой простоты от элегантных решений мы не получаем. Иногда опытный программист сразу видит, что простой подход никогда не будет достаточно быстрым.

Я заостряю на этом внимание оттого, что слишком много начинающих программистов хватаются за эффективность даже в мелочах. Результат получается больше, сложнее и часто не без ошибок. Такие программы дольше писать, а работают они часто не сильно быстрее.

Но рекурсия не всегда лишь менее эффективная альтернатива циклам. Некоторые задачи проще решить рекурсией. Чаще всего это обход нескольких веток дерева, каждая из которых может ветвиться.

Вот вам загадка: можно получить бесконечное количество чисел, начиная с числа 1, и потом либо добавляя 5, либо умножая на 3. Как нам написать функцию, которая, получив число, пытается найти последовательность таких сложений и умножений, которые приводят к заданному числу? К примеру, число 13 можно получить, сначала умножив 1 на 3, а затем добавив 5 два раза. А число 15 вообще нельзя так получить.

Рекурсивное решение:

Function findSolution(target) { function find(start, history) { if (start == target) return history; else if (start > target) return null; else return find(start + 5, "(" + history + " + 5)") || find(start * 3, "(" + history + " * 3)"); } return find(1, "1"); } console.log(findSolution(24)); // → (((1 * 3) + 5) * 3)

Этот пример не обязательно находит самое короткое решение – он удовлетворяется любым. Не ожидаю, что вы сразу поймёте, как программа работает. Но давайте разбираться в этом отличном упражнении на рекурсивное мышление.

Внутренняя функция find занимается рекурсией. Она принимает два аргумента – текущее число и строку, которая содержит запись того, как мы пришли к этому номеру. И возвращает либо строчку, показывающую нашу последовательность шагов, либо null.

Для этого функция выполняет одно из трёх действий. Если заданное число равно цели, то текущая история как раз и является способом её достижения, поэтому она и возвращается. Если заданное число больше цели, продолжать умножения и сложения смысла нет, потому что так оно будет только увеличиваться. А если мы ещё не достигли цели, функция пробует оба возможных пути, начинающихся с заданного числа. Она дважды вызывает себя, один раз с каждым из способов. Если первый вызов возвращает не null, он возвращается. В другом случае возвращается второй.

Чтобы лучше понять, как функция достигает нужного эффекта, давайте просмотрим её вызовы, которые происходят в поисках решения для числа 13.

Find(1, "1") find(6, "(1 + 5)") find(11, "((1 + 5) + 5)") find(16, "(((1 + 5) + 5) + 5)") too big find(33, "(((1 + 5) + 5) * 3)") too big find(18, "((1 + 5) * 3)") too big find(3, "(1 * 3)") find(8, "((1 * 3) + 5)") find(13, "(((1 * 3) + 5) + 5)") found!

Отступ показывает глубину стека вызовов. В первый раз функция find вызывает сама себя дважды, чтобы проверить решения, начинающиеся с (1 + 5) и (1 * 3). Первый вызов ищет решение, начинающееся с (1 + 5), и при помощи рекурсии проверяет все решения, выдающие число, меньшее или равное требуемому. Не находит, и возвращает null. Тогда-то оператор || и переходит к вызову функции, который исследует вариант (1 * 3). Здесь нас ждёт удача, потому что в третьем рекурсивном вызове мы получаем 13. Этот вызов возвращает строку, и каждый из операторов || по пути передаёт эту строку выше, в результате возвращая решение.

Выращиваем функции Существует два более-менее естественных способа ввода функций в программу.

Первый – вы пишете схожий код несколько раз. Этого нужно избегать – больше кода означает больше места для ошибок и больше материала для чтения тех, кто пытается понять программу. Так что мы берём повторяющуюся функциональность, подбираем ей хорошее имя и помещаем её в функцию.

Второй способ – вы обнаруживаете потребность в некоей новой функциональности, которая достойна помещения в отдельную функцию. Вы начинаете с названия функции, и затем пишете её тело. Можно даже начинать с написания кода, использующего функцию, до того, как сама функция будет определена.

