Сайт о телевидении

Сайт о телевидении

» » Формула волнового сопротивления. Волновое сопротивление кабеля формула

Формула волнового сопротивления. Волновое сопротивление кабеля формула

ВОЛНОВОЕ СОПРОТИВЛЕНИЕ

Наименование параметра Значение
Тема статьи: ВОЛНОВОЕ СОПРОТИВЛЕНИЕ
Рубрика (тематическая категория) Математика

РАСПРОСТРАНЕНИЕ ЗВУКОВЫХ ВОЛН В СРЕДЕ

Фазовая скорость звуковых волн зависит только от упругости и плотности среды, а значит и от температуры, но не зависит от частоты.

где γ показатель адиабаты – отношение молярной теплоемкости газа при постоянном давлении к молярной теплоемкости при постоянном объёме, γ = с р / с v . Из формулы (25) вытекает, что u не зависит от давления, но растет с ростом температуры и уменьшается с ростом молярной массы газа. К примеру, в воздухе при t = 0 o C – , при t = 20 o C – ; в водороде при t = 0 o C – u = 1260 м/с, при t = 20 o C – u = 1305 м/с.

В твёрдых и жидких средах скорость звука больше, чем в газах. Для воды она равна 1550 м/с. Примерно такое же значение имеет средняя скорость звука в мягких тканях человека. В твёрдых телах акустические волны бывают как продольными, так и поперечными. Скорость продольных звуковых волн больше скорости поперечных и составляет 2 ÷ 6 км /с.

На границе раздела двух сред звуковые волны испытывают отражение и преломление. Законы отражения и преломления механических волн аналогичны законам отражения и преломления для света Переход волны из одной среды в другую ведет к изменению условий её распространения, т.к. меняются плотность среды и скорость волны. По этой причинœе, перераспределœение энергии между отражённой и преломленной частями волны определяется значениями волновых сопротивлений сред ω 1 = ρ 1 u 1 и ω 2 = ρ 2 u 2 . Коэффициент проникновения β волны из среды 1 в среду 2 при нормальном падении на границу раздела определяется соотношением:

. (26)

Из этого соотношения видно, что звуковые волны полностью, не испытывая отражения, проникают из среды 1 в среду 2 (β = 1), в случае если ρ 1 u 1 = ρ 2 u 2 . В случае если же ρ 2 u 2 >> ρ 1 u 1 , то β << 1. К примеру, волновые сопротивления воздуха и бетона соответственно равны: 400 кг·м -1 ·с -1 и 4 800 000 кг·м -1 ·с -1 . Расчёт коэффициента проникновения звуковой волны из воздуха в бетон даёт – β = 0,037%.

Любая реальная среда обладает вязкостью, в связи с этим по мере распространения звука наблюдается затухание, ᴛ.ᴇ. уменьшение амплитуды звуковых колебаний. Затухание обусловлено: поглощением энергии звуковых волн средой, ᴛ.ᴇ. необратимым превращением механической энергии в другие формы (в основном в тепловую); отражением волн от границ раздела слоёв вещества с разным акустическим сопротивлением; а также рассеянием на элементах микроструктуры среды. Эти факторы играют особенно важную роль при распространении механических волн в биологических объектах.

Уменьшение интенсивности звука при проникновении в среду происходит по экспоненциальному закону:

где I и I 0 – интенсивности волны на поверхности вещества и на глубинœе l от неё. Коэффициент затухания для однородной среды –

где λ – длина звуковой волны; u – её скорость в данной среде; ρ – плотность вещества; η – коэффициент вязкости.

Явление постепенного затухания звука в закрытых помещениях (в процессе многочисленных отражений от стен и других препятствий) принято называть реверберацией звука. Время, в течение которого интенсивность звука уменьшается в миллион раз (амплитуда в 1000), принято называть временем реверберации. Помещение имеет хорошую акустику, в случае если время реверберации составляет 0,5 – 1,5 с.

9. ХАРАКТЕРИСТИКИ СЛУХОВОГО ОЩУЩЕНИЯ

ИХ СВЯЗЬ С ФИЗИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ ЗВУКОВЫХ ВОЛН

ЗАКОН ВЕБЕРА-ФЕХНЕРА

Звук, как объект слухового восприятия, оценивается человеком субъективно. Т.е. звук имеет физиологические характеристики, которые являются отражением его физических параметров. Одна из задач акустики установить соответствие между объективными параметрами звуковых волн и субъективной оценкой слухового ощущения, ĸᴏᴛᴏᴩᴏᴇ эти волны вызывают в ухе человека. Решение этой задачи даёт возможность объективно судить о состоянии слухового аппарата конкретного человека по результатам физических измерений.

В слуховом ощущении различают три базовых характеристики: высота звука, тембр и громкость.

Частота колебаний звуковой волны оценивается ухом как высота звука (высота тона ) . Чем больше частота колебаний, тем более высоким (ʼʼтонкимʼʼ) воспринимается звук.

Тембр – физиологическая характеристика сложных тонов. Имея одинаковые основные частоты, сложные колебания могут отличаться наборами обертонов. Это различие в спектрах воспринимается как тембр (окраска звука). К примеру, по тембру звука легко различить один и тот же тон, воспроизведённый на разных музыкальных инструментах.

