Сайт о телевидении

Сайт о телевидении

» » Динамическое программирова­ние. Суть метода динамического программирования

Динамическое программирова­ние. Суть метода динамического программирования

На уроке будет рассмотрено понятие динамического программирования и исторический аспект его появления. Рассмотрены задачи динамического программирования и некоторые примеры их решения


Само понятие «динамическое программирование» впервые было использовано в 1940-х годах Ричардом Беллманом для описания процесса нахождения решения задачи, где ответ на одну задачу может быть получен только после решения другой задачи, «предшествующей» ей.
Таким образом, американский математик и один из ведущих специалистов в области математики и вычислительной техникиРичард Эрнст Беллман — стал прородителем динамического программирования.

Позднее формулировка понятия была доработана и усовершенствованна до современного вида самим же Беллманом.

Слово «программирование» в контексте «динамическое программирование» на самом деле к классическому пониманию программирования (написанию кода на языке программирования) практически никакого отношения не имеет . Слово «Программирование» имеет такой же смысл как в словосочетании «математическое программирование», которое является синонимом слова «оптимизация».

Поэтому программы будут использоваться в качестве оптимальной последовательности действий для получения решения задачи.

В общем же для начала, неформальное определение понятия динамического программирования может звучать так:

Динамическое программирование — это техника или метод, которая позволяет решать некоторые задачи комбинаторики, оптимизации и другие задачи, обладающие определенным свойством (свойством сооптимальности у подзадач).

Задачи оптимизации , как правило, связаны с задачей максимизации или минимизации той или иной целевой функции (например, максимизировать вероятность того, что система не сломается, максимизировать мат. ожидание получения прибыли и т.д.).

Задачи комбинаторики , как правило, отвечают на вопрос, сколько существует объектов, обладающих теми или иными свойствами, или сколько существует комбинаторных объектов, обладающих заданными свойствами.

То есть, ДП решает не все задачи, а лишь некоторые, определенный класс подзадач. Но этот класс подзадачи используется во многих областях знаний: программирование, математика, лингвистика, статистика, теория игр, экономика, в компьютерных науках и т.п.

Задачи, решаемые при помощи динамического программирования, должны обладать свойством сооптимальности , о котором будет сказано в дальнейших уроках.

Неформальное объяснение свойства оптимальности у подзадач может быть продемонстрировано с помощью диаграммы:
Есть задача, которую мы хотим решить при помощи ДП, т.е. найти какой-то план ее решения. Допустим эта задача сложна и сразу решить мы ее не можем. Мы берем малую подзадачу и решаем сначала ее (для x1). Затем используя это малое решение x1 , и не меняя структуру этого решения, решаем следующую задачу уже с x1 и x2 . И т.д.

Рис. 1.1. Неформальное объяснение свойства оптимальности у подзадач

Более подробно неформальное объяснение рассматривается .

Примеры, решаемых при помощи динамического программирования задач

Сначала рассмотрим задачи оптимизации (задачи 1-5):

  1. Маршрут оптимальной длины
  2. Пример: Есть некоторая карта дорог, представленная в виде графа. Наша цель: добраться из пункта А в пункт Б . Это сделать надо так, чтобы минимизировать расстояние или потраченное топливо.

    Целевой функцией здесь является расстояние от А до Б . Т.е. наша цель — минимизировать расстояние.

    А что является переменной выбора ? Для того, чтобы найти кратчайший путь, надо каждый раз принимать решения. Т.е. в каждой точке или на каждом перекрестке необходимо принимать решения: куда повернуть или ехать прямо.

    Важно: Из этой задачи уже можно увидеть общую структуру задач, решаемых при помощи динамического программирования: в каждой задаче есть целевая функция и переменная выбора .

  3. Замена машины (минимизация расходов)
  4. Пример: Каждый год мы принимаем решение, ездить ли на старой машине еще год и понести при этом издержки на поддержку и обслуживание старой машины или же продать эту машину и купить новую (и понести при этом издержки на покупку).

    Целевая функция: минимизация расходов (либо на издержки на поддержку старого автомобиля, либо на покупку нового).

    Переменная выбора: каждый год принимать решение продать машину или оставить.

  5. Биржевой портфель
  6. Пример: Игра на бирже, приобретение акций каких-либо компаний


    Целевая функция: максимизация средних доходов, т.к. на бирже доход получается вероятностным путем, т.е. это статистический процесс, вероятностный.

    Переменная выбора: то, какой портфель вложений будет: сколько акций и какой фирмы нам необходимо купить.

  7. Составление плана оптимального производства (логистика)
  8. Пример: Есть завод, изготавливающий мебель. На заводе работает определенное количество работников, которые могут изготовить соответствующее кол-во определенной мебели (стулья, столы, шкафы и т.п.)


    Целевая функция : максимизация прибыли.

    Переменная выбора: выбор того, сколько необходимо изготовить стульев или столов, чтобы хватило рабочей силы.

  9. Игры (вероятностные или не вероятностные)
  10. Пример: Участие в различных играх


    Целевая функция: максимизация вероятности выигрыша или максимизация среднего выигрыша и т.д.

    Переменная выбора здесь зависит от конкретной игры.

    Задачи 1 — 5 — это примеры задач оптимизации.

    Комбинаторика:

  11. Графы и деревья
  12. Пример: Задача на решение того, сколько существует деревьев, у которых определенное число листьев; или сколько существует графов для решения такого-то задания и т.п.

  13. Задача о размене монет или количество способов вернуть сдачу
  14. Пример: Есть монеты разного достоинства, какими способами можно вернуть сдачу.

Это краткое описание задач для динамического программирования, которые подробно будут рассмотрены позднее.

Понятие динамического программирования

Неформальное объяснение оптимальности подзадач ДП.

Рассмотрим неформальную идею ДП.

Итак, возьмем пример с заводом, изготавливающим мебель.

Для достижения цели максимизации прибыли необходимо решить множество подзадач:

  • сколько стульев произвести — переменная X1 ,
  • сколько столов произвести — переменная X2 ,
  • сколько нанять работников — переменная X3 ,
  • … Хn .

При большом количестве подзадач сложно понять, как решать такую задачу. Как правило, решить одну малую задачу проще, чем решить большую задачу , состоящую из маленьких.

Поэтому ДП предлагает следующее:

  • берем одну подзадачу с переменной X1 , об остальных подзадачах пока забываем.
  • Например, завод производит только стулья. У директора стоит задача получения максимальной прибыли с продажи стульев.

  • После того, как найдем оптимальное решение для первой подзадачи, берем подзадачу для двух переменных Х1 и Х2 , и решаем ее с помощью уже найденного решения для первой подзадачи .
  • Получаем решение уже для большей подзадачи, где фигурируют переменные Х1 и Х2 . Затем, используя полученное решение, берем подзадачи, охватывающие X1 , X2 и Х3 .
  • И так продолжаем пока не получим решение для всей общей задачи.

Формальная идея ДП

Часто при постановке задачи кажущимся оптимальным решением является перебор всех возможных вариантов . Однако, вследствии очень большого количества таких вариантов и, как результат, перегрузки памяти компьютера, такой способ не всегда приемлем.

Кроме того, может возникнуть такой вопрос: для того чтобы найти, например, минимум или максимум, почему бы нам не найти производную? или не использовать множества Ла-Гранжа, или другие методы аппарата математического анализа? Зачем нужно ДП, если есть большой арсенал средств?

Дело в том, что:

В основе динамического программирования лежит идея решения поставленной задачи путем деления ее на отдельные части (подзадачи, этапы), решение этих подзадач и последующего объединения этих решений в одно общее решение. Часто большинство из подзадач абсолютно одинаковы.

При этом важно, что при решении более сложной задачи, мы не решаем заново маленькую подзадачу, а используем уже решенный ответ этой подзадачи.
На графике это может выглядеть так:


Важно: По этой причине разделение задачи на подзадачи и решение этих подзадач только один раз (!) , сокращая этим количество общих вычислений — более оптимальный способ, который и заложен в динамическом программировании

Когда мы решаем задачу с производными, множествами Ла-Гранжа и т.п., то мы работаем с непрерывными функциями. При решении же задач ДП мы будем работать в основном с дискретными функциями, поэтому говорить здесь о применении непрерывных функций неуместно.
По этой причине во многих задачах, но не во всех, применение аппарата математического анализа будет неприемлемым.

Простой пример решения задач при помощи ДП

Рассмотрим вариант решения задачи с помощью динамического программирования.

Пример: Необходимо вычислить сумму n чисел: 1 + 2 + 3 + ... + n


В чем состоит якобы «сложность» данной задачи: в том, что необходимо сразу взять большое количество чисел и получить ответ.