То, насколько сложно вам подобрать имя для функции, показывает, как хорошо вы представляете себе её функциональность. Возьмём пример. Нам нужно написать программу, выводящую два числа, количество коров и куриц на ферме, за которыми идут слова «коров» и «куриц». К числам нужно спереди добавить нули так, чтобы каждое занимало ровно три позиции.

007 Коров 011 Куриц

Очевидно, что нам понадобится функция с двумя аргументами. Начинаем кодить.
// вывестиИнвентаризациюФермы function printFarmInventory(cows, chickens) { var cowString = String(cows); while (cowString.length < 3) cowString = "0" + cowString; console.log(cowString + " Коров"); var chickenString = String(chickens); while (chickenString.length < 3) chickenString = "0" + chickenString; console.log(chickenString + " Куриц"); } printFarmInventory(7, 11);

Если мы добавим к строке.length, мы получим её длину. Получается, что циклы while добавляют нули спереди к числам, пока не получат строчку в 3 символа.

Готово! Но только мы собрались отправить фермеру код (вместе с изрядным чеком, разумеется), он звонит и говорит нам, что у него в хозяйстве появились свиньи, и не могли бы мы добавить в программу вывод количества свиней?

Можно, конечно. Но когда мы начинаем копировать и вставлять код из этих четырёх строчек, мы понимаем, что надо остановиться и подумать. Должен быть способ лучше. Пытаемся улучшить программу:

// выводСДобавлениемНулейИМеткой function printZeroPaddedWithLabel(number, label) { var numberString = String(number); while (numberString.length < 3) numberString = "0" + numberString; console.log(numberString + " " + label); } // вывестиИнвентаризациюФермы function printFarmInventory(cows, chickens, pigs) { printZeroPaddedWithLabel(cows, "Коров"); printZeroPaddedWithLabel(chickens, "Куриц"); printZeroPaddedWithLabel(pigs, "Свиней"); } printFarmInventory(7, 11, 3);

Работает! Но название printZeroPaddedWithLabel немного странное. Оно объединяет три вещи – вывод, добавление нулей и метку – в одну функцию. Вместо того, чтобы вставлять в функцию весь повторяющийся фрагмент, давайте выделим одну концепцию:

// добавитьНулей function zeroPad(number, width) { var string = String(number); while (string.length < width) string = "0" + string; return string; } // вывестиИнвентаризациюФермы function printFarmInventory(cows, chickens, pigs) { console.log(zeroPad(cows, 3) + " Коров"); console.log(zeroPad(chickens, 3) + " Куриц"); console.log(zeroPad(pigs, 3) + " Свиней"); } printFarmInventory(7, 16, 3);

Функция с хорошим, понятным именем zeroPad облегчает понимание кода. И её можно использовать во многих ситуациях, не только в нашем случае. К примеру, для вывода отформатированных таблиц с числами.

Насколько умными и универсальными должны быть функции? Мы можем написать как простейшую функцию, которая дополняет число нулями до трёх позиций, так и навороченную функцию общего назначения для форматирования номеров, поддерживающую дроби, отрицательные числа, выравнивание по точкам, дополнение разными символами, и т.п.

Хорошее правило – добавляйте только ту функциональность, которая вам точно пригодится. Иногда появляется искушение создавать фреймворки общего назначения для каждой небольшой потребности. Сопротивляйтесь ему. Вы никогда не закончите работу, а просто напишете кучу кода, который никто не будет использовать.

Функции и побочные эффекты Функции можно грубо разделить на те, что вызываются из-за своих побочных эффектов, и те, что вызываются для получения некоторого значения. Конечно, возможно и объединение этих свойств в одной функции.

Первая вспомогательная функция в примере с фермой, printZeroPaddedWithLabel, вызывается из-за побочного эффекта: она выводит строку. Вторая, zeroPad, из-за возвращаемого значения. И это не совпадение, что вторая функция пригождается чаще первой. Функции, возвращающие значения, легче комбинировать друг с другом, чем функции, создающие побочные эффекты.

