Сайт о телевидении

Сайт о телевидении

» » Что собрать начинающему радиолюбителю. Курсы электронщика

Что собрать начинающему радиолюбителю. Курсы электронщика

Начинающий радиолюбитель: школа начинающего радиолюбителя, схемы и конструкции для начинающих, литература, радиолюбительские программы

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

На сайте работает “Школа начинающего радиолюбителя “. Полный курс обучения включает в себя занятия начиная от азов радиоэлектроники и кончая практическим конструированием радиолюбительских устройств средней сложности исполнения. Каждое занятие строиться на предоставлении слушателям необходимых теоретических сведений и практических видеоматериалов, а также домашних заданий. В ходе учебы каждый обучаемый получит необходимые знания и навыки в полном цикле конструирования в домашних условиях радиоэлектронных устройств.

Для того чтобы стать слушателем школы, необходимо желание и подписка на новости сайта или через FeedBurner, или через стандартное окно подписки. Подписка необходима для своевременного получения новых уроков, видеоматериалов занятий и домашнего задания.

Только подписавшимся на курс обучения в “Школе начинающего радиолюбителя” будут доступны видеоматериалы и домашнии задания по занятиям.

Для тех, кто решил изучать радиолюбительство вместе с нами, необходимо кроме подписки, внимательно изучить подготовительные статьи:






Все вопросы, пожелания и замечания Вы можете оставлять в комментариях в разделе “Начинающим”.

Первое занятие.

Второе занятие.
Лаборатория радиолюбителя. Собираем блок питания.

Определяемся со схемой. Как проверить радиоэлементы.

Подготовка деталей.
Расположение деталей на плате.
Изготовление платы самым простым способом.

Пайка схемы.
Проверка работоспособности.
Изготовление корпуса для блока питания.
Изготовление передней панели с помощью программы “Front Designer”.

Третье занятие.
Лаборатория радиолюбителя. Собираем функциональный генератор.



Проектирование печатной платы с помощью программы “Sprint Layout”.
Применение ЛУТ (лазерно-утюжной технологии) для переноса тонера на плату.

Окончательный вариант платы.
Нанесение “шелкографии”.
Проверка работоспособности генератора.
Настройка генератора с помощью специальной программы “Virtins Multi-Instrument”

Четвертое занятие.
Собираем светомузыкальное устройство на светодиодах

Предисловие.
Определяемся со схемой и изучаем характеристики основных деталей.

Фоторезисты и их применение.
Немного о программе “Cadsoft Eagle”. Установка и русификация официальной версии.

Изучаем программу Cadsoft Eagle:
начальные настройки программы;
– создание нового проекта, новой библиотеки и нового элемента;
– создание принципиальной схемы устройства и печатной платы.

Уточняем схему;
Изготавливаем печатную плату в программе Cadsoft Eagle;
Облуживаем дорожки платы сплавом “Розе”;
Собираем устройство и проверяем его работоспособность специализированной программой и генератором;
Ну и, в конце-концов, радуемся результатам.

Подведем некоторые итоги работы “Школы”:

Если вы последовательно прошли все шаги, то ваш результат должен быть следующим:

1. Мы узнали:
- что такое закон Ома и изучили 10 основных формул;
– что такое конденсатор, резистор, диод и транзистор.
2. Мы научились:
♦ изготавливать простым способом корпуса для устройств;
♦ залуживать печатные проводники простым способом;
♦ наносить “шелкографию”;
♦ изготавливать печатные платы:
– с помощью шприца и лака;
– с использованием ЛУТ (лазерно-утюжной технологии);
– с использованием текстолита с нанесенным пленочным фоторезистом.
3. Мы изучили:
- программу для создания передних панелей “Front Designer”;
– любительскую программу для налаживания различных устройств “Virtins Multi-Instrument”;
– программу для ручного проектирования печатных плат “Sprint Layout”;
– программу для автоматического проектирования печатных плат “Cadsoft Eagle”.
4. Мы изготовили:
- двухполярный лабораторный блок питания;
– функциональный генератор;
– цветомузыку на светодиодах.
Кроме того, из раздела “Практикум” мы научились:
- собирать простые устройства из подручных материалов;
– рассчитывать токоограничительные резисторы;
– рассчитывать колебательные контуры для радиоустройств;
– рассчитывать делитель напряжения;
– рассчитывать фильтры низких и верхних частот.