Громкость характеризует уровень слухового ощущения (силу слухового ощущения). Эта субъективная величина, связанная с чувствительностью уха, зависит, прежде всœего, от интенсивности, а так же от частоты звуковой волны. Зависимость громкости от частоты имеет сложный характер.
Размещено на реф.рф
При постоянной силе звука (интенсивности) чувствительность вначале растёт по мере увеличения частоты, достигая максимума в области частот 2000 ÷ 3000 Гц, затем снова уменьшается, обращаясь в ноль при 20 кГц. С возрастом ухудшается способность восприятия высокочастотных колебаний. Уже в среднем возрасте человек, как правило, не способен воспринимать звуки с частотой выше 12-14 кГц. Зависимость чувствительности уха от частоты означает, что диапазон интенсивностей, способных вызвать слуховое ощущение, для разных частот тоже будет разным (рис.6). Верхняя кривая на графике соответствует болевому порогу. Нижний график называют кривой порогового уровня громкости, ᴛ.ᴇ. I 0 = f(ν) при уровне громкости равном нулю.

Человек с нормальным слухом ощущает изменение громкости только в том случае, в случае если интенсивность волны изменится, примерно на 26%. При этом, он достаточно точно улавливает разницу при сравнении двух ощущений различной интенсивности. Эта особенность лежит

в базе сравнительного метода измерения громкости. Громкость оценивают количественно путём сравнения слухового ощущения от двух источников звука. При этом, определяют не абсолютную величину громкости, а её соотношение с громкостью, значение которой принято за начальное (или нулевое). Т.е. определяют уровень громкости Е: на сколько данный звук громче в сравнении со звуком, громкость которого принята за начальную. Громкость, как и уровень интенсивности, измеряют в белах (Б). При этом, 0,1Б громкости принято называть фоном (фон), а не децибелом.

Условились при сравнении громкостей звуков исходить из тона частотой 1000 Гц. Т.е. громкости тона частотой 1000 Гц приняты за эталонные для шкалы громкости. При этом, энергетические затраты, выраженные уровнем интенсивности, на частоте 1000 Гц численно равны громкости: уровню интенсивности L = 1Б (10 дБ) соответствует громкость Е = 1 Б (10 фон), уровню интенсивности L = 2Б (20 дБ) соответствует громкость Е = 2 Б (20 фон) и т.д.

Т.к. диапазон энергий звуковых волн разбит на 13 уровней в белах (или 130 уровней в дБ), то, соответственно, и шкала громкости будет иметь 13 уровней в белах (или 130 уровней в фонах).

В корне создания шкалы уровней громкости лежит психофизический закон Вебера-Фехнера. Согласно этому закону, для всœех видов ощущений справедливо: если последовательно увеличивать силу раздражителя в геометрической прогрессии (ᴛ.ᴇ. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (ᴛ.ᴇ. на одинаковую величину). Математически это означает, что громкость звука прямо пропорциональна логарифму интенсивности.

В случае если действует звуковой раздражитель с интенсивностью I, то на основании закона Вебера-Фехнера уровень громкости Е связан с уровнем интенсивности следующим образом:

Е = kL = k lg, (27)

где I / I 0 относительная сила раздражителя, k – некоторый коэффициент пропорциональности, зависящий от частоты и интенсивности (k = 1 для частоты 1000 Гц). Зависимость громкости от интенсивности и частоты колебаний в системе звуковых измерений определяется на основании экспериментальных данных при помощи графиков (рис.7), которые называются кривыми равной громкости, ᴛ.ᴇ. I = f(ν) при

Е= const. При исследовании остроты слуха обычно строят кривую нулевого уровня громкости, ᴛ.ᴇ. зависимость порога слышимости от частоты – I 0 = f (ν). Эта кривая является основнойв системе аналогичных кривых, построенных для различных уровней громкостей, к примеру, ступенями через 10 фонов (рис.7). Эта система графиков отражает взаимосвязь частоты, уровня интенсивности и громкости, а так же позволяет определить любую из этих трёх величин, в случае если известны две другие.

ВОЛНОВОЕ СОПРОТИВЛЕНИЕ - понятие и виды. Классификация и особенности категории "ВОЛНОВОЕ СОПРОТИВЛЕНИЕ" 2017, 2018.

ВОЛНОВОЕ СОПРОТИВЛЕНИЕ, мера способности среды накапливать и передавать энергию бегущей волны. Волновое сопротивление используется для характеристики длинных линий передач, при описании распространения электромагнитных и акустических волн, а также в аэро- и гидродинамике для характеристики сопротивления сред движению тела.

В электро- и радиотехнике волновое сопротивление линии передачи - отношение напряжения к силе тока в любой точке линии, по которой распространяются электромагнитные волны; играет роль внутреннего сопротивления линии передачи. В двухпроводной электрической линии без потерь величина волнового сопротивления равна R B = √L/C, где L и С - погонные (на единицу длины) индуктивность и ёмкость линии соответственно.

Если линия подключена к нагрузке с импедансом (комплексным сопротивлением) Z H , то часть энергии отражается, коэффициент отражения по мощности равен

где Г - отношение амплитуд отражённой и падающей волн. Отражение отсутствует (Г = 0), если нагрузка согласована с линией, т. е. их сопротивления равны друг другу, Z H = R B . Если линия на конце разомкнута (Z H = ∞) или замкнута (Z H = 0), то возникает полное отражение (Г= 1). Согласование линии с нагрузкой имеет большое значение во многих устройствах (в частности, при подводе энергии к антеннам).

В электродинамике волновое сопротивление - отношение напряжённостей электрического и магнитного полей: Z = √μ/ε, где μ и ε - магнитная и диэлектрическая проницаемости. Волновое сопротивление вакуума Ζ Β А Κ =120π≈377 Ом (СИ), Ζ Β А Κ = 1 (СГС).