Попробуем применить к задаче идеи ДП и решить ее, разбивая на простые подзадачи.
(В ДП всегда необходимо сначала определить начальные условия или условие)

  • Начнем с суммы одного первого элемента, т.е. просто берем первый элемент:
    F(1) = 1
  • теперь с помощью решения для первого элемента, решим
    F(2) = F(1) + 2 = 1 + 2 = 3 , т.е. надо взять сумму первого элемента и добавить к нему второй элемент
  • F(3) = F(2) + 3 = 6
  • по аналогии продолжаем и получаем целевую функцию:
    F(n) = F(n-1) + An


Итак, что мы сделали: определили порядок и вычленили подзадачи, затем решили каждую из них, опираясь на решение предыдущей.

Простой пример, где пока неоправданно используется ДП (искусственно), демонстрирует принцип идей ДП.

Рассмотрим еще один пример.

Пример: имеется лесенка из n ступенек, перед которой находится человек, который за 1 шаг умеет подниматься либо на следующую ступеньку, либо перепрыгивает через одну ступеньку. Вопрос: сколькими способами он может попасть на последнюю ступеньку?


Решение:

Рассмотрим самые простые варианты (подзадачи):

Рассмотрим пример из i ступенек

Как мы можем попасть на i ступеньку:

  1. с i-1 ступеньки, а на i-1 ступеньку мы могли попасть a i-1 способами
  2. с i-2 ступеньки, а на i-2 ступеньку мы могли попасть a i-2 способами

Например, как попасть на 4-ю ступеньку :

Т.о., общее количество способов попасть на i ступеньку:
f(a i) = f(a i-1) + f(a i-2)

Определим начальные значения , с которых следует начинать решать задачу.
Если начинать с 1, то формула соответствует нахождению последовательности чисел Фибоначчи.

Мы видим, что задача по сути комбинаторная (т.е. количество способов сделать что-либо) свелась к вычислению некоторой рекуррентной последовательности.

Задание 1: реализовать пример для первых десяти ступенек (по сути, первые 10 чисел ряда Фибоначчи), используя рекурсию.

Дополните код:

1 2 3 4 5 6 7 8 9 10 11 12 13 var c: integer ; procedure getKolSposob(i, n: integer ) ; begin writeln (i+ n, " " ) ; inc(c) ; if ... then getKolSposob(...,... ) end ; begin c: = 1 ; getKolSposob(0 , 1 ) ; end .

var c:integer; procedure getKolSposob(i,n: integer); begin writeln (i+n," "); inc(c); if ... then getKolSposob(...,...) end; begin c:=1; getKolSposob(0,1); end.


Задание 2:
Решение 15-го типа заданий ЕГЭ (Графы. Поиск количества путей).

4.1. Принцип оптимальности

Рассмотрим систему

и функционал

(4.2)

который требуется минимизировать. Правый конец фазовых координат является свободным.

Наряду с этой вариационной задачей рассмотрим вспомогательную, когда процесс рассматривается в интервале
и минимизируется функционал

. (4.3)

Пусть сначала найден минимум (4.2) и соответствующее ему оптимальное управление (рис. 14а):

а потом – минимум (4.3) и оптимальное управление (рис. 14б):

В последнем случае предполагается, что в момент процесс начинается с состояния
, достигнутого к моменту временипри оптимизации процесса в интервале
.

Вообще говоря, управления
и
отличаются интервалом и значениями. Принцип оптимальности утверждает, что оптимальные управления
и
в общей части интервала
совпадают, не зависимо от предыстории процесса и вполне определяются состоянием
в момент
.

В случае со свободным правым концом принцип оптимальности доказывается. В самом деле, допустим, что на участке
управления
и
не совпадают и

(4.6)

Рис. 14а Рис.14б

Тогда для первой задачи введем управление

(4.7)

и вычислим функционал

При управлении (4.7) функционал (4.2) принимает меньшее значение, чем при (4.4). Но управлениеявляется оптимальным. Поэтому допущение (4.6) неверно.

A предположение

противоречит тому, что
- управление, минимизирующее
(4.3).

Таким образом, остается, что

,

и если оптимальное управление единственное, то

Кратко принцип оптимальности можно сформулировать так: последний участок оптимальной траектории является оптимальным независимо от предыстории процесса.

4.2. Основное уравнение метода динамического программирования

Применим принцип оптимальности к решению вариационной задачи (4.1), (4.2). Для этого сначала рассмотрим функционал (4.3). Наименьшее значение его при связях (4.1) обозначим:

. (4.8)

Если
- оптимальное управление, то

.

Оптимальное управление
зависит от начального состояния
в момент
. Следовательно,является функцией оти:
, а от управленияи его вариаций функция
не зависит. Она вполне определяется значениями
.

Интервал
разделим на два интервала
и
и выражение (4.8) запишем в виде:

.

Согласно принципу оптимальности последний участок также является оптимальным:

(4.9)

Обозначим:

, (4.10)

где
- приращение вектора фазовых координат за время
. Оно определяется согласно уравнениям движения (4.1). Подставляя
из (4.10) в равенство (4.9), получим:

.

Хотя функция
зависит только от фазовых координат и времени, ее нельзя выносить за знак
. Значение приращения
за время
зависит от управления в интервале
. Но
не зависит от управления в интервале
и ее можно внести под знак
. Введем
под знак минимума и разделим на
:

.

Учитывая, что

;

,

получим основное уравнение метода динамического программирования:

(4.11)

Это соотношение состоит из двух утверждений:


Если
- управление, минимизирующее выражение
, то основное уравнение метода динамического программирования

(4.12)

Здесь
зависит от управления по определению, функция же
не зависит от него. Тем не менее, производнаяот управления зависит. В этом можно убедиться, если ее представить в виде

изаменить согласно системе (4.1):

.(4.13)

Подставляя (4.13) в (4.12) получим уравнение Р.Беллмана:

. (4.14)

Это уравнение в частных производных относительно
, которое после подстановки
становится нелинейным. Согласно определению(4.8) при
должно выполняться конечное условие

.

В случае бесконечного интервала при
процесс должен быть асимптотически устойчивым, т.е.
.

В том случае, когда рассматривается функционал Больца

(4.15)

Уравнение (4.12) сохраняет силу, функция v в момент
должна удовлетворять условию

. (4.16)

4.3. Две задачи оптимального управления

В теории оптимального управления различают задачи двух типов: программного управления и синтеза. В первой задаче оптимальное управление строится в виде функции временидля конкретных начальных и конечных условий, если они заданы. Зависимость
рассматривается как программа.

Во второй задаче оптимальное управление строится для каждого момента временикак функция вектора фазовых координатт.е. в виде

. (4.17)

Построение такой зависимости является целью задачи синтеза. Значение второй задачи в том, что зависимость
дает уравнение обратной связи или оптимального регулятора, замыкающего систему. Она применяется при оптимальном управлении переходным процессом.

Программное управление и управление по обратной связи осуществляются технически по-разному. Первое может осуществляться программным часовым механизмом, по жесткому закону, как функция времени . Это управление никак не реагирует на возможные отклонения состояний объекта от идеального, желательного. Управление по обратной связи осуществляется при помощи регулятора, который по результатам измерения реального состояния фазовых координат вырабатывает сигнал, согласно которому отклоняется управляющий орган.

Обе задачи взаимосвязаны. Решение одной можно выразить через другое. Однако отметим, что принцип максимума обычно приводит к представлению управления в виде программы, а метод динамического программирования – в виде синтеза.

Значительное развитие получила задача синтеза оптимального управления процессами, описываемыми линейной системой дифференциальных уравнений, при минимизации интегральных квадратичных функционалов. Она называется задачей аналитического конструирования оптимальных регуляторов (АКОР), или задачей А.М.Летова.

4.4. Задача аналитического конструирования оптимальных регуляторов

Предположим уравнения возмущенного движения системы имеют вид

(4.18)

Матрицы
, размерности
и
, соответственно, имеют в качестве своих элементов известные функции
.

Предполагается также, что состояние системы (4.18) в каждый момент времени известно.

В качестве критерия оптимальности рассматривается квадратичный функционал Больца

где
- симметричные неотрицательно определенные матрицы,
- положительно определенная матрица; *) - индекс транспонирования.

Требуется найти оптимальное (минимизирующее функционал 4.19) управление, являющееся функцией текущего состояния
.

Для решения этой задачи можно воспользоваться принципом максимума, но наиболее короткий путь – метод динамического программирования.