В дальнейшем в “Школе” планируется изготовить несложный УКВ радиоприемник и приемник радионаблюдателя. На этом скорее всего работа “Школы” будет закончена. В дальнейшем, основные статьи для начинающих будут публиковаться в разделе “Практикум”.

Кроме того, начат новый раздел по изучению и программированию микроконтроллеров AVR.

Работы начинающих радиолюбителей:

Интигринов Александр Владимирович:

Григорьев Илья Сергеевич:

Ruslan Volkov:

Петров Никит Андреевич:

Морозас Игорь Анатольевич:

С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел "Старт " .

Н а страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.

Е сли Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Измерения и измерительная аппаратура

Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.

Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.

Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.

Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.

Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.

Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.

Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.

Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.

Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.

В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.

Эквивалентное последовательное сопротивление (или ЭПС) - это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.

Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.

Мастерская начинающего радиолюбителя

Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.

Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.

Самый востребованный прибор в лаборатории начинающего радиолюбителя - это регулируемый блок питания. Здесь вы узнаете, как с минимумом усилий и временных затрат собрать регулируемый блок питания 1,2...32V на базе готового модуля DC-DC преобразователя.

В жизни каждого возникают ситуации, когда требуется отремонтировать какое-либо радиоэлектронное устройство, начиная от елочной гирлянды и заканчивая сложной бытовой техникой. Имея минимальные навыки работы с инструментами, многие виды работ можно выполнить самостоятельно. Обычно это ограничивается пайкой оборвавшегося провода или поиском перегоревшей лампы. Более серьезные виды работ требуют наличия знаний в области электроники, опыта, наличия приборов и инструментов.

Знания будут совсем не лишними, но не стоит сразу пытаться постигать устройство и ремонт, в частности, телевизора. Скорее всего, из этого ничего не выйдет. В лучшем случае ремонт не удастся, а в худшем – добавятся новые проблемы. Лучше начинать изучение радио,- и электротехники с самых основ и закреплять их практическими работами. Для этого нужен для начала совсем небольшой парк инструментов и приборов, который можно затем пополнять по мере возникшей необходимости.

Что нужно знать

Лучше всего брать уроки радиоэлектроники у более опытных людей, но в эру повсеместного развития интернета знаниями вполне можно овладеть самостоятельно. В сети достаточное количество обучающих видео и доступной литературы для свободного ознакомления. При желании можно даже подписаться на обучающие курсы и уроки.

Что должен знать начинающий радиолюбитель, и что должно обязательно присутствовать на обучающем курсе:

  • Основы электроники. Это, в первую очередь, законы Ома, Кирхгофа, расчет мощности. Необходимо знать расчет последовательного и параллельного соединения резисторов и емкостей. Без этих знаний дальнейшие шаги просто бессмысленны;
  • Уметь пользоваться измерительными приборами. Для всех измерительных приборов важно уметь правильно выбрать предел измерений, а для стрелочных – дополнительно уметь определять цену деления шкалы измерения и отсчитывать показания;

  • Знать принцип работы и устройство простейших радиоэлементов: резисторов, конденсаторов, катушек индуктивности, трансформаторов, диодов и транзисторов. Необходимо ориентироваться в параметрах элементов и, исходя из работы схемы, определять, какие из них наиболее важны и критичны в данном участке схемы. На первых порах нет необходимости досконально знать, как работает p-n переход диода и транзистора, но особенности работы, которые характеризуют важнейшие параметры, нужно помнить;
  • Уметь читать радио,- и электрические схемы. Для этого необходимо помнить обозначения элементов на принципиальных схемах;
  • Знать принципы маркировки радиоэлементов, уметь расшифровывать сокращенные и кодированные обозначения и уметь переводить кратные величины измерения (мегаомы в килоомы, микрофарады в пикофарады и так далее);

  • Уметь пользоваться паяльником, правильно выбирать припой и флюс для пайки .

Важно! Большая часть радиотехнических схем хоть и требует для питания низковольтного напряжения, но использует для этих целей преобразование напряжения сети, которое опасно для жизни. Основы техники безопасности важны для сохранения здоровья и жизни.