Чистая функция – особый вид функции, возвращающей значения, которая не только не имеет побочных эффектов, но и не зависит от побочных эффектов остального кода – к примеру, не работает с глобальными переменными, которые могут быть случайно изменены где-то ещё. Чистая функция, будучи вызванной с одними и теми же аргументами, возвращает один и тот же результат (и больше ничего не делает) – что довольно приятно. С ней просто работать. Вызов такой функции можно мысленно заменять результатом её работы, без изменения смысла кода. Когда вы хотите проверить такую функцию, вы можете просто вызвать её, и быть уверенным, что если она работает в данном контексте, она будет работать в любом. Не такие чистые функции могут возвращать разные результаты в зависимости от многих факторов, и иметь побочные эффекты, которые сложно проверять и учитывать.

Однако, не надо стесняться писать не совсем чистые функции, или начинать священную чистку кода от таких функций. Побочные эффекты часто полезны. Нет способа написать чистую версию функции console.log, и эта функция весьма полезна. Некоторые операции легче выразить, используя побочные эффекты.

Итог Эта глава показала вам, как писать собственные функции. Когда ключевое слово function используется в виде выражения, возвращает указатель на вызов функции. Когда оно используется как инструкция, вы можете объявлять переменную, назначая ей вызов функции.

Ключевой момент в понимании функций – локальные области видимости. Параметры и переменные, объявленные внутри функции, локальны для неё, пересоздаются каждый раз при её вызове, и не видны снаружи. Функции, объявленные внутри другой функции, имеют доступ к её области видимости.

Очень полезно разделять разные задачи, выполняемые программой, на функции. Вам не придётся повторяться, функции делают код более читаемым, разделяя его на смысловые части, так же, как главы и секции книги помогают в организации обычного текста.

УпражненияМинимум В предыдущей главе была упомянута функция Math.min, возвращающая самый маленький из аргументов. Теперь мы можем написать такую функцию сами. Напишите функцию min, принимающую два аргумента, и возвращающую минимальный из них.

Console.log(min(0, 10)); // → 0 console.log(min(0, -10)); // → -10

Рекурсия Мы видели, что оператор % (остаток от деления) может использоваться для определения того, чётное ли число (% 2). А вот ещё один способ определения:

Ноль чётный.
Единица нечётная.
У любого числа N чётность такая же, как у N-2.

Напишите рекурсивную функцию isEven согласно этим правилам. Она должна принимать число и возвращать булевское значение.

Потестируйте её на 50 и 75. Попробуйте задать ей -1. Почему она ведёт себя таким образом? Можно ли её как-то исправить?

Test it on 50 and 75. See how it behaves on -1. Why? Can you think of a way to fix this?

Console.log(isEven(50)); // → true console.log(isEven(75)); // → false console.log(isEven(-1)); // → ??

Считаем бобы.

Символ номер N строки можно получить, добавив к ней.charAt(N) (“строчка”.charAt(5)) – схожим образом с получением длины строки при помощи.length. Возвращаемое значение будет строковым, состоящим из одного символа (к примеру, “к”). У первого символа строки позиция 0, что означает, что у последнего символа позиция будет string.length – 1. Другими словами, у строки из двух символов длина 2, а позиции её символов будут 0 и 1.

Напишите функцию countBs, которая принимает строку в качестве аргумента, и возвращает количество символов “B”, содержащихся в строке.

Затем напишите функцию countChar, которая работает примерно как countBs, только принимает второй параметр - символ, который мы будем искать в строке (вместо того, чтобы просто считать количество символов “B”). Для этого переделайте функцию countBs.

Функции - ключевая концепция в JavaScript. Важнейшей особенностью языка является первоклассная поддержка функций ​ (functions as first-class citizen) . Любая функция это объект, и следовательно ею можно манипулировать как объектом, в частности:

  • передавать как аргумент и возвращать в качестве результата при вызове других функций (функций высшего порядка);
  • создавать анонимно и присваивать в качестве значений переменных или свойств объектов.