А. П. Сухоруков.

В акустике, в случае газообразной или жидкой среды, волновое сопротивление - отношение звукового давления р в бегущей плоской волне к колебательной скорости v частиц среды. волновое сопротивление не зависит от формы волны и выражается формулой: р/v = pc, где р - плотность среды, с - скорость звука. волновое сопротивление представляет собой удельный импеданс среды для плоских волн (смотри Импеданс акустический).

Волновое сопротивление - важнейшая характеристика среды, определяющая условия отражения и преломления волн на её границе. При нормальном падении плоской волны на плоскую границу раздела двух сред коэффициент отражения определяется только отношением волновых сопротивлений этих сред; если волновые сопротивления сред равны, то волна проходит границу без отражения. Понятием волнового сопротивления можно пользоваться и для твёрдого тела (для продольных и поперечных упругих волн в неограниченном твёрдом теле и для продольных волн в стержне), определяя волновое сопротивление как отношение соответствующего механического напряжения, взятого с обратным знаком, к колебательной скорости частиц среды.

К. А. Наугольных.

В газовой динамике волновое сопротивление - одна из составляющих силы сопротивления движению тела в газе, возникающая вследствие образования ударных волн при около- и сверхзвуковых скоростях движения. Волновое сопротивление зависит от геометрических характеристик тела и отношения скорости газа перед телом к скорости звука - Маха числа М.

Термин волновое сопротивление введён в газовую динамику в 1930-х годах Т. фон Карманом только для слабых возмущений невязкого газа, возникающих при движении в нём с умеренной сверхзвуковой скоростью тонких, заострённых у концов тел. Причиной сопротивления движению является вязкость газа и образующиеся вблизи тела ударные волны; лишь в простейших случаях действие обеих причин можно считать независимым, разделяя общее сопротивление на вязкое и волновое сопротивление. При более сильных возмущениях термином «волновое сопротивление» обозначают сопротивление, связанное не с переносом импульса от тела звуковыми волнами, как было в приближённой теории Кармана (этот перенос быстро затухает), а с необратимым изменением состояния газа в ударных волнах. При этом работа, совершаемая телом над газом, идёт не только на сообщение газу в следе за телом попутной скорости, но и на его нагревание.

Г. Г. Чёрный.

В гидродинамике волновое сопротивление - одна из составляющих силы сопротивления жидкости движению тела. При движении тела по поверхности жидкости гравитационные волны образуются на её поверхности, а при движении в стратифицированной жидкости - в окружающем тело пространстве (смотри Волны на поверхности жидкости, Внутренние волны). Результирующая вызванных волнами сил давления, направленная противоположно движению тела, представляет собой силу волнового сопротивления. Работа, затраченная при движении тела на преодоление волнового сопротивления, превращается в энергию волн. Величина волнового сопротивления зависит от формы тела, осадки или глубины его погружения, скорости движения, параметров стратификации среды, в которой движется тело, глубины и ширины фарватера. Малые изменения формы судна и его скорости могут приводить к достаточно большим изменениям волнового сопротивления, что учитывается при конструировании надводных и подводных судов и определении оптимальных режимов движения. При одной и той же скорости движения с удлинением корпуса судна его волновое сопротивление может, как увеличиваться, так и уменьшаться. Это связано с интерференцией носовой и кормовой систем поперечных и, в меньшей степени, продольных волн, создаваемых движущимся судном. При благоприятной интерференции волны этих систем ослабляют друг друга, следовательно, работа по созданию волн, а с ней и волновое сопротивление, становятся меньше. В однородной среде при движении тела под поверхностью жидкости волновое сопротивление уменьшается с увеличением погружения тела.

Волновое сопротивление, или импеданс, - это сопротивление, которое встречает электромагнитная волна при распространении вдоль любой однородной (то есть без отражений) направляющей системы, в том числе и витой пары.

Оно свойственно данному типу кабеля и зависит только от его первичных параметров и частоты.

Волновое сопротивление связано с первичными параметрами следующим простым соотношением:

Z=√((R+jωL)/(G+jωC))

Волновое сопротивление численно равно входному сопротивлению линии бесконечной длины, которая имеет оконечную нагрузку, равную ее собственному волновому сопротивлению. Оно измеряется в омах и определяет количественное соотношение между электрической и магнитной составляющей электромагнитной волны. В общем случае волновое сопротивление является комплексной величиной, его модуль падает по мере роста частоты и на высоких частотах стремится к фиксированному активному сопротивлению:

Z ∞ =lim ω → ∞ √((R+jωL)/(G+jωC)) = √(L/C)

Кабели на витых парах на звуковых частотах, то есть при передаче телефонных сигналов, имеют сопротивление около 600 Ом, по мере увеличения частоты оно быстро падает и на частотах свыше 1 МГц вплоть до верхней граничной частоты конкретного кабеля не должно отличаться от 100 Ом более чем на + 15%.

Затухание

При распространении по витой паре электромагнитный сигнал постепенно теряет свою энергию.

Этот эффект называется ослаблением, или затуханием.

Затухание принято оценивать в децибелах как разность между уровнями сигналов на выходе передатчика и входе приемника.

Один децибел соответствует изменению мощности в 1,26 раза или напряжения в 1,12 раза.

Принято различать собственное и рабочее затухание кабеля.