Какие нужны инструменты и приборы

Мастерская радиолюбителя должна иметь в своем составе несколько обязательных вещей. Со временем, с приобретением навыков и знаний, ассортимент можно расширить, но на первых порах необходимы только несколько разновидностей.

Самый главный инструмент радиолюбителя – паяльник. В целях обеспечения безопасности, предотвращения удара током или повреждений элементов схемы паяльник должен быть низковольтным – с напряжением питания не более 42В. Если говорить о мощности, то для пайки большинства элементов схем достаточно 25-и ваттного паяльника. Он, конечно, не очень подходит для пайки выводов мощных радиодеталей, и если есть сомнения, то можно взять инструмент с мощностью 40Вт. Больше не нужно, поскольку даже в умелых руках использование такого паяльника может привести к перегреву и выходу из строя радиоэлементов, отслоению печатных проводников на платах.

Начинающему радиолюбителю не имеет смысла приобретать сложную и дорогую паяльную станцию. Научившись грамотно пользоваться обычным паяльником, можно задуматься о приобретении более сложного инструмента, но научившись работать с паяльной станцией, с обычным паяльником справиться будет довольно тяжело.

Измерительный прибор

В настоящее время в продаже можно встретить большое разнообразие всевозможных измерительных приборов, различной степени сложности, точности и ценового диапазона.

При работах с электрическими схемами наиболее важно измерение следующих параметров:

  • Сопротивление;
  • Переменное и постоянное напряжение;
  • Переменный и постоянный ток;
  • Более сложные работы потребуют измерения частоты и формы сигналов, параметров транзисторов, значения индуктивности.

Наиболее распространены комбинированные приборы для измерения напряжения, тока и сопротивления. Ранее они назывались авометрами (ампер-вольт-омметр), а сейчас, в основном, тестерами или мультиметрами, поскольку способны измерять еще несколько параметров.

Большинство приборов основано на цифровой обработке сигналов и имеют знаковую индикацию. Подобно большинству цифровых устройств, они имеют множество положительных качеств:

Вместе с тем, аналоговые приборы, имея меньшую точность, позволяют видеть наглядное изменение измеряемой величины по положению стрелки. Возможно наблюдение и измерение быстроменяющихся параметров.

Цифровые устройства требуют наличия некоторого времени для установки показаний. Основной недостаток – требование изначально знать правильную полярность источника сигнала и возможную его величину для выбора предела измерений. С этим же связано затруднение у новичков радиолюбителей – правильное считывание показаний стрелочного прибора.

Аналоговым прибором можно при наличии некоторого навыка контролировать состояние и исправность электролитических конденсаторов, что очень трудно выполнить цифровым мультиметром.

Новичку лучше использовать в работе именно стрелочный прибор, поскольку в процессе обучения приобретаются полезные навыки работы с измерительной аппаратурой, а точность измерений не является основополагающей. К тому же, для измерений тока и напряжения такой прибор не нуждается во встроенном источнике питания.

Для начинающего радиолюбителя вполне подойдет даже тестер, выпущенный в середине прошлого века, поскольку принцип измерения, правила пользования и характеристики авометров с того времени практически не изменились, а точность и надежность даже самых старых приборов порой намного выше, чем у современных дешевых китайских авометров. Радиолюбительство большинства современных электронщиков начиналось с самого распространенного тестера отечественного производства Ц20.

Инструменты и материалы

Лаборатория радиолюбителя невозможна без минимума инструментов:

  • Кусачки (бокорезы);
  • Пинцет;
  • Набор отверток с разнообразной формой жала;
  • Набор различных крепежных элементов (болты, гайки, шайбы);
  • Изолированные гибкие и одножильные провода.

Обязательно наличие припоя и флюса. Наибольшим доверием пользуется припой типа ПОС60, обладающий низкой температурой плавления. И раньше, и сейчас это основной припой для пайки радиоэлементов на постсоветском пространстве.

В качестве флюса, в основном, используется канифоль или ее раствор в этиловом спирте. Можно использовать и другие составы, например, ЛТИ120, но канифоль более универсальна и имеет минимальную стоимость.

Важно! При пайке радиоэлементов и проводов нельзя использовать кислотные или активные флюсы. Быстро и качественно выполненная пайка через непродолжительное время будет безнадежно испорчена коррозией.