Это определяет высокую выразительную мощность JavaScript и позволяет относить его к числу языков, реализующих функциональную парадигму программирования (что само по себе есть очень круто по многим соображениям).

Функция в JavaScript специальный тип объектов, позволяющий формализовать средствами языка определённую логику поведения и обработки данных.

Для понимания работы функций необходимо (и достаточно?) иметь представление о следующих моментах:

Объявление функций Функции вида "function declaration statement"

Объявление функции (function definition , или function declaration , или function statement ) состоит из ключевого слова function и следующих частей:

  • Имя функции.
  • Список параметров (принимаемых функцией) заключенных в круглые скобки () и разделенных запятыми.
  • Инструкции, которые будут выполненны после вызова функции, заключают в фигурные скобки { } .

Например, следующий код объявляет простую функцию с именим square:

Function square(number) { return number * number; }

Функция square принимает один параметр, названный number. Состоит из одной инструкции, которая означает вернуть параметр этой функции (это number) умноженный на самого себя. Инструкция return указывает на значение, которые будет возвращено функцией.

Return number * number;

Примитивные параметры (например, число) передаются функции значением; значение передаётся в функцию, но если функция меняет значение параметра, это изменение не отразится глобально или после вызова функции.

Если Вы передадите объект как параметр (не примитив, например, или определяемые пользователем объкты), и функция изменит свойство переданного в неё объекта, это изменение будет видно и вне функции, как показано в следующим примере:

Function myFunc(theObject) { theObject.make = "Toyota"; } var mycar = {make: "Honda", model: "Accord", year: 1998}; var x, y; x = mycar.make; // x получает значение "Honda" myFunc(mycar); y = mycar.make; // y получает значение "Toyota" // (свойство было изменено функцией)

Функции вида "function definition expression"

Функция вида "function declaration statement" по синтаксису является инструкцией (statement ), ещё функция может быть вида "function definition expression". Такая функция может быть анонимной (она не имеет имени). Например, функция square может быть вызвана так:

Var square = function(number) { return number * number; }; var x = square(4); // x получает значение 16

Однако, имя может быть и присвоено для вызова самой себя внутри самой функции и для отладчика (debugger ) для идентифицирования функции в стек-треках (stack traces ; "trace" - "след" / "отпечаток").

Var factorial = function fac(n) { return n < 2 ? 1: n * fac(n - 1); }; console.log(factorial(3));

Функции вида "function definition expression" удобны, когда функция передается аргументом другой функции. Следующий пример показывает функцию map , которая должна получить функцию первым аргументом и массив вторым.

Function map(f, a) { var result = , // Create a new Array i; for (i = 0; i != a.length; i++) result[i] = f(a[i]); return result; }

В следующим коде наша функция принимает функцию, которая является function definition expression, и выполняет его для каждого элемента принятого массива вторым аргументом.

Function map(f, a) { var result = ; // Create a new Array var i; // Declare variable for (i = 0; i != a.length; i++) result[i] = f(a[i]); return result; } var f = function(x) { return x * x * x; } var numbers = ; var cube = map(f,numbers); console.log(cube);

Функция возвращает: .

В JavaScript функция может быть объявлена с условием. Например, следующая функция будет присвоена переменной myFunc только, если num равно 0:

Var myFunc; if (num === 0) { myFunc = function(theObject) { theObject.make = "Toyota"; } }

В дополнение к объявлениям функций, описанных здесь, Вы также можете использовать конструктор Function для создания функций из строки во время выполнения (runtime ), подобно .

Метод - это функция, которая является свойством объекта. Узнать больше про объекты и методы можно по ссылке: Работа с объектами .

Вызовы функций

Объявление функции не выполняет её. Объявление функции просто называет функцию и указывает, что делать при вызове функции. Вызов функции фактически выполняет указанные действия с указанными параметрами. Например, если Вы определите функцию square , Вы можете вызвать её следующим образом:

Square(5);

Эта инструкция вызывает функцию с аргументом 5. Функция вызывает свои инструкции и возвращает значение 25.