В соответствии с этим методом нужно найти функцию
, удовлетворяющего уравнению

. (4.20)

В общем случае – это сложная задача, однако для линейных систем с квадратичным критерием оптимальности функцию
можно искать в виде некоторой квадратичной формы.

(4.21)

где
- есть некоторая, пока неизвестная, квадратичная форма, удовлетворяющая в силу (4.16) конечному условию

. (4.22)

Таким образом, для линейных систем задача сводится к отысканию функции
. Дифференцируя (4.21) с учетом (4.18) получим

Минимизируя (4.23) по
, получим

(4.24)

Так как
, то управление (4.24) действительно доставляет минимум выражению
.

Подставляя (4.24) в (4.23), получим

Квадратичная форма (4.25) равна нулю при любых
только в том случае, когда равна нулю матрица, ее образующая. Таким образом, получаем уравнение для определения матрицы

(2.26)

с граничным условием (4.22).

Интегрируя уравнение (4.26) в обратном направлении, получим
, а значит и параметры оптимального управления (4.24). Нетрудно показать, что матрица
- симметричная матрица. Для этого достаточно транспонировать уравнение (4.26). Тогда

откуда с учетом симметричности матриц следует, что
.

Замечание 1 . В том случае, когда система (4.18) стационарна (матрицы A и B числовые матрицы), матрицы - числовые матрицы,
(рассматривается установившийся режим). Матрицатоже числовая и удовлетворяет алгебраическому уравнению

Замечание 2. Из выражения (4.24) следует, что для реализации оптимального управления необходима полная и точная информация о состоянии управляемого процесса
. В том случае, когда эту информацию получить невозможно, для реализации оптимального управления используются оценки состояния, получаемые на основе имеющейся неполной информации.

4.5. Синтез локально-оптимального управления

При проектировании систем управления часто бывает необходимо, чтобы поведение системы было оптимальным в некотором смысле в любой текущий момент времени.

Рассмотрим непрерывный управляемый процесс, описываемый системой дифференциальных уравнений (4.18).

Пусть задан функционал (функция)
параметрически зависящий от времении определенный на множестве функций
и
.

Требуется найти уравнение
, минимизирующее
, где- текущий момент времени. Такое управление называется локально-оптимальным.

В качестве критерия оптимальности рассмотрим функционал

матрица удовлетворяют тем же требованиям, что и в параграфе 4.4.

Нетрудно показать , что локально-оптимальное уравнение
с необходимостью удовлетворяет условию

. (4.28)

Воспользуемся этим условием.

Тогда, дифференцируя (4.27) в силу (4.18), найдем выражение для определения производной

из условия
найдем локально-оптимальное управление

Найденное управление действительно доставляет производной
, так как

.

Из выражения (4.30) следует, что локально-оптимальное управление полностью определяется матрицами
, а для реализации его необходима полная информация о состоянии процесса
. Задаваясь различными матрицами весовых функций
, можно обеспечить те или иные свойства управляемого процесса, в частности свойства устойчивости или асимптотической устойчивости.

Потребуем, например, чтобы на локально-оптимальном управлении выполнялось условие

. (4.31)

Тогда, подставляя (4.30) в (4.29), из (4.31) найдем

(4.32)

Из условия (4.32) следует, что оно будет выполнено, если матрица
будет определена из условия

Пусть теперь рассматривается управляемое движение на отрезке
, где- некоторый фиксированный момент времени. Потребуем также, чтобы в момент времениматричная функция
удовлетворяла конечному условию

(4.34)

Тогда из сравнения формул (4.24), (4.26), (4.22) и (4.30), (4.33), (4.34) следует, что локально-оптимальное управление(4.30) по критерию (4.27) с матрицей
, определяемой из уравнения (4.33) с условием (4.34) совпадает с управлением (4.24), оптимальным по квадратичному критерию (4.19) на интервале
.

5. Оптимальное управление стохастическими системами в условиях неопределенности.

5.1. Характеристики случайных сигналов

В пособие в качестве математических моделей возмущающих воздействий и погрешностей измерений используются стохастические (случайные) процессы и последовательности.

Случайный процесс
- это такая функция, значение которой в фиксированный момент есть случайная величина, т.е. случайный процесс можно рассматривать как случайную величину, зависящую от параметра . В том случае, когда параметр меняется дискретно, случайный процесс называют случайной последовательностью.

Через
будем обозначать реализацию случайного процесса
.

Следует отметить, что многие статистические характеристики случайных процессов и последовательностей совпадают.

Как известно, наиболее полной характеристикой случайного процесса является - мерный закон распределения

или -мерная плотность распределения

Здесь символом обозначается вероятность события, заключенногов скобках. Значение может быть любым от I до
. Для произвольного случайного процесса такую информацию иметь невозможно. Однако существует класс случайных процессов (последовательностей), называемых марковскими, для которых статистические характеристики полностью определяются двумерным законом распределения или двумерной плотностью распределения.

Часто, особенно в прикладных задачах, для статистического описания случайных процессов используют начальные
ицентральные
моменты -гo порядка. Здесь символом
обозначена операция осреднения (математического ожидания). Наиболее важную роль играют следующие моменты:

Математическое ожидание (среднее значение)

; (5.3)

Дисперсия случайного процесса

Второй начальный момент

где
- центрированный случайный процесс с нулевым математическим ожиданием;

Среднеквадратичное отклонение

. (5.6)

Из определения
,
,
и
следует, что эти величины характеризуют случайный процесс только в фиксированномсечении . Для характеристики связи двух различных сечений случайного процесса используется корреляционная функция;

. (5.7)

Если математическое ожидание
случайного процесса не зависит от времени, а корреляционная функция является функцией одного аргумента
, то такой процесс называется стационарным в широком смысле.

Если плотность распределения имеетгауссовский характер, то такой процесс называют гауссовским

.

Гауссовский процесс полностью определяется заданием математического ожидания
и корреляционной функции
.

Важной характеристикой стационарного случайного процесса в широком смысле является спектральная плотность
- плотностьраспределения дисперсии (энергии) по частотам.

Спектральная плотность
и корреляционная функция
связаны прямым и обратным преобразованием Фурье:

; (5.8)

. (5.9)

Чисто случайный процесс (последовательность) - это процесс, для которого случайные величины
взаимно независимы при любых значениях аргументов. Такой процесс полностью характеризуется одномерной функцией распределения. Чисто случайный стационарный процесс называют белым шумом, если корреляционная функция имеет вид - функции. Спектральная плотность такого процесса постоянна по всем частотам. Так как
, то нетрудновидеть, что дисперсия белого шума является бесконечно большой. Такие процессы в природе реально не существуют. Однако реальный шум по его воздействию на систему может быть заменен белым шумом. Кроме того, реальный случайный процесс можно представить как выходной сигнал некоторой системы (формирующего фильтра), на вход которой поступает белый шум. Поэтому задача статистического анализа или синтеза систем с реальными характеристиками случайных воздействий может быть сведена к задаче статистического анализа или синтеза, когда входным сигналом является белый шум. В настоящем учебном пособии, как правило, будут использоваться модели белых шумов и чисто случайных последовательностей.

Наряду со скалярными случайными процессами можно рассматривать и векторные случайные процессы:

где каждая компонента
является случайным процессом. Для характеристики векторного случайного процесса вводятся следующие векторы и матрицы:

Математическое ожидание :

; (5.11)

Дисперсионная матрица
:

(5.12)

с элементами

; (5.13)

Ковариационная матрица
:

(5.14)

с элементами

; (5.15)

Матрица

с элементами

. (5.17)

Здесь
означает транспонирование.

Непосредственно из определения матрицы
видно, что на ее диагонали расположены дисперсии составляющих случайного процесса.

Матрицы
,
и
обладают следующими свойствами:

; (5.18)

для всех и (5.I9)

Для стационарного векторного случайного процесса
вводится матрица спектральных плотностей как преобразование Фурье ко вариационной матрицы
, т.е.

. (5.21)

Матрица
обладает следующим свойством:

(5.22)

5.2. Математическое описание линейных систем при случайных возмущениях.

В общем виде уравнение управляемой динамической системы может быть записано в виде:

где - оператор (или в частном случае функция) системы, т.е. совокупность правил, по которым преобразуются начальное условие
, управляющие воздействия
, возмущающие воздействия
в выход системы
в момент .

Если параметр меняется непрерывно, то такую систему будем называть непрерывной; если меняется дискретно, то система называется дискретной.