Под собственным затуханием кабеля понимается затухание при работе в идеальных условиях.

В обобщенном виде его величину теоретически можно определить как реальную часть так называемого коэффициента распространения γ, который связан с первичными параметрами следующим простым соотношением:

γ=√((R+jωL)(G+jωC))

Экспериментально собственное затухание кабеля можно определить как разность уровней входного и выходного сигналов в том случае, если сопротивление источника сигнала и нагрузки равны между собой и волновому сопротивлению кабеля.

В процессе реальной эксплуатации это условие выполняется не во всех случаях, что обычно сопровождается увеличением затухания.

Такое затухание называется рабочим.

Из изложенного следует важный практический вывод о том, что для минимизации рабочего затухания и его приближения к собственному сопротивление источника сигнала и нагрузка должны быть равны волновому сопротивлению, то есть, по терминологии электротехники, должна быть обеспечена согласованная нагрузка как источника сигнала, так и самого кабеля.


Из формулы выше следует, что затухание является частотнозависимой величиной и, как все входящие в него параметры, зависит от длины кабеля.

Результаты анализа формулы показывают, что затухание связано с длиной витой пары линейной зависимостью на всех частотах.

Для упрощения выполнения инженерных расчетов удобно пользоваться параметром коэффициента затухания или погонного затухания α, который численно равен затуханию кабеля фиксированной длины (применительно к кабелю типа витой пары это обычно 100 м).

Величины коэффициента затухания α, длины L и затухания А связаны между собой следующим простым соотношением:

А |дБ| = α |дБ/100 м| х L |м|/100

Чем меньше величина затухания, тем более мощным оказывается сигнал на входе приемника и тем устойчивее при прочих равных условиях связь. Затухание вызывается активным сопротивлением и потерями в диэлектрической изоляции. Определенный вклад в затухание вносят также излучение электромагнитной энергии и отражения.

Любой проводник, по которому течет переменный ток, является источником излучения в окружающее пространство. Оно отбирает у сигнала энергию и ведет к возрастанию затухания сигнала. Это явление резко возрастает с увеличением частоты сигнала. При λ < а, где λ - длина волны электромагнитного сигнала, а - расстояние между проводами, большая часть энергии идет на излучение в окружающее пространство и передача в неэкранированной направляющей системе становится невозможной. Для стандартной витой пары величина параметра а имеет значение порядка 2 мм, то есть критическая частота для нее будет равна 15 ГГц, что на два порядка ниже рабочих частот самых совершенных витых пар (-150 МГц). С ростом частоты потери на электромагнитное излучение возрастают. Для минимизации потерь на излучение применяют балансную передачу и скрутку проводников в пары.

Как было отмечено выше, в идеальной симметричной цепи электромагнитное излучение отсутствует. На практике таких идеальных симметричных цепей не существует. Дело в том, что в такой цепи проводники должны бесконечно плотно прилегать друг к другу и в пределе быть стянутыми в бесконечно тонкую линию, суммарный протекающий через которую ток равен нулю. Проводники с меньшим диаметром и более тонкой изоляцией плотнее прилегают друг к другу. Однако чрезмерное уменьшение сечения проводника и утоньшение изоляции ведет к повышению затухания за счет роста активного сопротивления и увеличения проводимости изолирующих покровов.


Частотная зависимость первичных параметров электрического кабеля

Из эквивалентной схемы можно сделать вывод о том, что затухание с ростом частоты имеет тенденцию к росту. Это обусловлено как ростом сопротивления продольной ветви в основном за счет элемента L, так и падением сопротивления поперечной ветви, которое обусловлено главным образом наличием емкости (элемент С). По стандарту TIA/EIA-568-А на длине 100 м и при температуре 20° С частотная характеристика A(f) максимально допустимого затухания, начиная с 0,772 МГц, для кабелей категорий 3, 4 и 5 определяется согласно следующему выражению

A (f) = k1√f + k2f + k3√f,

А, дБ - максимальное допустимое затухание

f, МГц - частота сигнала

k1, k2, k3 - константы, определяемые в зависимости от категории кабеля (см. таблицу ниже)

Кроме аналитического задания величины затухания стандарт TIA/EIA-568-А определяет этот параметр также в табличной форме с расширением нормируемых значений в область нижних частот. Это бывает полезным при выполнении инженерных расчетов трактов связи, предназначенных для поддержки работы некоторых приложений, а также позволяет сразу же получить необходимую информацию без выполнения вычислений.


Максимальное допустимое затухание кабелей категории 3,4 и 5 на длине 100 м при t=20ºС по стандарту TIA/EIA-568-A

На рисунке выше показаны частотные зависимости предельно допустимых затуханий кабелей различных категорий, вычисленные по формуле выше.

Аппроксимация по формуле оказалась очень удачной и достаточно часто используется многими производителями кабельной продукции для описания характеристик их изделий. При этом принимаются свои значения коэффициентов k 1 -k 3 , а область действия распространяется на частоты до 400 и даже 550 МГц.

Переходное затухание

При передаче сигнала часть его энергии вследствие неидеальности балансировки витой пары переходит в электромагнитное излучение, которое вызывает наведенные токи в соседних парах. Этот эффект называется переходными наводками. Наводки, накладываясь на полезные сигналы, передаваемые по соседним парам, могут приводить к ошибкам приема и в конечном итоге снижают качество связи.

Разность между уровнями передаваемого сигнала и создаваемой им помехи на соседней паре называется переходным затуханием. В зависимости от места и метода измерения этого параметра различают несколько видов переходного затухания, см. рисунок, на котором через Ii обозначены токи наводок, создаваемые различными участками влияющей витой пары во влияемой.