Функции могут быть в области видимости, когда они уже определены, но функции вида "function declaration statment" могут быть подняты (поднятие - hoisting ), также как в этом примере:

Console.log(square(5)); /* ... */ function square(n) { return n * n; }

Область видимости функции - функция, в котором она определена, или целая программа, если она объявлена по уровню выше.

Примечание: Это работает только тогда, когда объявлении функции использует вышеупомянутый синтаксис (т.е. function funcName(){}). Код ниже не будет работать. Имеется в виду то, что поднятие функции работает только с function declaration и не работает с function expression.

Console.log(square); // square поднят со значением undefined. console.log(square(5)); // TypeError: square is not a function var square = function(n) { return n * n; }

Аргументы функции не ограничиваются строками и числами. Вы можете передавать целые объекты в функцию. Функция show_props() (объявленная в Работа с объектами) является примером функции, принимающей объекты аргументом.

Функция может вызвать саму себя. Например, вот функция рекурсивного вычисления факториала:

Function factorial(n) { if ((n === 0) || (n === 1)) return 1; else return (n * factorial(n - 1)); }

Затем вы можете вычислить факториалы от одного до пяти следующим образом:

Var a, b, c, d, e; a = factorial(1); // a gets the value 1 b = factorial(2); // b gets the value 2 c = factorial(3); // c gets the value 6 d = factorial(4); // d gets the value 24 e = factorial(5); // e gets the value 120

Есть другие способы вызвать функцию. Существуют частые случаи, когда функции необходимо вызывать динамически, или поменять номера аргументов функции, или необходимо вызвать функцию с привязкой к определенному контексту. Оказывается, что функции сами по себе являются объектами, и эти объекты в свою очередь имеют методы (посмотрите объект ). Один из них это метод , использование которого может достигнуть этой цели.

Область видимости функций

(function scope)

Переменные объявленные в функции не могут быть доступными где-нибудь вне этой функции, поэтому переменные (которые нужны именно для функции) объявляют только в scope функции. При этом функция имеет доступ ко всем переменным и функциям, объявленным внутри её scope. Другими словами функция объявленная в глобальном scope имеет доступ ко всем переменным в глобальном scope. Функция объявленная внутри другой функции ещё имеет доступ и ко всем переменным её родителькой функции и другим переменным, к которым эта родительская функция имеет доступ.

// Следующие переменные объявленны в глобальном scope var num1 = 20, num2 = 3, name = "Chamahk"; // Эта функция объявленна в глобальном scope function multiply() { return num1 * num2; } multiply(); // вернет 60 // Пример вложенной функции function getScore() { var num1 = 2, num2 = 3; function add() { return name + " scored " + (num1 + num2); } return add(); } getScore(); // вернет "Chamahk scored 5"

Scope и стек функции

(function stack)

Рекурсия

Функция может вызывать саму себя. Три способа такого вызова:

  • по имени функции
  • по переменной, которая ссылается на функцию
  • Для примера рассмотрим следующие функцию:

    Var foo = function bar() { // statements go here };

    Внутри функции (function body ) все следующие вызовы эквивалентны:

  • bar()
  • arguments.callee()
  • foo()
  • Функция, которая вызывает саму себя, называется рекурсивной функцией (recursive function ). Получается, что рекурсия аналогична циклу (loop ). Оба вызывают некоторый код несколько раз, и оба требуют условия (чтобы избежать бесконечного цикла, вернее бесконечной рекурсии). Например, следующий цикл:

    Var x = 0; while (x < 10) { // "x < 10" - это условие для цикла // do stuff x++; }

    можно было изменить на рекурсивную функцию и вызовом этой функции:

    Function loop(x) { if (x >= 10) // "x >= 10" - это условие для конца выполения (тоже самое, что "!(x < 10)") return; // делать что-то loop(x + 1); // рекурсионный вызов } loop(0);

    Однако некоторые алгоритмы не могут быть простыми повторяющимися циклами. Например, получение всех элементов структуры дерева (например, ) проще всего реализуется использованием рекурсии:

    Function walkTree(node) { if (node == null) // return; // что-то делаем с элементами for (var i = 0; i < node.childNodes.length; i++) { walkTree(node.childNodes[i]); } }

    В сравнении с функцией loop , каждый рекурсивный вызов сам вызывает много рекурсивных вызовов.