Если оператор не зависит от параметров и , то такую систему называют стационарной. Оператор может быть линейным илинелинейным, однородным или неоднородным и может задаваться в различной форме, например, в форме дифференциальных и интегродифференциальных уравнений, с помощью передаточных функций и разностных уравнений.

В данном учебном пособии будут рассматриваться только линейные системы.

Рассмотрим системы, описываемые дифференциальными уравнениями.

Обозначим через

-мерный вектор состояния системы; через
- -мерный вектор управляющих воздействий; через
- -мерный вектор возмущений. Тогда уравнение движения линейной непрерывной динамической системы можно записать в следующей дифференциальной форме:

Здесь
,
,
- матрицы размерностей соответственно. Элементами этих матриц являются непрерывные функции. Если матрицы
иявляются постоянными, то управляемаясистема называется стационарной. Уравнения (5.24) обычно называют уравнениями состояния, так как они описывают изменение переменных состояния системы во времени.

Для целей управления необходимо знать состояние системы в любой текущий момент времени. Однако с помощью измерителей можно получить информацию, как правило, только о некоторых составляющих процессах или их комбинациях. Кроме того, наблюдаемые (выходные) переменные могут содержать погрешности измерения. В дальнейшем будем предполагать, что уравнения измерений имеют вид:

где
-
-мерный наблюдаемый сигнал;
- матрица размерности
,характеризующая способ измерения;
- погрешность измерения. Если
( - единичная матрица) и
, то говорят, что измерение полное и точное.

В некоторых случаях удобно представить решение системы (5.24) в интегральной форме через фундаментальную матрицу решений
,которая удовлетворяет следующему матричному уравнению:

(5.26)

В интегральной форме решение системы (5.24), в соответствии с формулой Коши, можно представить в следующем виде:

(5.27)

В выражении (5.27) первая составляющая учитывает свободное движение, обусловленное начальным условием , вторая составляющая учитывает вынужденное движение, обусловленное управляющими воздействиями на интервале времени
, третья составляющая характеризует вынужденное движение, обусловленное возмущениями
на интервале
.

Относительно системы (5.24), (5.25) сделаем следующие предположения:

(5.28)

Из соотношений (5.28) видно, что случайные процессы
и
являются процессами типа белого шума. Матрицы
и вектор считаются известными. Предполагаются известными в каждый момент времени и управляющие воздействия.

Одним из видов динамических систем являются дискретные системы, которые можно разделить на два типа:

а) собственно дискретные системы, такие как ЦВМ, автоматы различных типов и т.д.;

б) дискретные системы, которые получаются в результате использования непрерывных систем в дискретные моменты времени, в частности, при использовании в контуре управления вычислительных машин. Поведение дискретных систем обычно описывают разностными уравнениями, которые являются аналогом дифференциальных уравнений для непрерывных систем.

Рассмотрим поведение непрерывной системы с дискретным управлением, которое можно представить в виде кусочно-постоянной вектор-функции (рис. 15), т.е. управляющие воздействия можно записать в следующем виде:

для (5.29)

где - последовательность моментов времени, не обязательно равноотстоящих друг от друга.

Если нас интересует состояние системы только в дискретные моменты времени , то непрерывную систему (5.24) в эти моменты, используя соотношение (5.27), можно записать в следующем виде:

(5.30)

Учитывая (5.29), соотношение (5.30) перепишем в виде:

(5.31)

Третье слагаемое в соотношении (5.3I) можно рассматривать как некоторую случайную последовательность. В том случае, когда случайный процесс типа белого шума, то справедливо следующее соотношение:

,

где
- чисто случайная последовательность.

Вводя обозначения

(5.32)

систему уравнений (5.31) запишем в виде:

Матрицы называются переходными матрицами по состоянию, управлению и возмущению соответственно;
- дискретное время.

Уравнение измерений, соответственно, можно записать в виде:

Иногда систему (5.33) - (5.34) записывают в следующем виде:

Относительно систем (5.33), (5,34) будем предполагать, что:

(5.37)

Пример. Рассмотрим вращательное движение тела вокруг одной из осей под действием возмущающего момента
. Уравнения движения имеют вид:

, (5.38)

где - момент инерция тела;- угол поворота тела в некоторойинерциальной системе координат. Вводя новые переменные

(5.39)

получим уравнения движения объекта в нормальной форме:

(5.40)

Для этой системы уравнений фундаментальная матрица
состоит из двух вектор-столбцов решений следующей системы уравнений

с начальными условиями

Отсюда следует, что матрица
имеет вид:

(5.41)

Этот же результат получается, если искать матрицу
в виде ряда:

Рассмотрим поведение системы (5.40) через равные промежутки времени в моменты , т.е.
.

На основании соотношений (5.3I) - (5.33), полагая, что
постоянно на шаге дискретности, получим следующую эквивалентную дискретную систему:

(5.43)

(5.44)

В дальнейшем необходимо получить зависимость
не только от и
, но оти всех предшествующих
. Используя соотношения (5.33), для различныхможно записать:

Продолжая соответствующие выкладки, можно получить соотношение

, (5.45)

где матрица
определяется следующим образом:

причем
при
.

Полученные соотношения (5.45), (5.46) будут использованы при статистическом анализе дискретных систем.

5.3. Уравнения моментов для линейных систем

Сначала рассмотрим непрерывные системы. Пусть уравнения движения имеют вид;

. (5.47)

Относительно возмущающих воздействий
и начального состояния будем предполагать, что они удовлетворяют условиям (5.28).

При получении соотношений для математического ожидания состояния системы
осредним уравнение (5.47):

Учитывая (5.28), получим:

. (5.48)

На основании (5.47), (5.48) уравнение для центрированной составляющей
имеет вид:

. (5.49)

Теперь найдем уравнение для дисперсионной матрицы . Дифференцируя по матрицу
и учитывая, что матрицы
и
не случайные, получим:

(5.50)

Для вычисления математического ожидания
используем формулу Коши (5.27):

. (5.51)

Умножив выражение (5.51) справа на
, осредниви учитывая (5.28), получим:

(5.52)

С учетом того, что

, (5.53)

уравнение (5.50) примет вид;

с начальным условием
.

Теперь пусть поведение системы описывается дискретным уравнением

Будем полагать, что начальное условие и возмущающие воздействия
удовлетворяют соотношениям (5.37). Найдем уравнения для математического ожидания и дисперсионной матрицы.

Осредняя (5.55) и учитывая (5.37), получим:

Уравнение для центрированной составляющей
имеет вид:

Используя (5.57) и (5.37), найдем уравнение для дисперсионной матрицы
:

(5.58)

Определим математическое ожидание
, используясоотношение (5.45) и свойства (5.37):

(5.59)

Аналогично

.

Таким образом, уравнение для определения матрицы
имеет вид:

5.4. Задача оптимальной фильтрации и ее решение методом Калмана

Как было показано раньше, для оптимального управления по принципу обратной связи необходимо иметь полную информацию о состоянии системы. Однако измерению доступны лишь некоторые функции состояния или их комбинации. Кроме того, наблюдаемый сигнал содержит погрешности измерений. В такой ситуации важной является задача получения наилучшей оценки состояния системы по результатам измерений – задача оптимальной фильтрации.

Предположим, что динамический процесс описывается совокупностью дифференциальных уравнений

где
--мерный вектор состояния,
--мерный вектор возмущающих воздействий,
и
матрицы соответствующих размерностей.

Пусть измерению поддается
-мерный вектор некоторых комбинаций функций состояния (5.25)

где
- погрешность измерения.

Относительно свойств случайных процессов
и начального состояния
будет предполагать, что они удовлетворяют условиям (5.28), т.е. будет предполагать, что это случайные процессы типа белого шума, не коррелированные друг с другом и начальным состоянием системы.

Математически задача оптимальной фильтрации ставится как задача отыскания оценки
состояния системы (5.61)
на основе имеющейся информации
.

Калман предложил искать уравнение фильтра в виде линейной системы на вход которой подается наблюдаемый сигнал
. Тогда уравнения движения такой системы можно описать совокупностью уравнений

(5.63)

где матрицы
и
подлежат определению, т.е. структура фильтра задается, а параметры структуры и начальное состояние определяются из дополнительных условий.

Так как
, то всегда будет ошибка оценки

.

Тогда для определения искомых матриц
и
можно использовать условие несмещенности оценки

(5.64)

и условие ее оптимальности

где
- симметричная положительно определенная матрица.