Переходные наводки на ближнем (слева) и дальнем (справа) концах соседней пары

Если источник сигнала и точка измерения находятся на одном конце, то говорят о переходном затухании на ближнем конце, если на разных - то о переходном затухании на дальнем конце. В технике СКС первое из них традиционно имеет заимствованное из англоязычной технической литературы обозначение NEXT (Near End Crosstalk), а второе - FEXT (Far End Crosstalk). В отечественной технической литературе, посвященной кабелям городской и междугородной связи, аналогичные параметры обозначаются соответственно А 0 и А 1 .

Чем выше значение NEXT и FEXT, тем меньший уровень имеет наводка в соседних парах, и соответственно тем более качественным является кабель. С практической точки зрения представляет интерес частотная зависимость переходного затухания на ближнем и дальнем концах, а также зависимость этих параметров от длины линии. Влияющая пара и пара, подверженная влиянию, проложены параллельно под общей защитной оболочкой. За счет этого их проводники могут рассматриваться как обкладки конденсатора. Это означает, что с ростом частоты переходное затухание падает. Стандарт TIA/EIA-568-A нормирует минимальные значения переходного затухания на ближнем конце при длине кабеля 100 м. Для определения минимально допустимого параметра NEXT на частотах, превышающих 0,772 МГц, используется следующее аппроксимирующее выражение:

NEXT(f) = NEXT(0,772) - 15 lg (f/0,772)

NEXT(0,772) - минимально допустимое переходное затухание на ближнем конце на частоте 0,772 МГц, которое для кабелей категорий 3, 4 и 5 принимается равным 43, 58 и 64 дБ соответственно

f, МГц - частота сигнала.

Дополнительно стандарт нормирует значения NEXT на частотах менее 0,772 МГц, что бывает необходимо для некоторых приложений. Нормируемые значения в этом случае представляются в табличной форме.

Результаты расчетов по формуле выше приведены на рисунке.


Максимально допустимые значения NEXT для кабелей категории 3,4 и 5 на длине 100 м по стандарту TIA/EIA-568-A

Суммирование отдельных составляющих одной частоты переходной помехи на ближнем конце происходит с различными фазами (по напряжению). Поэтому реальный график частотной зависимости величины NEXT имеет вид шумообразной кривой с резкими перепадами величин переходного затухания на близких частотах. Стандарты нормируют только минимальную величину параметра NEXT, и кабель считается соответствующим требованиям стандарта, если во всем рабочем частотном диапазоне реальная величина NEXT не падает ниже определенного нормами значения.

Типовая зависимость переходного затухания на ближнем и дальнем концах от длины линии показана на рисунке.


Зависимость переходного затухания не дальнем и ближнем концах от длины линии

Переходное затухание на ближнем конце с увеличением длины линии сначала несколько уменьшается, а затем стабилизируется. Качественное объяснение этого эффекта состоит в том, что, начиная с определенной длины линии, токи помех с отдаленных участков приходят на ближний конец настолько ослабленными, что практически не увеличивают взаимного влияния между цепями, и величина NEXT остается постоянной. Отсюда следует, что значения NEXT для двух концов одной пары могут существенно различаться между собой, поэтому все стандарты требуют его измерения с обеих сторон. График зависимости переходного затухания на дальнем конце от длины линии носит экстремальный характер. Вначале, пока длина линии мала, увеличение ее протяженности увеличивает мощность помехи. По мере увеличения длины начинает проявляться рост затухания помеховых составляющих, и FEXT монотонно возрастает.

Для улучшения параметра NEXT в симметричных кабелях применяют различный шаг скрутки витых пар. Кроме ослабления электромагнитной связи отдельных пар такое решение не позволяет им плотно прилегать друг к другу по всей длине, что дополнительно увеличивает переходное затухание.

Известно, что сетевое оборудование различного назначения по-разному использует симметричный кабель как среду передачи. Поэтому в зависимости от приложения и метода использования кабеля нормирование величины переходных помех или, что эквивалентно, переходного затухания выполняется по-разному.

Наиболее популярными ЛВС в настоящее время являются сети Ethernet. При использовании полнодуплексного режима передатчик и приемник работают одновременно, и эта аппаратура использует для работы две витые пары одного кабеля. Этот случай в схематическом виде изображен на рисунке.


К определению NEXT

При этом ослабленный после прохождения по витой паре информационный сигнал взаимодействует на входе приемника с мощной переходной помехой работающего на этом же конце передатчика. Поэтому достаточно нормировать следующий параметр:

NEXT = Р с - max Р п

Р с - уровень сигнала,

Р п - уровень создаваемой им переходной помехи

Величина max Р п берется на наихудший случай, так как заранее неизвестно, какие две пары будут использоваться сетевым оборудованием для организации информационного обмена.

В последнее время при построении сетевого оборудования четко обозначилась тенденция использования им для передачи информации одновременно нескольких пар (оборудование ЛВС 100Base-T4, 100VG AnyLAN и 1000Base-TX). С другой стороны, сигналы нескольких приложений все чаще передаются в одном многопарном кабеле. В данной ситуации нормирование только параметра NEXT оказывается недостаточным, так как на приемник одновременно действует несколько источников помех. Для учета этого обстоятельства используется более сложная расчетная модель, которая для 4-парного кабеля имеет вид, изображенный на рисунке (все пары действуют на одну), и нормируется параметр так называемой суммарной мощности (power sum).