    Также возможно превращение некоторых рекурсивных алгоритмов в нерекурсивные, но часто их логика очень сложна, и для этого потребуется использование стека (stack ). По факту рекурсия использует stach: function stack.

    Поведение stack"а можно увидеть в следующем примере:

    Function foo(i) { if (i < 0) return; console.log("begin: " + i); foo(i - 1); console.log("end: " + i); } foo(3); // Output: // begin: 3 // begin: 2 // begin: 1 // begin: 0 // end: 0 // end: 1 // end: 2 // end: 3

    Вложенные функции (nested functions) и замыкания (closures)

    Вы можете вложить одну функцию в другую. Вложенная функция (nested function ; inner ) приватная (private ) и она помещена в другую функцию (outer ). Так образуется замыкание (closure ). Closure - это выражение (обычно функция), которое может иметь свободные переменные вместе со средой, которая связывает эти переменые (что "закрывает" ("close" ) выражение).

    Поскольку вложенная функция это closure, это означает, что вложенная функция может "унаследовать" (inherit ) аргументы и переменные функции, в которую та вложена. Другими словами, вложенная функция содержит scope внешней ("outer" ) функции.

    Подведем итог:

    • Вложенная функция имеет доступ ко всем инструкциям внешней функции.
    • Вложенная функция формирует closure: она может использовать аргументы и переменные внешней функции, в то время как внешняя функция не может использовать аргументы и переменные вложенной функции.

    Следующий пример показывает вложенную функцию:

    Function addSquares(a, b) { function square(x) { return x * x; } return square(a) + square(b); } a = addSquares(2, 3); // возвращает 13 b = addSquares(3, 4); // возвращает 25 c = addSquares(4, 5); // возвращает 41

    Поскольку вложенная функция формирует closure, Вы можете вызвать внешную функцию и указать аргументы для обоих функций (для outer и innner).

    Function outside(x) { function inside(y) { return x + y; } return inside; } fn_inside = outside(3); // Подумайте над этим: дайте мне функцию, // который передай 3 result = fn_inside(5); // возвращает 8 result1 = outside(3)(5); // возвращает 8

    Сохранение переменных

    Обратите внимание, значение x сохранилось, когда возвращалось inside . Closure должно сохранять аргументы и переменные во всем scope. Поскольку каждый вызов предоставляет потенциально разные аргументы, создается новый closure для каждого вызова во вне. Память может быть очищена только тогда, когда inside уже возвратился и больше не доступен.

    Это не отличается от хранения ссылок в других объектах, но часто менее очевидно, потому что не устанавливаются ссылки напрямую и нельзя посмотреть там.

    Несколько уровней вложенности функций (Multiply-nested functions)

    Функции можно вкадывать несколько раз, т.е. функция (A) хранит в себе функцию (B), которая хранит в себе функцию (C). Обе фукнкции B и C формируют closures, так B имеет доступ к переменным и аргументам A, и C имеет такой же доступ к B. В добавок, поскольку C имеет такой доступ к B, который имеет такой же доступ к A, C ещё имеет такой же доспут к A. Таким образом cloures может хранить в себе несколько scope; они рекурсивно хранят scope функций, содержащих его. Это называется chaining (chain - цепь ; Почему названо "chaining" будет объяснено позже)

    Рассмотрим следующий пример:

    Function A(x) { function B(y) { function C(z) { console.log(x + y + z); } C(3); } B(2); } A(1); // в консоле выведится 6 (1 + 2 + 3)