Техника безопасности

Радиотехника для начинающих должна обеспечивать самый высокий уровень безопасности. Уже было отмечено про низковольтные паяльники, но следует отметить, что большинство любителей сразу при конструировании и ремонте устройств пользуются сетевыми блоками питания. Будет гораздо безопаснее приобрести или попросить изготовить для домашней лаборатории мощный разделительный трансформатор с единичным коэффициентом трансформации. Выдавая на выходе все то же напряжение переменного тока 220В, он предоставит надежную гальваническую развязку от питающей сети.

Видео

Здравствуйте, мои дорогие друзья! В этом блоге я хочу рассказать всем начинающим радиолюбителям о том, с чего-же всё-таки начать этот нелёгкий путь. Сподвигнули меня написать эту статью люди, которые появляются на форумах и создают там темы с такими громкими названиями, как "помогите отличить на схеме резистор от конденсатора" и "Дайте какие-нибудь схемы, я ничё ни знаю". При том, что люди ничего при этом не знают и не хотят ни что-либо изучать, ни шевелить своим мозгом... Возможно, вам это статья может показаться нудной, но не переживайте - здесь вы почерпнёте много нового

1. Нужно определиться - зачем оно вам?

Этот пункт очень важен - а зачем оно вам? Зачем нужна вам радиотехника?
Радитехника - сложная штука, и если вы будете относиться к ней "халявно", то она может вам этой халявы не простить!
Не думайте, что я вас просто и необоснованно пугаю - поверьте, были очень несчастные случаи. Говорить о них я здесь не буду - захотите, посмотрите в Сети.
Поэтому, перво-наперво, вы должны запомнить: техника безопаснсти и аккуратность должны стоять у вас на первом месте!

2. Начальные понятия и знания о физике.

Для того, чтобы начать путь, необходимо обзавестись начальным багажом знаний, а именно - школьный экскурс об электронике в курсе физики. Из него вы должны подчерпнуть один главный закон, регулирующий процессы в электротехники, так сказать "всея электросети": Закон Ома - I=U/R. Это - основа основ!!! Зная его, вы начнёте понимать электронику! Вообще-то, кроме этого закона, вам от туда необходимо почерпнуть абсолютно всё, ведь физика - царица технических наук!

3. Теория.

Практика невозможна без теории!!! Взявшись паять без каких-либо знаний, вы обрекаете свой прибор на нерабочее состояние!
Я дам несколько книг, которые на мой взгляд прекрасно подходят для изучения радиотехники:
1. Борисов В.Г. Юный радиолюбитель - скачать с Padabum
Эта книга - начало начал. Возможно, вам покажется эта книга старой, но не переживайте - в этой книге вам необходимо изучить всю теоретическую часть. Она там дана в интересной форме, поэтому скучать вам не прийдётся
2. Ревич Ю.В. - Занимательная электроника - скачать с Яндекс.Диск
В этой книге изложен укороченный курс электроники - начиная от закона Ома и заканчивая микроконтроллерами. Очень интересная книга!!! Можно начать с неё.
Если вы хотите изучить электронику от начала и почти до конца, изучите великий классический труд - Хоровиц П., Хилл У. Искусство схемотехники в трёх томах - скачать с Padabum 1 том , 2 том , 3 том .
Это - величайшее пособие по электронике!!!
Кроме этих книг вы можете найти огромное количество информации на нашем сайте в разделе .

4. Практика.

Как ни крути, но теория невозможна без практики. Разыскивайте схемы, изучайте их, и у вас всё получится!!!
Сайт "Радиосхемы", на котором вы сейчас находитесь, полон схем для повторения. А в разделе полно очень лёгких схем. Обязательно запаситесь терпением, не бросайте дело на полпути - и всё будет хорошо!

Напоследок хочу сказать одну очень важную вещь - соблюдайте технику безопасности!!!
С вами был Antracen . Удачи!

Начинающим радиолюбителям, не очень хорошо разбирающимся в электронике, будет сложно воплотить в жизнь описанные на сайте схемы и различные устройства. Они не возьмутся за их изготовление из за множества простых вопросов и препятствий, возникающих на их пути.

Поэтому, ниже приведены основные сведения, которые помогут сделать первый шаг в загадочный мир радиоэлектроники.