К определению PS-NEXT

Из-за разного расстояния между парами, различного шага скрутки и т.д. разность между величинами NEXT и PS- NEXT оказывается равной не 4,8 д Б, а примерно 2 дБ.

Наконец, в новейших перспективных приложениях типа Gigabit Ethernet вход приемника и выход передатчика развязаны с помощью дифференциальной системы. Это позволяет одновременно использовать одну витую пару для приема и передачи сигналов. В этой ситуации дополнительно к переходным помехам на ближнем конце необходимо учитывать также помехи на дальнем конце и соответственно нормировать величину переходного затухания на дальнем конце:

FEXT=P c - max P п

P п - уровень переходной помехи на дальнем конце


К определению PS-NEXT

Аналогично переходной помехе на ближнем конце можно также ввести параметр PS-FEXT. Аналогично переходной помехе на ближнем конце может нормироваться и значение суммарной переходной помехи на дальнем конце. Переходная помеха на дальнем конце обычно оказывается меньшей по сравнению с переходной помехой на ближнем конце. Однако в отличие от помех на.ближнем конце эти помеховые составляющие достаточно часто суммируются синфазно или с небольшой разностью фаз, что может дополнительно увеличить их мощность.

И, наконец, некоторые производители начинают нормировать так называемую глобальную переходную помеху GXT (global crosstalk), которая равна сумме наведенных переходных помех на обоих концах кабеля.

В настоящий момент официальными редакциями стандартов задаются только величины NEXT и PS-NEXT (последнее значение приводится для многопарных и комбинированных кабелей), нормирование величин FEXT и GXT производится ограниченным количеством фирм.

Защищенность

Для оценки качества передачи информации в технике проводной связи широко используется параметр защищенности от помех, или просто защищенности, который представляет собой разность между уровнями полезного сигнала и помехи в рассматриваемой точке.


К определению NEXT

Для расчетной модели уровень сигнала составляет Р с = Р пер - А, а уровень переходной помехи Р пп = Р пер - NEXT. Защищенность согласно определению будет равна:

то есть зависит только от величин затухания и переходного затухания.


Параметр ACR определяет величину превышения помехи полезным сигналом и поэтому является интегральной характеристикой качества кабеля. Использованная для обозначения защищенности аббревиатура ACR означает Attenuation to Crosstalk Ratio. По мере увеличения величины ACR при прочих равных условиях начинает возрастать отношение сигнал/шум, и соответственно растет устойчивость связи. Из-за того что NEXT и А зависят от частоты, параметр ACR также является частотно-зависимым. Стандарт ISO/IEC 11801 регламентирует минимально допустимые значения ACR для кабелей категории 5 на частотах 20 МГц и выше. TIA/EIA-568-A специально не оговаривает предельных значений ACR на разных частотах, однако они могут быть вычислены по формуле ACR = NEXT - А. Результаты этих расчетов для кабелей категорий 3, 4 и 5 на длине 100 м представлены на рисунке.


Расчетные значения минимально допустимых параметров ACR по данным стандарта TIA/EIA-568-A для кабелей категории 3,4 и 5 на длине 100 м

Из этого рисунка видно, что, в худшем случае, сигнал на входе приемника должен превышать шумы наводок от соседней пары не менее чем на 10 дБ, что эквивалентно отношению сигнал/шум в 3,16 раз по напряжению или в 10 раз по мощности.

Введение параметра ACR позволяет конкретизировать понятие верхней граничной частоты кабеля. Считается, что кабели из витых пар с установленными на них оконечными разъемами обеспечивают устойчивую полнодуплексную работу любого приложения с такой верхней граничной частотой, на которой параметр ACR составляет 10 дБ. Это положение отдельно выделено на рисунке.


К определению параметра защищенности

Исключением из данного правила являются кабели категории 4, у которых на частоте 20 МГц ACR = 26 дБ. При этом верхнюю граничную частоту приложения не следует путать с максимальной частотой кабеля, на которой изготовитель сертифицирует его параметры, так как зачастую на ней значения ACR получаются отрицательными (особенно ярко это проявляется для неэкранированных конструкций с относительно невысоким NEXT). Необходимость сертификации параметров кабеля на этих частотах возникает для оценки возможности его использования для полудуплексной или однонаправленной (симплексной) передачи каких-либо сигналов, например телевизионных.

В случае высокочастотных приложений, которые в процессе работы используют для передачи информации все витые пары и одновременно в двух направлениях, нормирование только величины ACR оказывается недостаточным. Для расчета помеховой составляющей, создаваемой наводками на дальнем конце, используется аналогичная ACR величина

Применяемое для обозначения этого параметра сокращение ELFEXT означает Equal Lewel for Far End Crosstalk - эквивалентный уровень переходного затухания на дальнем конце.

46849

Существует стойкое предубеждение и, можно даже сказать, заблуждение многих людей относительно высокочастотных кабелей. Меня, как разработчика антенн, являющегося одновременно и руководителем фирмы по их производству, постоянно одолевают этим вопросом. Попытаюсь раз и навсегда поставить точку в этом вопросе и закрыть тему применения 75 Ом кабелей вместо 50 Ом для целей передачи сигналов небольшой мощности. Я постараюсь не утруждать читателя сложными терминами с формулами, хотя некоторый минимум математики все же необходим для понимания вопроса.