Для того, чтобы использовать условия (5.64) и (5.65) найдем уравнение для ошибки оценивания. Вычитая (5.63) из (5.61) с учетом (5.62), получим

Если теперь положить, что

то уравнение для ошибки оценки
примет вид:

с начальным условием

. (5.68)

Из (5.67), (5.68) следует, что условие несмещенности оценки (5.64) будет выполнено, если положить

. (5.69)

Чтобы убедиться в этом, достаточно взять математическое ожидание от выражений (5.67), (5.68)

т.е. получили однородное линейное уравнение с нулевыми начальными условиями, откуда непосредственно следует, что
для любого.

Остается определить матрицу
из условия минимума критерия (5.65). Примем для простоты выкладок, что
- постоянная единичная матрица, тогда

Здесь
- корреляционная матрица ошибки оценивания (матрица вторыхцентральных моментов ошибок оценки компонент вектора состояния системы). Обозначим ее через
, тогда критерий оптимальности есть сумма диагональных элементов этой матрицы. В соответствие с условием локальной оптимальности будем искать оптимальное значение матрицы
из условия минимума производной к ритерия по времени:

. (5.71)

Нетрудно показать, что минимизация производной критерия обеспечивает минимум и для самого критерия

Запишем выражение
, опуская для простоты время :

. (5.72)

Подставив в (5.72) выражение для из (5.67) и соответствующее выражение для , получим:

(5.73)

Найдем
, для чего запишем уравнение Коши для (5.67):

где
- весовая матричная функция. Тогда

Используем свойство дельта-функции:

,

если имеетразрыв в точке
.

Поскольку

. (5.74)

Аналогично можно найти
:

. (5.75)

Подставив полученные выражения для
и соответственно транспонированные выражения для
в (5.73) получим:

Следующее тождество легко проверить, раскрыв в правой части скобки и использовав симметрию матрицы
:

С учетом тождества приведем уравнение (5.76) к виду:

В правой части (5.78) от коэффициента
будет зависеть лишь последнее слагаемое, причем оно представляет собой положительно определенную матрицу. Очевидно, что для минимизации критерия (5.71) нужно выбрать
в следующем виде:

При этом последний член в уравнении (5.78) обращается в нуль и уравнение приобретает вид

с начальным значением
.

Итак, можем записать уравнение фильтра

Уравнения (5.79), (5.80), (5.81) представляют собой уравнения фильтра Калмана-Бьюси.

Система оценивания (фильтр) схематически представлена на рис. 16.

Следует отметить, что уравнение фильтра и его параметры не зависят от матрицы
, однако последняя должна быть положительно определенной.

Для стационарной системы при стационарном возмущающем воздействии и стационарном шуме измерителя после окончания переходных процессов матричный коэффициент усиления в фильтре Калмана становится постоянным
, а уравнение Риккати (5.80) вырождается в алгебраическое.При этом процесс
и, следовательно, процесс
являются стационарными, так что
.

Запишем уравнения стационарного фильтра Калмана в следующем виде:

; (5.83)

Один из часто используемых способов решения уравнения (5.84) (обычно с помощью ЦВМ) заключается в решении нестационарного уравнения (5.80) с соответствующими постоянными значениями коэффициентов, из которых составлены матрицы А, С, Q, R, и произвольной неотрицательно определенной матрицей начальных условий для в текущем времени до тех пор, пока полученное решение не достигнет постоянного установившегося значения. Это окончательное значение принимается за искомое решение уравнения (5.84). Такой способ решения удобен тем, что алгоритмы решения дифференциальных уравнений, как правило, эффективнее алгоритмов решения нелинейных алгебраических уравнений.

Замечание 1.

Важным свойством полученной ошибки является то, что она некоррелирована с ошибкой оценивания, т.е.

.

Замечание 2.

Пусть теперь уравнение измерения имеет вид (5.62), а погрешность измерения отсутствует. В этом случае для получения оценки
необходимо воспользоваться производной
наблюдаемого сигнала

которая может быть представлена в виде (5.62)

Замечание 3.

Для управляемых систем, описываемых совокупностью уравнений

Уравнение фильтра может быть получено аналогично. В этом случае уравнение фильтра будет иметь вид

где матрица
, а корреляционная матрица
, как и раньше, находится из матричного уравнения

с начальным условием
.

Система оценивания (фильтр) схематически представлена на рис. 17.

5.5. Синтез локально-оптимального управления линейными стохастическими системами при полной и точной информации.

Пусть управляемое движение в условиях воздействия возмущений описывается системой уравнений

Случайный процесс
и начальное состояние будем считать независимыми, обладающими свойствами (5.28). Предполагается, что состояние
в любой момент времени известно. Будем искать управление
как некоторую линейную функцию текущего состояния

. (5.88)

Тогда задача определения локально-оптимального управления сводится к нахождению
-матрицы
. Оптимальную матрицу
будем искать среди матриц, элементами которых являются непрерывные функции со значениями из открытой области.

В качестве функционала, характеризующего управляемое движение, возьмем математическое ожидание локального функционала
(4.27)

.

Введем матрицу корреляционных моментов

. (5.89)

Используя (5.88), (5.89) функционал можно
преобразовать к виду

(5.90)

Таким образом, значение критерия качества в текущий момент времени определяется матрицей корреляционных моментов.

Найдем уравнение для ее определения. Уравнение управляемого процесса (5.87) с учетом (5.88) можно представить в виде

где матрица

B соответствии с (5.54) уравнение для матрицы
будет иметь вид

или, с учетом (5.91),

(5.92)

Начальным условием является, очевидно,

Из (5.92), (5.93) с учетом предположения о симметричности матриц ,
непосредственно следует, что матрица
является симметричной, т.е.
.

Таким образом, задача определения оптимального управления свелась к задаче определения матрицы
из условия минимума
(5.90). Для нахождения ее воспользуемся условием (4.28). Дифференцируя (5.90) и учитывая (5.92), получим

Выпишем составляющие
, зависящие от
:

Обозначим через
искомую локально-оптимальную матрицу. Введем в рассмотрение семейство матричных функций сравнения

.

где
- произвольная малая вариация матричной функции
из рассматриваемого класса.

Приращение
, вызванное вариацией матрицы
, будет иметь вид

Тогда из (5.94) следует, что

В силу произвольности
и предполагая, что матрица
не особая, из условия
получим уравнение для определения оптимальной матрицы

Найденное значение
действительно доставляет минимум
, так как вторая вариация

в силу определенной положительности матрицы
. Здесь.

Сравнивая (5.88), (5.95) с (4.30), видим, что найденное локально-оптимальное управление полностью совпадает с локально-оптимальным управлением для детерминированного случая.

Таким образом, синтезированное локально-оптимальное управление для детерминированной системы при полной и точной информации о ее состоянии оказывается локально-оптимальным и для стохастической системы, возбуждаемой случайным возмущением типа белого шума

Аналогичный результат имеет место и при квадратичном критерии качества (4.19).

Это объясняется тем, что при
поведение стохастической системы зависит от возмущения
, значение которого предсказать не представляется возможным, и поэтому управление целесообразно оставлять таким же, как в детерминированном случае при отсутствие этих возмущений.

5.6. Синтез локально-оптимального управления линейными стохастическими системами (теорема разделения).

Пусть управляемое движение описывается уравнением (5.87), а уравнение измерения – (5.62).

Рассмотрим задачу синтеза, оптимального по критерию

При этом будем отыскивать такое управление, значение которого в момент времени определяется значениями вектор-функции
на отрезке
.

Обозначим через
оптимальную оценку состояния управляемой системы, через
- ошибку оценивания.

Наряду с системой (5.87) рассмотрим соответствующую ей неуправляемую систему

с уравнением измерения

Для вспомогательной системы задача фильтрации решена и оценка
удовлетворяет уравнению

(5.98)

с начальным условием

где матрица
определяется из уравнений (5.79), (5.80).

Из уравнений (5.87) и (5.97) следует, что

, (5.99)

где
- фундаментальная матрица решений систем (5.87).

Мы отыскиваем управление, которое определяется в момент времени значениями вектор-функции
на отрезке
. Тогда для каждой реализации
процесса
управление
принимает конкретное значение, т.е. управление является детерминированным оператором от вектора наблюдений. Поэтому

(5.100)

Из (5.99) и (5.100) следует, что

Найдем теперь уравнение для определения
. Для этого дифференцируя (5.100), получим

Учитывая (5.98), найдем

(5.101)

Тогда уравнение фильтра окончательно запишется в виде (5.85)

с начальным условием

, (5.103)

т.е. фильтр для определения оценки состояния управления системы есть динамическое звено, на вход которого поступает измеряемый сигнал и управление
.

Теорема разделения. Локально-оптимальное управление системой (5.87) по критерию (5.96) имеет вид:

Здесь
- заданные матрицы локального функционала, а
- решение векторного уравнения (5.102) с начальным условием (5.103).

