Сайт о телевидении

Сайт о телевидении

» » Что такое кэш-память. Влияние кэш-памяти на производительность компьютера

Что такое кэш-память. Влияние кэш-памяти на производительность компьютера

Схема работы кэша

Кэш – это специально отведенный небольшой участок памяти с большей скоростью обмена данными, чем у традиционной. Существует он ввиду несоответствия между вычислительными мощностями процессоров и скоростью считывания информации со стандартных накопителей памяти.

Прогресс требовал увеличения объемов для хранения данных , в то время как быстрота их обработки отставала с самого зарождения компьютеров. Именно из-за этого и был разработан такой «мост». Процесс занесения информации в кэш-память получил название «кэширование ». Собственно, поэтому и важно её своевременно очищать – для сохранения эффективности считывания.

Кэширование в браузерах


Алгоритм кэширования в браузерах

Зачастую, говоря о кэшировании, многие вспоминают о cache -файлах в браузерах. И неудивительно, так как их очистка – один из основных советов, который дают пользователям при возникновении ошибок.

Накапливаются они вместе с числом просмотренных сайтов – с них часть сведений загружается в кэш-память, преследуя этим две цели : ускорить общее время загрузки и уменьшить нагрузку на сетевой трафик. При повторном заходе на сайт, происходит проверка на актуальность данных между сервером и клиентом. Что должно быть сохранено, а что нет, решает создатель веб-страницы.

Кэш в Windows

В операционных системах Windows, файлы кэш-памяти занимают приличное пространство. Сохраняются разнообразные временные файлы , созданные после запуска или изменения какой-либо программы, превью изображений и музыкальных композиций, точки восстановления ОС.

Контролирует данный процесс, так называемый кэш-менеджер , который периодически избавляется от неактуальных ресурсов. Причем, именно эта периодичность и является ключевым фактором эффективной работы: если файлы удалять слишком часто, то система будет тратить время, считывая их вновь, а если слишком редко – попросту не останется места для новых сведений.

Кэш на андройде

На смартфонах с операционной системой Android ситуация выглядит похожим образом, за одним существенным «но» — объем предоставленной памяти значительно ниже , чем на персональном компьютере. Помимо этого, программы после запуска хранятся в трей-листе, откуда их потом можно заново развернуть , со всеми сохраненными изменениями, совершенными в последней сессии.

К сожалению, ОС не очень хорошо справляется с очисткой лишних файлов, из-за чего, при длительном пользовании, приложения могут работать некорректно , а само быстродействие телефона значительно снизится . Для предотвращения этого, рекомендуется использовать сторонние программы , которые производят очистку, например, Clean Master.

Речь идет не о наличности, а о кэш -памяти процессоров и не только. Из объема кэш -памяти торгаши сделали очередной коммерческий фетиш, в особенности с кэшем центральных процессоров и жестких дисков (у видеокарт он тоже есть – но до него пока не добрались). Итак, есть процессор ХХХ с кэшем L2 объемом 1Мб, и точно такой же процессор XYZ с кэшем объемом 2Мб. Угадайте какой лучше? Аа – вот не надо так сразу!