В низкочастотной радиотехнике для передачи сигнала с заданными параметрами ток-напряжение нужен проводник, обладающий некоторыми свойствами изоляции от окружающей среды и погонным сопротивлением, таким, чтобы в точке приема НЧ сигнала мы получили достаточный для последующей обработки сигнал. Иными словами любой проводник обладает сопротивлением, и желательно, чтобы это сопротивление было как можно меньше. Это простое условие для техники низких частот. Для сигналов с малой передаваемой мощностью нам достаточно тонкого провода, для сигналов с большой мощностью мы должны выбирать более толстый провод.

В отличие от низкочастотной радиотехники, в технике высоких частот приходится учитывать много других параметров. Несомненно, как и в НЧ технике, нас интересует передаваемая по среде передачи мощность и сопротивление. То, что на низких частотах мы обычно называем сопротивлением линии передачи, на высоких частотах называют потерями. На низкой частоте потери, прежде всего, определяются собственным погонным сопротивлением линии передачи, тогда как на ВЧ появляется, так называемый, Скин-эффект. Скин-эффект - приводит к тому, что ток, вытесняемый высокочастотным магнитным полем течет лишь по поверхности проводника, вернее в его тонком поверхностном слое. Из-за чего эффективное сечение проводника, можно сказать, уменьшается. Т.е. при равных условиях для прокачки одной и той же мощности на низкой частоте и высокой требуются провода разного сечения. Толщина скин-слоя зависит от частоты, с увеличением частоты толщина скин-слоя уменьшается, что приводит к потерям большим, нежели на более низких частотах. Скин-эффект присутствует при переменном токе любой частоты. Для наглядности приведу некоторые примеры.

Так для тока частотой 60 герц, толщина скин-слоя составляет 8,5 мм. А для тока 10 МГц тощина скин-слоя составит всего 0,02 мм. Не правда ли разительная разница? А для частот 100, 1000 или 2000 МГц, толщина проводящего слоя будет и того меньше! Не вдаваясь в математику, скажу, что толщина скин-слоя зависит, прежде всего от удельной проводимости проводника и частоты. Поэтому для передачи максимально большей мощности на ВЧ нам нужно брать кабель с наибольшей площадью поверхности центральной жилы. При этом учитывая, что на СВЧ толщина скин-слоя мала нам вовсе необязательно использовать цельный медный кабель. Разницы от использования кабеля со стальным центральным проводником покрытым тонким слоем меди вы вероятно даже не заметите. Разве что он будет более жестким на изгиб. Разумеется, что желательно наличие более толстого слоя меди на стальном проводнике. Использование цельного медного кабеля имеет, конечно, преимущества, он более гибкий, по нему можно передавать большую мощность на более низких частотах. Также зачастую по коаксиальному кабелю передают напряжение питания постоянного тока предусилителей, и тут также вне конкуренции медный кабель. Но для передачи небольшой мощности не более 10-200 мВт на СВЧ с экономической точки зрения, более оправданным будет применение именно омедненного кабеля. Будем считать, что вопрос выбора между омедненными и медными кабелями закрыли.

Для понимания различия кабелей в волновом сопротивлении, я не стану рассказывать, что такое волновое сопротивление кабеля. Как ни странно, это не нужно для понимания разницы. Для начала разберемся, почему существуют кабели с разными волновыми сопротивлениями. Прежде всего, это связанно с историей становления радиотехники. На заре радиотехники выбор изолирующих материалов для коаксиальных кабелей был сильно ограничен. Это сейчас мы нормально воспринимаем наличие огромного ряда пластиков, вспененных диэлектриков, резины со свойствами проводников или керамики. 80 лет назад ничего этого не было. Была резина, полиэтилен, парафин, бакелит, в 30-х годах изобретен фторопласт (он же тефлон). Волновое сопротивление кабелей определяется соотношением диаметров центрального внутреннего проводника и внешнего диаметра кабеля.

Ниже приведена номограмма.

Толщина центрального проводника определяется его способностью пропускать наибольшую мощность. Внешний диаметр выбирается в зависимости от используемого диэлектрика - заполнителя находящегося между двумя проводниками. Используя номограмму становится понятно, что диапазон удобных для промышленного изготовления волновых сопротивлений кабелей лежит в пределах 25 - 100 Ом.

Итак, один из критериев - технологичность изготовления. Следующим критерием является максимальная передаваемая мощность. Опустив математику сообщу, что для передачи максимальной мощности с использованием наиболее широко распространенных диэлектриков оптимально волновое сопротивление в диапазоне 20-30 Ом. В тоже время минимальному затуханию соответствуют волновые сопротивления 50-75 Ом. Причем кабели с волновым сопротивлением в 75 Ом имеют меньшее затухание, чем кабели с волновым сопротивлением 50 Ом. Становится более-менее понятно, что для передачи малых мощностей выгоднее использовать 75 Ом кабель, а для передачи большой мощности - 50 Ом.

Теперь считаю необходимым рассмотреть менее важный вопрос о согласовании линии передачи. Попытаюсь просто ответить на вопросы о том, можно ли подключить 75 Ом кабель вместо 50 Ом.

Понимание вопросов согласования требует специальных познаний в радиотехнике. Поэтому ограничимся лишь констатацией фактов. А факты таковы, что для передачи сигнала с наименьшими потерями внутреннее сопротивление источника сигнала должно быть равным волновому сопротивлению кабеля. В тоже время волновое сопротивление кабеля должно быть равным волновому сопротивлению нагрузки. Иными словами источник сигнала - передатчик, нагрузка - антенна. Разберем несколько ситуаций, в которых для упрощения будем считать кабель идеальным без потерь, и передаваемая по кабелю мощность небольшая - до 100-200 милливатт (20 dBm).