Доказательство. Рассмотрим функционал (5.96). Учитывая, что оценки
и ошибка оценки
не коррелированны для всех, функционал (5.96) можно представить в виде

,

Так как на
не влияет ни
, ни
, то задача сводится к минимизациипри условиях (5.102), (5.103). При этом оценка является полностью наблюдаемой.

Рассмотрим выражение

Учитывая, что , нетрудно показать , что

Таким образом, в уравнении (5.102) выражение
можно рассматривать как эквивалентный «белый шум» с корреляционной матрицей
.

В результате мы пришли к задаче синтеза локально-оптимального уравнения в системе (5.102), (5.103), возмущаемой «белым шумом» при полном и точном измерении ее состояния, решение которой было дано в предыдущем разделе. Теорема доказана. Можно показать, что теорема разделения справедлива и при синтезе оптимального управления по квадратичному решению.

В рассмотренных выше моделях управленческих задач не учитывался время. Это так называемые одноэтапные модели, которые позволяют анализировать статические, не зависящие от времени процессы, допустим, когда изменениями исследуемого процесса во времени можно пренебречь. Управленческое решение по такого моделирования имеет смысл или в условиях стабильности системы, или на короткий промежуток в будущем.

В реальности все экономические процессы и явления функционируют и развиваются во времени, то есть по своей природе динамичны. Это требует от менеджеров решения практических задач, в которых необходимо учитывать возможные изменения экономических процессов во времени при условии, что процессом можно управлять, то есть влиять на ход его развития.

Динамическое программирование - это математический аппарат, с помощью которого решаются многошаговые задачи оптимального управления. В таком программировании для управления процессом среди множества всех допустимых решений ищут оптимальное в смысле определенного критерия, то есть такое решение, которое дает экстремальное (больше или меньше) значения целевой функции - некоторой числовой характеристики процесса. Во многостепенность понимают или многоступенчатую структуру процесса, или распределение управления на ряд последовательных этапов, соответствующих, как правило, различным моментам времени. Таким образом, слово "программирование" означает принятие управленческих решений, а слово "динамическое" указывает на существенное значение времени и порядка выполнения операций в процессах и методах, которые рассматриваются.

В задачи динамического программирования относятся задачи календарного планирования, распределения инвестиций, управление запасами, текущего и капитального ремонта, выбора методов проведения рекламы и тому подобное.

В одних задачах динамического программирования управленческий процесс распадается на этапы естественным путем, например месяц, квартал, год. В других ситуациях разделение на этапы может иметь условный характер. Особенность всех задач динамического программирования заключается в том, что на каждом этапе можно учитывать предыдущие изменения, управлять ходом событий, оценивая при этом качество такого управления. Итак, динамическое программирование позволяет принять ряд управленческих решений, обеспечивает оптимальность развития системы в целом.

Рассмотрим общую постановку задачи этого программирования. Пусть исследуется некоторый экономический процесс, имеющий п последовательных этапов. На каждом 7-м этапе процесс может быть в разных состояниях бы, каждый из которых характеризуется конечным множеством параметров. С каждым этапом задачи связано принятие определенного управленческого решения хи, которое переводит систему из одного состояния в другое. Предполагается, что состояние si системы в конце 7-го этапа определяется только предыдущим состоянием si_1 и управлением хи на 7-м этапе и не зависит от предыдущих состояний и управлений. Тогда состояние si системы записывается в виде зависимости

Si = ф (в, _!, Хи), i = 1, П.

Эффективность всего процесса управления может быть представлена как сумма эффективностей управленческих решений отдельных этапов, то есть

При названных условиях задача динамического программирования формулируется так: определить такую допустимую последовательность управленческих решений X = {x1, x2, хп}, которая переводит систему из начального состояния 50 в завершающий состояние sn и при которой достигается максимальная эффективность управления.

Планируя многоэтапный процесс управления, в задачах динамического программирования необходимо на каждом этапе выбирать управленческое решение с учетом его последствий на тех этапах, которые еще впереди. Только на последнем этапе можно принять управленческое решение, которое даст максимальный эффект, поскольку следующий шаг для него не существует. Поэтому задачи динамического программирования решаются с конца.

Максимум целевой функции на заключительном п-м этапе равна

^ п-О = шах / п ^ п-и хп).

Соответственно, на (п - 1) -етапи имеем

г * п-1 (5п-2) = ШaХ ((fn-1 (sn-2, хп-1) + г * п ^ п-1)).

Учитывая эту закономерность, для произвольного k-этапа можем записать рекуррентную зависимость

г * (пятый-1) = Шахи (Л (ик-1, хк) + г * + 1)).

Такая рекуррентная зависимость представляет собой математическую запись принципа оптимальности Беллмана.

Определив по рекуррентными зависимостями условно-оптимальный эффект на начальном этапе, проводят безусловную оптимизацию управления в "обратном" направлении, в результате чего находят последовательность управленческих решений, обеспечивает максимальную эффективность системы в целом.

Основные особенности метода динамического программирования

1. Идея и метод динамического программирования больше приспособлены к дискретных задач, которыми в большинстве являются задачи управления.

2. Метод динамического программирования можно применять при любом способа задания целевой функции и с любой допустимой множеством состояний и управлений. Этого преимущества лишены классические методы оптимизации и другие вычислительные методы математического программирования.

3. Вычислительные схемы метода динамического программирования в дискретном случае связанные с переборкой оптимальных значений показателя эффективности и управления на к-м шаге для всех возможных значений переменной состояния, но объем расчетов при этом значительно меньше, чем при прямом переборки вариантов. Это связано с тем, что на этапе условной оптимизации неудачные варианты сразу отбрасываются, а сохраняются лишь условно оптимальные на данном этапе.

4. Метод динамического программирования дает возможность анализа чувствительности к изменению исходных данных состояний sk и их количества п. Фактически здесь на каждом шагу решается не одна задача, а множество однотипных задач для различных состояний sk и различных к (1 <к <п) . Поэтому с изменением исходных данных нельзя не решать задачу заново, а сделать только несложные добавление к уже выполненных расчетов, то есть продолжить уже решенную задачу за счет увеличения количества шагов п или количества значений sk.

Выводы

1. Появление нелинейных моделей связана с необходимостью учитывать и проявлять нелинейные закономерности, которые влияют на принятие оптимального решения. Такие закономерности включаются в ограничения задачи и целевую функцию.

2. По характеру функций и ограничений, которыми описываются задачи нелинейного программирования, их можно классифицировать следующим образом: классические задачи оптимизации; задачи с нелинейной целевой функцией и линейными ограничениями; задачи выпуклого, квадратичного, сепарабельного программирования.

3. В отличие от задач линейного программирования, для решения нелинейных задач не существует универсального метода. В каждом конкретном случае необходимо выбирать лучший метод.

4. Динамическое программирование - это математический аппарат, с помощью которого решаются многошаговые задачи оптимального управления. Во многостепенность понимают или многоступенчатую структуру процесса, или распределения управления на ряд последовательных этапов, соответствующих, как правило, различным моментам времени.

5. В задачи динамического программирования относятся задачи календарного планирования, распределения инвестиций, управление запасами, текущего и капитального ремонта, выбора методов проведения рекламы и тому подобное. Особенность всех задач динамического программирования заключается в том, что на каждом этапе можно учитывать предыдущие изменения и управлять ходом событий, оценивая при этом качество такого управления.

6. Решение задач динамического программирования базируется на принципе оптимальности Беллмана. В процессе оптимизации управления методом динамического программирования многошаговый процесс выполняется дважды. Первый раз - от конца к началу, в результате чего находят условно оптимальные управления. Второй - от начала до конца, в результате чего находят оптимальное управление процессом в целом.

Среди задач, решаемых с помощью математического программирования, можно выделить отдельный класс задач, требующих оптимизации многошаговых (многоэтапных) процессов. Такие задачи отличаются возможностью разбиения решения на несколько взаимосвязанных этапов. Для решения подобных задач используется динамическое программирование или, как его еще называют, многоэтапное программирование. Его методы оптимизированы для поиска оптимального решения многошаговых задач, которые можно разделить на несколько этапов, шагов и т. д.

Происхождение термина

Использование в названии слова «динамический» первоначально предполагало, что разделение на подзадачи будет происходить в основном во времени. При использовании динамических методов для решения производственных, хозяйственных и иных задач, в которых фигурирует временной фактор, разбивание на отдельные этапы не составляет труда. Но использовать технику динамического программирования возможно и в задачах, где отдельные этапы не связаны по времени. Всегда в многошаговой задаче можно выделить параметр или свойство, по которому можно произвести разделение на отдельные шаги.