Кэш -память – это буфер, куда складывается то, что можно и/или нужно отложить на потом. Процессор выполняет работу и возникают ситуации, когда промежуточные данные нужно где-то сохранить. Ну конечно в кэше! – ведь он на порядки быстрее, чем оперативная память, т.к. он в самом кристалле процессора и обычно работает на той же частоте. А потом, через какое то время, эти данные он выудит обратно и будет снова их обрабатывать. Грубо говоря как сортировщик картошки на конвейере, который каждый раз, когда попадается что-то другое кроме картошки (морковка ) , бросает ее в ящик. А когда тот полон – встает и выносит его в соседнюю комнату. В этот момент конвейер стоит и наблюдается простой. Объем ящика и есть кэш в данной аналогии. И сколько его надо – 1Мб или 12? Понятно, что если его объем мал придется слишком много времени уделят выносу и будет простой, но с какого то объема его дальнейшее увеличение ничего не даст. Ну будет ящик у сортировщика на 1000кг морковки – да у него за всю смену столько ее не будет и от этого он НЕ СТАНЕТ В ДВА РАЗА БЫСТРЕЕ! Есть еще одна тонкость – большой кэш может вызывать увеличение задержек обращения к нему во-первых, а заодно повышается и вероятность возникновения ошибок в нем, например при разгоне – во-вторых. (о том КАК в этом случае определить стабильность/нестабильность процессора и выяснить что ошибка возникает именно в его кэше, протестировать L1 и L2 – можно прочесть тут.) В-третьих – кэш выжирает приличную площадь кристалла и транзисторный бюджет схемы процессора. То же самое касается и кэш памяти жестких дисков. И если архитектура процессора сильная – у него будет востребовано во многих приложениях 1024Кб кэша и более. Если у вас быстрый HDD – 16Мб или даже 32Мб уместны. Но никакие 64Мб кэша не сделают его быстрее, если это обрезок под названием грин версия (Green WD) с частотой оборотов 5900 вместо положеных 7200, пусть даже у последнего будет и 8Мб. Потом процессоры Intel и AMD по-разному используют этот кэш (вообще говоря AMD более эффективно и их процессоры часто комфортно довольствуются меньшими значениями). Вдобавок у Intel кэш общий, а вот у AMD он персональный у каждого ядра. Самый быстрый кэш L1 у процессоров AMD составляет по 64Кб на данные и инструкции, что вдвое больше, чем у Intel. Кэш третьего уровня L3 обычно присутствует у топовых процессоров наподобие AMD Phenom II 1055T X6 Socket AM3 2.8GHz или у конкурента в лице Intel Core i7-980X. Прежде всего большие объемы кэша любят игры. И кэш НЕ любят многие профессиональные приложения (см. Компьютер для рендеринга, видеомонтажа и профприложений). Точнее наиболее требовательные к нему вообще равнодушны. Но чего точно не стоит делать, так это выбирать процессор по объему кэша. Старенький Pentium 4 в последних своих проявлениях имел и по 2Мб кэша при частотах работы далеко за 3ГГц – сравните его производительность с дешевеньким двуядерничком Celeron E1***, работающим на частотах около 2ГГц. Он не оставит от старичка камня на камне. Более актуальный пример – высокочастотный двухъядерник E8600 стоимостью чуть не 200$ (видимо из-за 6Мб кэша) и Athlon II X4-620 2,6ГГц, у которого всего 2Мб. Это не мешает Атлону разделать конкурента под орех.

Как видно на графиках – ни в сложных программах, ни в требовательных к процессору играх никакой кэш не заменит дополнительных ядер. Athlon с 2Мб кэша (красный) легко побеждает Cor2Duo с 6Мб кэша даже при меньшей частота и чуть не вдвое меньшей стоимости. Так же многие забывают, что кэш присутствует в видеокартах, потому что в них, вообще говоря, тоже есть процессоры. Свежий пример видеокарта GTX460, где умудряются не только порезать шину и объем памяти (о чем покупатель догадается) – но и КЭШ шейдеров соответственно с 512Кб до 384Кб (о чем покупатель уже НЕ догадается). А это тоже добавит свой негативный вклад в производительность. Интересно еще будет выяснить зависимость производительности от объема кэша. Исследуем как быстро она растет с увеличением объема кэша на примере одного и того же процессора. Как известно процессоры серии E6*** , E4*** и E2*** отличаются только объемом кэша (по 4, 2 и 1 Мб соответственно). Работая на одинаковой частоте 2400МГц они показывают следующие результаты.

Как видно – результаты не слишком отличаются. Скажу больше – если бы участвовал процессор с объемом 6Мб – результат увеличился бы еще на чуть-чуть, т.к. процессоры достигают насыщения. А вот для моделей с 512Кб падение было бы ощутимым. Другими словами 2Мб даже в играх вполне достаточно. Резюмируя можно сделать такой вывод – кэш это хорошо, когда УЖЕ много всего остального. Наивно и глупо менять скорость оборотов винчестера или количество ядер процессора на объем кэша при равной стоимости, ибо даже самый емкий ящик для сортировки не заменит еще одного сортировщика Но есть и хорошие примеры.. Например Pentium Dual-Core в ранней ревизии по 65-нм процессу имел 1Мб кэша на два ядра (серия E2160 и подобные), а поздняя 45-нм ревизия серии E5200 и дальше имеет уже 2Мб при прочих равных условиях (а главное – ЦЕНЕ). Конечно же стоит выбирать именно последний.