Рассмотрим ситуацию, когда выходное волновое сопротивление передатчика 50 Ом, мы подключаем к нему 50 Ом кабель и 75 Ом антенну. В этом случае потери составят 4% от выходной мощности. Много ли это? Ответ неоднозначный. Дело в том, что в ВЧ радиотехнике оперируют в основном логарифмическими величинами, приведенными к децибелам. И если 4% перевести в децибелы, то потери в линии составят всего 0,18 дБ.

Если мы подключаем передатчик с 50 Ом выходом к 75 Ом кабелю и далее к 50 Ом антенне. В этом случае теряется 8% мощности. Но приведя это значение к децибелам, выясняется, что потери составят всего лишь 0,36 дБ.

Теперь рассмотрим типовые затухания кабелей для частоты 2000 МГц. И сравним, что лучше применить: 20 метров кабеля 75 Ом или 20 метров кабеля 50 Ом.

Затухание на 20 метрах для известного дорогого кабеля марки Radiolab 5D-FB составляет 0,3*20= 6 дБ.

Затухание на 20 метрах для качественного кабеля Cavel SAT703 составляет 0,29*20= 5,8 дБ.

Учтя потери на рассогласовании - 0,36 дБ, мы получим, что выигрыш от применения 50 Ом кабеля составляет всего 0,16 дБ. Это примерно соответствует 2-м лишним метрам кабеля.

А теперь сравним цену. 20 метров кабеля Radiolab 5D-FB стоят в лучшем случае примерно 80*20=1600 руб. В тоже время 20 метров кабеля Cavel SAT703 стоит 25*20=500 руб. Разница в цене 1100 руб. весьма ощутимая. К достоинствам 75 Ом кабелей можно отнести также легкость их разделки, доступность разъемов. Поэтому если кто-то в очередной раз начнет умничать и говорить вам, что для 3G модема ну никак нельзя использовать 75 Ом кабель, то с чистой совестью пошлите его ….й или ко мне за нашими замечательными антеннами. Спасибо за внимание.

Кабели на 50 и 75 Ом стали настолько привычными, что многим даже не приходит в голову задуматься, почему они имеют именно такое волное сопротивление . По мнению некоторых специалистов, такие значения используются для упрощения производства согласующих устройств для антенн, другие говорят, что такие кабели имеют меньшее затухание в волноводе, а еще некоторые - о дешевизне такого кабеля.

Коаксиальные волноводы используются для передачи к приемному устройству энергии от антенны, или же в обратном направлении.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника .

При этом волновод должен иметь как можно меньший показатель затухания, что очень важно для работы приемника. А передатчик должен обладать максимальным коэффициентом передачи по мощности. Эти условия позволяют провести некоторые расчеты и убедиться в итоговом результате.

Как было упомянуто выше, приемник должен обладать наименьшим коэффициентом затухание в волноводе. Это значит, что амплитуда напряженности должны быть как можно большей. Для ее определения используются следующее выражение:

Где указывает на амплитуду без учета затухания, служит показателем коэффициента затухания волн в волноводе, а r указывает на длину линии.

Где R указывает на показатель погонного активного сопротивления, а Z 0 - показатель волнового сопротивления кабеля , который рассчитывается по следующей формуле:

Где уровень магнитной постоянной составляет , уровень в большинстве случаев равен примерно 1, уровень электрической постоянной ? 0 составляет , а уровень относительной диэлектрической проницаемости ? для воздуха составляет примерно 1.

Необходимо учитывать, что уровень активного сопротивления кабеля обратно пропорционален диаметру проводников и проводимости материала, из которого они сделаны, а также толщине оболочки.

Где σ указывает на уровень проводимости материала, из которого сделан проводник, а δ - на толщину оболочки.

Если с использованием полученных выражений составить формулу, можно будет рассчитать коэффициент затухания:

При этом затухание будет наименьшим в том случае, если коэффициент проводимости материала проводника будет наименьшим. Чтобы рассчитать максимум функции, следует руководствоваться следующим правилом: при экстремуме дифференцируемой функции в точке Х с индексом 0, производная функции в этой точке будет обращена в ноль, а если при прохождении точки знак будет меняться с положительного отрицательный, то точку можно считать максимумом, если наоборот - то минимумом. Теперь можно продифференцировать функцию:

После приравнивания производной к нулю можно решить уравнение:

Такое соотношение диаметров центральной жилы и оплетки позволяет понять, что уровень волнового сопротивления кабеля будет составлять примерно 77 Ом. Данное волновое сопротивление будет способствовать наименьшему ослаблению сигнала в кабеле. Значение, считающееся сейчас стандартным, было округлено до 75 Ом. Если говорить о передатчике, которому важен уровень коэффициента передачи по мощности и должна учитываться напряженность пробоя линии, имеет дело с формулой, знакомой со школы:Получается, что уровень волнового сопротивления кабеля при таком соотношении диаметров будет составлять примерно 30 Ом. Теперь, зная оптимальное волновое сопротивление приемника и передатчика, можно определить, что для приемопередатчика оптимальным будет сопротивление волновода, равное 50 Ом. На практике такой кабель наиболее распространен, поскольку совмещает возможность небольших потерь при передаче радиосигнала, а также имеет предельно достижимые показатели передаваемой мощности и электрической прочности.