Алгоритм (метод) решения многоэтапных задач

Алгоритм илиметод динамического программирования основан на использовании принципа последовательного оптимизирования задачи, когда решение общей задачи разбивается на ряд решений отдельных подзадач с последующим объединением в единое решение. Очень часто отдельные подзадачи оказываются одинаковыми, и одно общее решение значительно сокращает время расчета.

Особенностью метода является автономность решения задачи на каждом отдельном этапе, т. е. независимо от того, как оптимизировался и решался процесс на предыдущем этапе, в текущем расчете используются только параметры процесса, характеризующие его в данный момент. Например, водитель, двигающийся по дороге, принимает решение о текущем повороте независимо от того, как и сколько он ехал до этого.

Метод сверху и метод снизу

Несмотря то что при расчете на отдельном этапе решения задачи используются параметры процесса на текущий момент, результат оптимизации на предыдущем этапе влияет на расчеты последующих этапов для достижения наилучшего результата в целом. Динамическое программирование называет такой принцип решения методом оптимальности, который определяет, что оптимальная стратегия решения задачи вне зависимости от начальных решений и условий должна последующими решениями на всех этапах составить оптимальную стратегию относительно первоначального состояния. Как видим, процесс решения задачи представляет собой непрерывную оптимизацию результата на каждом отдельном этапе от первого до последнего. Такой метод называется методом программирования сверху. На рисунке схематически показан алгоритм решения сверху вниз. Но существует класс многошаговых задач, в которых максимальный эффект на последнем этапе уже известен, например, мы уже приехали из пункта А в пункт Б и теперь хотим узнать, правильно мы ехали на каждом предыдущем этапе или можно было что-то сделать более оптимально. Возникает рекурсивная последовательность этапов, т. е. мы идем как бы «от обратного». Этот метод решения получил название "метод программирования снизу".

Практическое применение

Динамическое программирование может использоваться в любой сфере деятельности, где присутствуют процессы, которые можно по какому-либо параметру (время, сумма, температура и т. д.) разделить на ряд одинаковых небольших этапов. Наибольшее применение динамические способы решения получили в теории управления и при разработке вычислительных систем.

Поиск оптимального пути

С помощью динамической оптимизации возможно решение широкого класса задач по нахождению или оптимизации кратчайшего пути и других задач, в которых «классический» метод перебора возможных вариантов решения приводит к увеличению времени расчета, а иногда вообще неприемлем. Классическая задача динамического программирования - это задача о рюкзаке: дано некоторое количество предметов с определенной массой и стоимостью, и необходимо выбрать набор предметов с максимальной стоимостью и массой, не превосходящий объем рюкзака. Классический перебор всех вариантов в поисках оптимального решения займет значительное время, а с помощью динамических методов задача решается в приемлемые сроки. Задачи поиска кратчайшего пути для транспортной логистики являются основными, и динамические методы решения оптимально подходят для их решения. Наиболее простым примером такой задачи является построение кратчайшего маршрута автомобильным GPS-навигатором.

Производство

Динамическое программирование широко используется при решении разнообразных производственных задач, таких как управление складскими запасами для поддержания нужного количества комплектующих в любой момент времени, календарное планирование производственного процесса, текущий и капитальный ремонт оборудования, равномерная загрузка персонала, максимально эффективное распределение инвестиционных средств и т. д. Для решения производственных задач методами динамического программирования разработаны специальные программные пакеты, интегрированные в популярные системы управления предприятиями, такие как SAP.

Научная сфера

Методы динамического программирования широко применяются в различных научных исследованиях. Например, они успешно используются в алгоритмах распознавания речи и образов, при обработке больших массивов данных в социологии и

Динамического программирования

1. Динамическое программирование. Основные понятия…………………2

2. Суть метода динамического программирования………………………..4

3. Пример решения задачи методом динамического программирования………………………………………………………...7

Список используемых источников……………………………………...11

1. Динамическое программирование. Основные понятия.

Динамическое программирование (ДП) в теории вычислительных систем - способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.

Ключевая идея в динамическом программировании достаточно проста. Как правило, чтобы решить поставленную задачу, требуется решить отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Часто многие из этих подзадач одинаковы. Подход динамического программирования состоит в том, чтобы решить каждую подзадачу только один раз, сократив тем самым количество вычислений. Это особенно полезно в случаях, когда число повторяющихся подзадач экспоненциально велико.

Динамическое программирование представляет собой математический аппарат, который подходит к решению некоторого класса задач путем их разложения на части, небольшие и менее сложные задачи. При этом отличительной особенностью является решение задач по этапам, через фиксированные интервалы, промежутки времени, что и определило появление термина динамическое программирование. Следует заметить, что методы динамического программирования успешно применяются и при решении задач, в которых фактор времени не учитывается. В целом математический аппарат можно представить как пошаговое или поэтапное программирование. Решение задач методами динамического программирования проводится на основе сформулированного Р. Э. Беллманом принципа оптимальности: оптимальное поведение обладает тем свойством, что каким бы ни было первоначальное состояние системы и первоначальное решение, последующее решение должно определять оптимальное поведение относительно состояния, полученного в результате первоначального решения.
Из этого следует, что планирование каждого шага должно проводиться с учетом общей выгоды, получаемой по завершении всего процесса, что и позволяет оптимизировать конечный результат по выбранному критерию.



Таким образом, динамическое программирование в широком смысле представляет собой оптимальное управление процессом, посредством изменения управляемых параметров на каждом шаге, и, следовательно, воздействуя на ход процесса, изменяя на каждом шаге состояние системы.

В целом динамическое программирование представляет собой стройную теорию для восприятия и достаточно простую для применения в коммерческой деятельности при решении как линейных, так и нелинейных задач.

Динамическое программирование является одним из разделов оптимального программирования. Для него характерны специфические методы и приемы, применительные к операциям, в которых процесс принятия решения разбит на этапы (шаги). Методами динамического программирования решаются вариантные оптимизационные задачи с заданными критериями оптимальности, с определенными связями между переменными и целевой функцией, выраженными системой уравнений или неравенств. При этом, как и в задачах, решаемых методами линейного программирования, ограничения могут быть даны в виде равенств или неравенств. Однако если в задачах линейного программирования зависимости между критериальной функцией и переменными обязательно линейны, то в задачах динамического программирования эти зависимости могут иметь еще и нелинейный характер. Динамическое программирование можно использовать как для решения задач, связанных с динамикой процесса или системы, так и для статических задач, связанных, например, с распределением ресурсов. Это значительно расширяет область применения динамического программирования для решения задач управления. А возможность упрощения процесса решения, которая достигается за счет ограничения области и количества, исследуемых при переходе к очередному этапу вариантов, увеличивает достоинства этого комплекса методов.

Вместе с тем динамическому программированию свойственны и недостатки. Прежде всего, в нем нет единого универсального метода решения. Практически каждая задача, решаемая этим методом, характеризуется своими особенностями и требует проведения поиска наиболее приемлемой совокупности методов для ее решения. Кроме того, большие объемы и трудоемкость решения многошаговых задач, имеющих множество состояний, приводят к необходимости отбора задач малой размерности либо использования сжатой информации. Последнее достигается с помощью методов анализа вариантов и переработки списка состояний.

Для процессов с непрерывным временем динамическое программирование рассматривается как предельный вариант дискретной схемы решения. Получаемые при этом результаты практически совпадают с теми, которые получаются методами максимума Л. С. Понтрягина или Гамильтона-Якоби-Беллмана.

Динамическое программирование применяется для решения задач, в которых поиск оптимума возможен при поэтапном подходе, например, распределение дефицитных капитальных вложений между новыми направлениями их использования; разработка правил управления спросом или запасами, устанавливающими момент пополнения запаса и размер пополняющего заказа; разработка принципов календарного планирования производства и выравнивания занятости в условиях колеблющегося спроса на продукцию; составление календарных планов текущего и капитального ремонтов оборудования и его замены; поиск кратчайших расстояний на транспортной сети; формирование последовательности развития коммерческой операции и т. д.


Суть метода динамического программирования.

В основу метода динамического программирования положен принцип оптимальности , сформулированный в 1957 г. американским математиком Ричардом Беллманом: «Оптимальное поведение обладает тем свойством, что каковы бы ни были первоначальные состояние и решение в начальный момент времени, последующие решения должны составлять оптимальное поведение относительно состояния, получающегося в результате первого решения».