Современные браузеры устроены таким образом, что практически всю информацию, которую пользователь запрашивает из Сети, браузеры сохраняют на локальном жестком диске вашего компьютера. Делается это для того, чтобы не скачивать одни и те же файлы при каждом запросе пользователя, то есть с целью экономии трафика, а также ускорения работы браузера — использование кэша (cache) (этот процесс называется кэширование, cacheing) позволяет загружать странички, к которым пользователь уже обращался гораздо быстрее, поскольку большая часть файлов, из которых состоит веб-страничка, уже загружена на компьютер. При повторном обращении к страничке браузеру нужно всего лишь проверить, не изменились ли какие-либо элементы с последнего обращения к ней, и загрузить заново только изменившиеся элементы. Такими элементами может быть все, что угодно, из чего состоят страницы сайтов — изображения, текст, видео, звук.

Таким образом, кэш браузера — это некая область на жестком диске, в которой хранятся файлы, загруженные из сети при просмотре веб-страничек. Периодически необходимо осуществлять чистку интернет проводника. Ниже мы разберемся, как очистить кэш браузера.

Обычно он имеет ограниченный объем, поскольку старые неиспользуемые файлы постоянно замещаются новыми в процессе работы пользователя.

К слову, понятие кэша довольно широко, и используется этот принцип не только в браузерах, но мы в данной статье рассматриваем применительно только к ним.

Зачем нужен кэш

Итак, чем может быть полезен кэш. Если все файлы, которые когда-либо просматривал пользователь, в браузере сохраняются, то может быть такое, что пользователю может понадобиться какой-либо файл. Например, прослушав однажды музыкальную композицию или посмотрев фильм онлайн, мы можем захотеть сохранить этот файл для повторного использования. Я очень часто так делаю с музыкой — слушаю музыку онлайн, и понравившиеся композиции я могу «достать» из кэша браузера и сохранить в своей фонотеке для повторного прослушивания. То же самое можно делать и с видеороликами.

Видео: Что такое кэш, для чего он и как очистить кэш браузера?

Еще одно интересное использование кэша — ускорение загрузки веб-страничек. Поскольку большая часть мелких файлов сохраняются на жестком диске вашего компьютера, то повторное обращение к этим файлам в кэше все же занимает некоторое время — хоть и гораздо быстрее, чем загрузка из сети. Но можно еще ускорить работу кэша. Для этого нужно поместить кэш браузера в оперативную память компьютера. Чтение из оперативной памяти происходит практически мгновенно, что позволяет ускорить повторную загрузку веб-страничек в 2-3 раза в отличие от обычной скорости. Как это сделать, я расскажу в другой статье.

А пока посмотрим, как можно доставать файлы из кэша браузера. Закэшированные файлы имеют неудобные названия, что при отсутствии определенных знаний создает трудности с поиском нужного файла.

Где находится кэш

Кэш браузеров находится в рабочих папках браузеров. Кэш — это не что иное как обычная папка, содержащая эти самые файлы, как правило, она так и называется «cache». В операционной системе linux рабочие папки браузеров находятся в домашнем каталоге пользователя. Кэш Оперы можно найти по адресу ~/.opera/cache/. Для Firefox он лежит в.mozilla/firefox/[случайный номер профиля].default/Cache/

В windows XP кэш Opera находится в C:\Documents and Settings\[имя пользователя]\Local Settings\Application Data\Opera\Opera [версия]\cache

Кэш Firefox находится по аналогичному адресу: C:\Documents and Settings\[имя пользователя]\Local Settings\Application Data\Mozilla\Firefox\Profiles\[случайный номер профиля].default\Cache.

Поиск файлов в кэше

С этим разобрались. Но если вы зайдете в эти папки, вы увидите множество файлов (иногда несколько тысяч!) с бессмысленными ничего не говорящими пользователю названиями, и без расширений. Если вы пользователь linux, то большую часть файлов файловый менеджер опознает и отобразит тип файлов и соответствующие значки, поскольку Linux опознает файлы независимо от их расширения. Но вот в Windows такой роскоши не наблюдается — для того, чтобы оболочка и файловый менеджер опознали файлы, необходимы расширения (как правило трехбуквенные сочетания через точку после названия файла — .exe, .mp3, .avi, .doc, .pdf, и.т.д).