    В этом примере C имеет доступ к y функции B и к x функции A . Так получается, потому что:

  • Функция B формирует closure, включающее A , т.е. B имеет доступ к аргументам и переменным функции A .
  • Функция C формирует closure, включающее B .
  • Раз closure функции B включает A , то closure С тоже включает A, C имеет доступ к аргументам и переменным обоих функций B и A . Другими словами, С cвязывает цепью (chain ) scopes функций B и A в таком порядке.
  • В обратном порядке, однако, это не верно. A не имеет доступ к переменным и аргументам C , потому что A не имеет такой доступ к B . Таким образом, C остается приватным только для B .

    Конфликты имен (Name conflicts)

    Когда два аргумента или переменных в scope у closure имеют одинаковые имена, происходит конфликт имени (name conflict ). Более вложенный (more inner ) scope имеет приоритет, так самый вложенный scope имеет наивысший приоритет, и наоборот. Это цепочка областей видимости (scope chain ). Самым первым звеном является самый глубокий scope, и наоборот. Рассмотрим следующие:

    Function outside() { var x = 5; function inside(x) { return x * 2; } return inside; } outside()(10); // возвращает 20 вместо 10

    Конфликт имени произошел в инструкции return x * 2 между параметром x функции inside и переменной x функции outside . Scope chain здесь будет таким: { inside ==> outside ==> глобальный объект (global object )}. Следовательно x функции inside имеет больший приоритет по сравнению с outside , и нам вернулось 20 (= 10 * 2), а не 10 (= 5 * 2).

    Замыкания

    (Closures)

    Closures это один из главных особенностей JavaScript. JavaScript разрешает вложенность функций и предоставляет вложенной функции полный доступ ко всем переменным и функциям, объявленным внутри внешней функции (и другим переменным и функцим, к которым имеет доступ эта внешняя функция).

    Однако, внешняя функция не имеет доступа к переменным и функциям, объявленным во внутренней функции. Это обеспечивает своего рода инкапсуляцию для переменных внутри вложенной функции.

    Также, поскольку вложенная функция имеет доступ к scope внешней функции, переменные и функции, объявленные во внешней функции, будет продолжать существовать и после её выполнения для вложенной функции, если на них и на неё сохранился доступ (имеется ввиду, что переменные, объявленные во внешней функции, сохраняются, только если внутренняя функция обращается к ним).

    Closure создается, когда вложенная функция как-то стала доступной в неком scope вне внешней функции.

    Var pet = function(name) { // Внешняя функция объявила переменную "name" var getName = function() { return name; // Вложенная функция имеет доступ к "name" внешней функции } return getName; // Возвращаем вложенную функцию, тем самым сохраняя доступ // к ней для другого scope } myPet = pet("Vivie"); myPet(); // Возвращается "Vivie", // т.к. даже после выполнения внешней функции // name сохранился для вложенной функции

    Более сложный пример представлен ниже. Объект с методами для манипуляции вложенной функции внешней функцией можно вернуть (return ).

    Var createPet = function(name) { var sex; return { setName: function(newName) { name = newName; }, getName: function() { return name; }, getSex: function() { return sex; }, setSex: function(newSex) { if(typeof newSex === "string" && (newSex.toLowerCase() === "male" || newSex.toLowerCase() === "female")) { sex = newSex; } } } } var pet = createPet("Vivie"); pet.getName(); // Vivie pet.setName("Oliver"); pet.setSex("male"); pet.getSex(); // male pet.getName(); // Oliver

    В коде выше переменная name внешней функции доступна для вложенной функции, и нет другого способа доступа к вложенным переменным кроме как через вложенную функцию. Вложенные переменные вложенной функции являются безопасными хранилищами для внешних аргументов и переменных. Они содержат "постоянные" и "инкапсулированные" данные для работы с ними вложенными функциями. Функции даже не должны присваиваться переменной или иметь имя.