Физическая сущность принципа оптимальности заключается в том, что ошибка выбора решения в данный момент не может быть исправлена в будущем.

Рассматривается следующая общая задача. Имеется некоторая физическая система, в которой происходит какой-то процесс, состоящий из n шагов. Эффективность процесса характеризуется некоторым показателем W , который называют выигрышем . Пусть общий выигрыш W за все n шагов процесса складывается из выигрышей на отдельных шагах

где w i - выигрыш на i -м шаге. Если W обладает таким свойством, то его называют аддитивным критерием .

Процесс, о котором идет речь, представляет собой управляемый процесс, т.е. имеется возможность выбирать какие-то параметры, влияющие на его ход и исход, причем на каждом шаге выбирается какое-то решение, от которого зависит выигрыш на данном шаге. Это решение называется шаговым управлением . Совокупность всех шаговых управлений представляет собой управление процессом в целом. Обозначим его буквой U , а шаговые управления - буквами . Тогда

Шаговые управления в общем случае не числа, а, как правило, векторы, функции и т.п.

В модели динамического программирования процесс на каждом шаге находится в одном из состояний s множества состояний S . Считается, что всякому состоянию сопоставлены некоторые шаговые управления. Эти управления таковы, что управление, выбранное в данном состоянии при любой предыстории процесса, определяет полностью следующее состояние процесса. Обычно выделены два особых состояния: s 0 - начальное и s w - конечное.

Итак, пусть каждому состоянию поставлено множество допустимых шаговых управлений , и каждому шаговому управлению , соответствует - состояние, в которое процесс попадает из s i в результате использования шагового управления u . Пусть процесс находится в начальном состоянии s 0 . Выбор переводит процесс в состояние s 1 = σ(s 0 ,u 1), выбор - в состояние s 2 = σ(s 1 ,u 2) и т.д. В результате получается траектория процесса, которая состоит из последовательности пар

и заканчивается конечным состоянием. Для единообразия можно считать, что включает только одно состояние , оставляющее процесс в том же конечном состоянии. Следует отметить, что множества допустимых состояний и управлений

конечны и U s для различных s не пересекаются.

В общем виде задача динамического программирования формулируется следующим образом: найти такую траекторию процесса, при которой выигрыш (2.1)будет максимальным.

То управление, при котором достигается максимальный выигрыш, называется оптимальным управлением . Оно состоит из совокупности шаговых управлений

Тот максимальный выигрыш, который достигается при этом управлении обозначим W max :

W max = max U {W (u )}. (2.5)

Рассмотрим на примере задачи о рюкзаке, что понимается под шагом, состоянием, управлением и выигрышем.

Загрузку рюкзака можно представить себе как процесс, состоящий из n шагов. На каждом шаге требуется ответить на вопрос: взять данный предмет в рюкзак, или нет? Таким образом, шаг процесса - присваивание переменной x i значения 1 или 0.

Теперь определим состояния. Очевидно, что текущее состояние процесса характеризует остаточная грузоподъёмность рюкзака - вес, который остался в нашем распоряжении до конца (до полной укладки рюкзака). Следовательно, под состоянием перед i -м шагом понимается величина

(2.6)

при этом s 0 является начальным состоянием, которому соответствует величина b - исходная грузоподъемность рюкзака.

Управление на i -м шаге означает присваивание двоичной переменной x i значения 0 или 1. Значит, на каждом шаге имеем всего два управления. Причем допустимость управления u i , устанавливающего x i = 1, определяется условием

(2.8)

Шаговый выигрыш можно определить как . Поэтому

(2.10)

Требуется найти оптимальное управление , при котором величина выигрыша (2.10) обращается в максимум.


3. Пример решения задачи методом динамического программирования.

Задание . Инвестор выделяет средства в размере 5 тыс. ден. ед., которые должны быть распределены между тремя предприятиями.

Требуется, используя принцип оптимальности Беллмана, построить план распределения инвестиций между предприятиями, обеспечивающий наибольшую общую прибыль, если каждое предприятие при инвестировании в него средств x тыс. ден. ед. приносит прибыль p;(x) тыс. ден. ед. (i=1, 2 и 3) по следующим данным:


Решение . Составим математическую модель задачи.

1.Число шагов равно 3.

2.Пусть s - количество средств, имеющихся в наличии перед данным шагом, и характеризующих состояние системы на каждом шаге.

3. Управление на i-ом шаге (i=1,2,3) выберем x i - количество средств, инвестируемых в i- ое предприятие.

4. Выигрыш p i (x i) на i-ом шаге - это прибыль, которую приносит i-ое предприятие при инвестировании в него средств xi. Если через выигрыш в целом обозначить общую прибыль W, то W=p 1 (x 1)+ p 2 (x 2)+ p 3 (x 3).

5. Если в наличии имеются средства в количестве s тыс. ден. ед. и в i-ое предприятие инвестируется x тыс. ден. ед, то для дальнейшего инвестирования остается (s-x) тыс. ден. ед. Таким образом, если на i-ом шаге система находилась в состоянии s и выбрано управление x, то на (i+1)-ом шаге система будет находится в состоянии (s-x), и, следовательно, функция перехода в новое состояние имеет вид: f i (s, x) = s-x.

6.На последнем (i=3) шаге оптимальное управление соответствует количеству средств, имеющихся в наличии, а выигрыш равен доходу, приносимым последним предприятием: x 3 (s)=s, W 3 (s)=p 3 (s).

7.Согласно принципу оптимальности Беллмана, управление на каждом шаге нужно выбирать так, чтобы оптимальной была сумма выигрышей на всех оставшихся до конца процесса шагах, включая выигрыш на данном шаге. Основное функциональное уравнение примет вид

W 2 (s) = max{p 2 (x) + W 3 (s - x)}

Проведем пошаговую оптимизацию, по результатам которой заполним таблицу.

s i=3 i=2 i=1
x 3 (s) W 3 (s) x 2 (s) W 2 (s) x i (s) W i (s)
4,27 4,27
7,64 7,64
10,25 10,97
15,93 15,93
16,12 19,26 19,26

В первой колонке таблицы записываются возможные состояния системы, в верхней строке - номера шагов с оптимальным управлением и выигрышем на каждом шаге, начиная с последнего. Так как для последнего шага i=3 функциональное уравнение имеет вид x 3 (s)=s, W3(s)=p3(s), то две колонки таблицы, соответствующие i=3, заполняются автоматически по таблице исходных данных.

На шаге i=2 основное функциональное уравнение имеет вид

W 2 (s) = max{p 2 (x) + W 3 (s - x)}


Поэтому для проведения оптимизации на этом шаге заполним таблицу для различных состояний s при шаге i=3.

s x s-x p 2 (x) W 3 (s-x) p 2 (x)+W 3 (s-x) W 2 (s)
4,27 4,27 4,27
3,33 3,33
7,64 7,64 7,64
3,33 4,27 7,6
4,87 4,87
10,25 10,25 10,97
3,33 7,64 10,97
4,87 4,27 9,14
5,26 5,26
15,93 15,93 15,93
3,33 10,25 13,58
4,87 7,64 12,51
5,26 4,27 9,53
7,34 7,34
16,12 16,12 19,26
3,33 15,93 19,26
4,87 10,25 15,12
5,26 7,64 12,9
7,34 4,27 11,61
9,49 9,49

На шаге i=1 основное функциональное уравнение имеет вид

W x (s) = max{ p x (x) + W 2 (s - x)}

а состояние системы перед первым шагом s=5, поэтому для проведения оптимизации на этом шаге заполним таблицу.

s x s-x p i (x) W 2 (s-x) p i (x)+W 2 (s-x) Wi(s)
19,26 19,26 19,26
3,22 15,93 19,15
3,57 10,97 14,54
4,12 7,64 11,76
4,27 8,27
4,85 4,85

Видно, что наибольшее значение выигрыша составляет 19,26. При этом оптимальное управление на первом шаге составляет x 1 (s 1)=0 (s 1 =5), на втором шаге x 2 (s 2) =1 (s 2 =s 1 -x 1 =5) и на третьем шаге x 3 (s 3) =4 (s 3 =s 2 -x 2 =4).

Это означает, что (0, 1, 4) - оптимальный план распределения инвестиций между предприятиями.

Таким образом, для получения наибольшей общей прибыли в размере 19,26 тыс. ден. ед., необходимо вложить 1 тыс. ден. ед. во второе предприятие и 4 тыс. ден. ед. в третье предприятие.

Список используемых источников

1. Беллман Р., Динамическое программирование, пер. с англ., М., 1960

2. Болтянский В. Г.,Математические методы оптимального управления, М., 1966