К счастью, опознать файлы и найти нужный можно не только по названию. У любых файлов существуют такие атрибуты, как размер и дата сохранения. Таким образом, мы почти всегда сможем выдрать из кэша браузера нужный нам файл сразу же после просмотра или прослушивания. Все, что нужно сделать — это задать в настройках файлового менеджера отображение размера файлов и даты их изменения. В Windows для этого нужно задать вид отображения «Таблица». Теперь нужно отсортировать файлы находящиеся в кэше по дате, либо по размеру.

Поиск видео и аудиофайлов в кэше

Видео- и аудиофайлы обычно имеют размер в несколько мегабайт, поэтому их будет отлично видно если вы посмотрите в столбец «Размер», поскольку все остальные файлы имеют размер в несколько килобайт или даже байт. Только что просмотренные или прослушанные файлы вы сможете различить по дате и времени изменения. Все, что вам нужно будет сделать для того, чтобы распознать файл — это добавить к его имени соответствующее расширение — «.mp3» если это музыка или «.flv», если это видео. Помня обо всех этих вещах, довольно легко выдергивать последний прослушанный или просмотренный онлайн файл. Вы можете скопировать нужный файл в любое удобное место и задать ему любое удобное для вас название.

Кэш Opera

Но это еще не все. Как в Opera, так и в Firefox есть собственные инструменты для просмотра кэша, но я считаю, что пользоваться штатным файловым менеджером вашей операционной системы гораздо удобней. Для того, чтобы просмотреть кэш в Opera, нужно в адресной строке набрать opera:cache и перед вами предстанет содержимое кэша в удобной для просмотра форме. Кроме того, в новой версии opera 10.50 к этому инструменту были добавлены элементы для удобного распознавания и поиска нужных файлов — как по размеру, так и по типу. Мало того, еще и отображается web-адрес источника файла.

Кэш Firefox

В Firefox подобный инструмент тоже имеется, но там можно лишь просматривать содержимое кэша. Там отображается размер файлов, дата сохранения и источник, а также некоторая бесполезная для рядового пользователя информация о файле. Для того чтобы посмотреть кэш в Mozilla Firefox нужно набрать в адресной строке about:cache.

Очистка кэша в Mozilla Filrefox

Или вот так, наглядно видно как очистить кэш в файрфокс:

Как очистить кэш в браузере Google Chrome

С момента написания этой статьи прошло много лет. Много чего изменилось в мире программного обеспечения — информационные технологии развиваются очень стремительно. В то время браузера Google Chrome еще не было, то ли он только появился. Сейчас же это практически самый распостраненный браузер, наряду с firefox, в то время как Internet Explorer и Opera практически исчезли с компьютеров пользователей (кстати, ее заменил интересный ), а на базе Crhomium появилось множество браузеров — Яндекс.Браузер, Амиго и другие. Чтобы очистить кэш в Google Chrome нужно зайти в меню, выбрать «Настройки» далее развернуть их, и найти там пункт «Очистить данные просмотров». Обратите внимание, что здесь можно выбрать период, за которые нужно стереть данные.

Ну вот, собственно, теперь вы сможете пользоваться этой удобной вещью.

Кэш — память (кеш , cash , буфер — eng.) — применяется в цифровых устройствах, как высокоскоростной буфер обмена. Кэш память можно встретить на таких устройствах компьютера как , процессоры, сетевые карты, приводы компакт дисков и многих других.

Принцип работы и архитектура кэша могут сильно отличаться.

К примеру, кэш может служить как обычный буфер обмена . Устройство обрабатывает данные и передаёт их в высокоскоростной буфер, где контроллёр передаёт данные на интерфейс. Предназначен такой кэш для предотвращения ошибок, аппаратной проверки данных на целостность, либо для кодировки сигнала от устройства в понятный сигнал для интерфейса, без задержек. Такая система применяется например в CD/DVD приводах компакт дисков.

В другом случае, кэш может служить для хранения часто используемого кода и тем самым ускорения обработки данных. То есть, устройству не нужно снова вычислять или искать данные, что заняло бы гораздо больше времени, чем чтение их из кэш-а. В данном случае очень большую роль играет размер и скорость кэш-а.

Такая архитектура чаще всего встречается на жёстких дисках, и центральных процессорах (CPU ).