    Var getCode = (function() { var apiCode = "0]Eal(eh&2"; // A code we do not want outsiders to be able to modify... return function() { return apiCode; }; }()); getCode(); // Returns the apiCode

    Однако есть ряд подводных камней, которые следует учитывать при использовании замыканий. Если закрытая функция определяет переменную с тем же именем, что и имя переменной во внешней области, нет способа снова ссылаться на переменную во внешней области.

    Var createPet = function(name) { // The outer function defines a variable called "name". return { setName: function(name) { // The enclosed function also defines a variable called "name". name = name; // How do we access the "name" defined by the outer function? } } }

    Использование объекта arguments

    Объект arguments функции является псевдо-массивом. Внутри функции Вы можете ссылаться к аргументам следующим образом:

    Arguments[i]

    где i - это порядковый номер аргумента, отсчитывающийся с 0. К первому аргументу, переданному функции, обращаются так arguments . А получить количество всех аргументов - arguments.length .

    С помощью объекта arguments Вы можете вызвать функцию, передавая в неё больше аргументов, чем формально объявили принять. Это очень полезно, если Вы не знаете точно, сколько аргументов должна принять Ваша функция. Вы можете использовать arguments.length для определения количества аргументов, переданных функции, а затем получить доступ к каждому аргументу, используя объект arguments .

    Для примера рассмотрим функцию, которая конкатенирует несколько строк. Единственным формальным аргументом для функции будет строка, которая указывает символы, которые разделяют элементы для конкатенации. Функция определяется следующим образом:

    Function myConcat(separator) { var result = ""; var i; // iterate through arguments for (i = 1; i < arguments.length; i++) { result += arguments[i] + separator; } return result; }

    Вы можете передавать любое количество аргументов в эту функцию, и он конкатенирует каждый аргумент в одну строку.

    // возвращает "red, orange, blue, " myConcat(", ", "red", "orange", "blue"); // возвращает "elephant; giraffe; lion; cheetah; " myConcat("; ", "elephant", "giraffe", "lion", "cheetah"); // возвращает "sage. basil. oregano. pepper. parsley. " myConcat(". ", "sage", "basil", "oregano", "pepper", "parsley");

    Т.к. arguments является псевдо-массивом, к нему применимы некоторые методы массивов, например, for .. in

    Function func() { for (value in arguments){ console.log(value); } } func(1, 2, 3); // 1 // 2 // 3

    Примечание: arguments является псевдо-массивом, но не массивом. Это псевдо-массив, в котором есть пронумерованные индексы и свойство length . Однако он не обладает всеми методами массивов.

    Оставшиеся параметры (Rest parameters)

    На введение стрелочных функций повлияли два фактора: более короткие функции и лексика this .

    Более короткие функции

    В некоторый функциональных паттернах приветствуется использование более коротких функций. Сравните:

    Var a = [ "Hydrogen", "Helium", "Lithium", "Beryllium" ]; var a2 = a.map(function(s) { return s.length; }); console.log(a2); // logs var a3 = a.map(s => s.length); console.log(a3); // logs

    Лексика this

    До стрелочных функций каждая новая функция определяла свое значение this (новый объект в случае конструктора, undefined в strict mode, контекстный объект, если функция вызвана как метод объекта, и т.д.). Это оказалось раздражающим с точки зрения объектно-орентированного стиля программирования.

    Function Person() { // Конструктор Person() определяет `this` как самого себя. this.age = 0; setInterval(function growUp() { // Без strict mode функция growUp() определяет `this` // как global object, который отличается от `this` // определенного конструктором Person(). this.age++; }, 1000); } var p = new Person();

    В ECMAScript 3/5 эта проблема была исправлена путем присвоения значения this переменной, которую можно было бы замкнуть.

    Function Person() { var self = this; // Некоторые выбирают `that` вместо `self`. // Выберите что-то одно и будьте последовательны. self.age = 0; setInterval(function growUp() { // The callback refers to the `self` variable of which // the value is the expected object. self.age++; }, 1000); }

    Смотрите также Function в Справочнике JavaScript для получения дополнительной информации по функции как объекту.