При работе устройств, в кэш могут загружаться специальные прошивки или программы диспетчеры, которые работали бы медленней с ПЗУ (постоянное запоминающее устройство).

Большинство современных устройство, используют смешанный тип кэша , который может служить как буфером обмена, как и для хранения часто используемого кода.

Существует несколько очень важных функций, реализуемых для кэша процессоров и видео чипов.

Объединение исполнительных блоков . В центральных процессорах и видео процессорах часто используется быстрый общий кэш между ядрами. Соответственно, если одно ядро обработало информацию и она находится в кэше, а поступает команда на такую же операцию, либо на работу с этими данными, то данные не будут снова обрабатываться процессором, а будут взяты из кэша для дальнейшей обработки. Ядро будет разгружено для обработки других данных. Это значительно увеличивает производительность в однотипных, но сложных вычислениях, особенно если кэш имеет большой объём и скорость.

Общий кэш , также позволяет ядрам работать с ним напрямую, минуя медленную .

Кэш для инструкций. Существует либо общий очень быстрый кэш первого уровня для инструкций и других операций, либо специально выделенный под них. Чем больше в процессоре заложенных инструкций, тем больший кэш для инструкций ему требуется. Это уменьшает задержки памяти и позволяет блоку инструкций функционировать практически независимо.При его заполнении, блок инструкций начинает периодически простаивать, что замедляет скорость вычисления.

Другие функции и особенности .

Примечательно, что в CPU (центральных процессорах), применяется аппаратная коррекция ошибок (ECC ), потому как небольшая ошибочка в кэше, может привести к одной сплошной ошибке при дальнейшей обработке этих данных.

В CPU и GPU существует иерархия кэш памяти , которая позволяет разделять данные для отдельных ядер и общие. Хотя почти все данные из кэша второго уровня, всё равно копируются в третий, общий уровень, но не всегда. Первый уровень кеша — самый быстрый, а каждый последующий всё медленней, но больше по размеру.

Для процессоров, нормальным считается три и менее уровней кэша. Это позволяет добиться сбалансированности между скоростью, размером кэша и тепловыделением. В видеопроцессорах сложно встретить более двух уровней кэша.

Размер кэша, влияние на производительность и другие характеристики .

Естественно, чем больше кэш , тем больше данных он может хранить и обрабатывать, но тут есть серьёзная проблема.

Большой кеш — это большой бюджет . В серверных процессорах (CPU ), кэш может использовать до 80% транзисторного бюджета. Во первых, это сказывается на конечной стоимости, а во вторых увеличивается энергопотребление и тепловыделение, которое не сопоставимо с увеличенной на несколько процентов производительностью.

Кэш-память процессора позволяет получать данные с очень высокой скоростью, значительно ускоряя вычисления. В кэш – память помещаются данные, которые часто требуются процессору. Это позволяет не затрачивать лишнее время на считывание данных из оперативной памяти. Если процессор запрашивает данные, которые отсутствуют в кэш-памяти, то запрос передается через шину памяти в оперативную память, а затем найденные данные отправляются в процессор. Не трудно догадаться, что на такой запрос уходит довольно много времени. Чтобы рассказать вам, как устроена кэш-память, мы будем использовать аналогию с обычной библиотекой.

Предположим, что у нас есть библиотека с одним библиотекарем. В библиотеку приходит посетитель и просит достать ему первую часть Гарри Поттера. Библиотекарь идет к книжным полкам, находит книгу и приносит ее посетителю. Он, пролистав, отдает ее обратно библиотекарю, который относит и ставит книгу обратно на полку. Допустим, следом приходит еще один посетитель и просит то же самое. Цикл повторяется снова. Вот так же работает и система, у которой нет кэш-памяти.

Для чего процессору нужна кэш-память?

Теперь, давайте посмотрим, что произойдет, если у нас есть в наличие кэш-память. Представим, что наш библиотекарь сидит за столом, в котором есть ящик, который будет служить ему в качестве кэш – памяти. Процедура та же - первый посетитель дает заявку на книгу, но когда она возвращается библиотекарю, то он не относит ее на полку, а помещает в ящик, находящийся в столе. Когда придет другой посетитель и тоже закажет ту же самую книгу, то библиотекарю не надо будет за ней никуда идти, он просто возьмет ее из ящика. Аналогичным образом работает и кэш – память процессора. Каждый раз, когда запрашиваются новые данные, процессор ищет их сначала в кэш-памяти. Подобная мера позволяет многократно увеличить скорость работы процессора.

Кэш-память хранит только наиболее часто используемые элементы данных?

Нет, кэш-память является довольно интеллектуально продвинутой памятью, в которую помещаются также и те данные, которые, вероятно, будут востребованы в ближайшее время. Продолжая нашу аналогию с библиотекарем, это можно объяснить следующим образом. Когда посетитель просит библиотекаря достать ему первую часть Гарри Поттера, то наш догадливый библиотекарь также берет с полки и вторую часть Гарри Поттера, резонно полагая, что посетитель, прочитав первую часть, в скором времени попросит и вторую. И когда тот ее просит, то она тут же достается из того же ящика стола. Аналогичным образом, когда кэш-память извлекает элементы данных из основной памяти, она также выбирает данные, которые находятся по адресам, рядом с затребованными данными. Эти рядом расположенные блоки данных, которые передаются в кэш, называется строки кэша.

Два уровня кэш-памяти процессора

Большинство жестких дисков и некоторых других компонентов компьютера используют всего один уровень кэш – памяти. В отличие от них, кэш – память процессора является двухуровневой, в которой кэш 1-го уровня (L1) меньше и быстрее, а кэш 2-го уровня немного медленнее первого, но при этом намного быстрее, чем оперативная память. Кэш L1 разделен на две части, а именно, на кэш команд и на кэш данных. В кэше команд хранится набор инструкций, которые необходимы процессору для вычислений, в то время как кэш данных хранит значения, которые необходимы для текущего исполнения. Кэш L2 отвечает за загрузку данных из основной памяти. Опять же, возвращаясь к нашей библиотеке.

Рассмотрим, например, ящик библиотекаря как кэш L1. В один из сильно загруженных работой дней, когда посетителей много, спрос на книги велик, а ящик в столе заполнен, возникает риск его переполнения. В этом случае на помощь библиотекарю приходит рядом стоящий книжный шкаф (L2). В него библиотекарь будет складывать книги, когда не останется места в ящике стола. Теперь, когда у него спросят некоторые популярные книги, то он сначала посмотрит в ящик стола и если не найдет там запрашиваемой книги, то пойдет к книжному шкафу. Который, как вы, наверное, догадались, в нашей аналогии играет роль кэш-памяти второго уровня.

Аналогичным образом, в процессоре, когда кэш L1заполнен, данные сохраняются в кэш-память L2. Процессор в первую очередь ищет данные в первом кэше L1, и если они не будут найдены, то далее разыскиваются в L2. Если данные не будут найдены в L2, то следует запрос в оперативную память, и в последнюю очередь запрос делается к жесткому диску.

Чем больше кэш, тем лучше?

На этот вопрос можно ответить одновременно и, да и нет. Больший объем кэша позволяет быстро получать данные в случае, если они доступны в любом из уровней L1 и L2. Вернемся к нашему примеру с библиотекой. Если посетитель попросит какую – либо популярную книгу, которая не хранится библиотекарем в ящике стола или в книжном шкафу, то он сначала поищет ее в ящике, а затем перейдет к книжному шкафу. То есть некоторое количество времени будет тратиться впустую, прежде чем книга, наконец, будет извлечена с книжной полки библиотеки. Так же и процессор сначала проверяет кэш первого уровня (L1), затем второго (L2) и только после этого, отправляет запрос в оперативную память. Когда данные обнаруживаются в кэше, то это называется «попаданием», в противоположном случае – «промахом»


Таким образом, в процессе поиска данных в двух уровнях кэша, многопроцессорного времени фактически тратится зря. Элементы данных периодически обновляются и заменяются с использованием различных алгоритмов, чтобы максимизировать случаи попадания в кэш.


Многие сейчас, вероятно, сделали однозначный вывод, если кэш-память работает столь быстро, то почему бы не реализовать ее достаточно большой, с тем, чтобы все данные, с которыми работает оперативная память, хранить в кэше. Однако не все так просто, кэш память обеспечивает быстрый доступ к найденным, но при этом сам иерархический поиск данных влечет за собой большие ресурсные расходы. Поэтому наиболее предпочтительным вариантом является оптимальный баланс между скоростью поиска данных и размером кэш-памяти.