Плата электронного устройства

Простейшая плата электронного устройства представляет собой пластину из изоляционного материала (стеклотекстолит, гетинакс…), на одной стороне которой располагаются активные и пассивные компоненты, а на другой — полоски медной фольги с контактными площадками (дорожки), играющие роль соединительных проводников.

Выводы компонентов пропущены через отверстия в плате и припаяны оловянно-свинцовым припоем к контактным площадкам. Теперь перейдем к детальному рассмотре­нию различных компонентов, перечень которых для каждого конкретного устройства дается после его описания.

ПЕЧАТНАЯ ПЛАТА

Топология печатной платы, как правило, приводится в масштабе 1:1. На ней воспроизводится рисунок всех соединений между различны­ми компонентами или внешними элементами устройства. На рисунках она показана со стороны металлизации печати. В качестве материала платы рекомендуется использовать фольгированный стеклотекстолит. Он обладает высокой прочностью, с ним удобно работать. Подойдет и гетинакс, хотя он часто крошится, особенно при сверлении недоста­точно острым сверлом.

Существует несколько методов создания рисунка (или, как его ча­сто называют, «печати») на металлизированной стороне платы.

Са­мую качественную печать можно изготовить методом фотолитогра­фии. Для этого на плату со стороны медной фольги предварительно наносят слой специального фоточувствительного материала, называ­емого фоторезистом. Затем через маску с изображением рисунка печа­ти производят облучение ультрафиолетовым (УФ) излучением. После обработки в специальных реактивах на поверхности платы остаются только те участки фоторезиста, которые не попали под действие УФ излучения. После закрепления фоторезиста — специальной термооб­работки — он приобретает требуемую механическую и химическую устойчивость. Если затем обработать плату в растворе хлорного же­леза, то не покрытая фоторезистом часть медной фольги будет страв­лена. Заключительная операция состоит в удалении закрепленного фоторезиста с помощью органического растворителя.

Даже краткое описание этого процесса дает представление, насколь­ко он сложен, не говоря уже о том, что требует специального оборудо­вания (УФ излучатель, центрифуга для нанесения фоторезиста, печь с регулятором температуры) и различных химикатов. Безусловно, в домашних условиях такой метод абсолютно неприемлем.

К счастью, радиолюбители придумали множество вполне доступных способов изготовления печатных плат. Так, для того чтобы защитить дорожки фольги, можно использовать химически стойкий лак, нанесенный с помощью стеклянного рейсфедера или стержня пишущей ручки, из которого удален шарик, полоски скотча или изоляционной ленты. На одной и той же плате можно комбинировать эти способы в зависимости от требуемой точности воспроизведения отдельных ее участков.

Одна­ко, прежде чем вы приступите к созданию рисунка соединительных дорожек, настоятельно рекомендуем просверлить все предусмотрен­ные конструкцией отверстия под выводы компонентов и штырьковые соединения. Если отодвинуть эту операцию на следующий этап, вероятность повредить дорожки металлизации увеличится.

СВЕРЛЕНИЕ ОТВЕРСТИЙ

Сначала следует произвести разметку отверстий точно по чертежу. Опытные радиолюбители используют для этого миллиметровую бума­гу, на которой помечают центры будущих отверстий. Приклеив лист на плату с помощью силикатного или казеинового клея, вы получаете простой, но достаточно точный шаблон. Сверла для стеклотекстоли­та должны быть хорошо заточены, в противном случае возможен уход сверла от центра разметки при сверлении.

Удобней всего производить эту операцию на сверлильном станке. Однако не следует огорчаться, если у вас нет такой возможности. С помощью ручной или электри­ческой дрели, работающей от сети или от аккумуляторной батареи, можно добиться нужной точности сверления. Целесообразно сначала просверлить все отверстия тонким сверлом диаметром 0,8-1,3 мм, а затем рассверлить те из них, диаметр которых должен быть больше (например, крепежные отверстия).

ТРАВЛЕНИЕ ПЛАТЫ

Методы защиты соединительных дорожек на плате могут быть совершенно различными. Для стравливания лишних участков медной фольги обычно используют медный купорос, хлорное железо и другие реактивы. Трав­ление платы удобно производить в пластмассовой ванночке (например, для проявления фотографий). Можно также использовать старое фарфо­ровое блюдце или стеклянную банку.

Раствор хлорного железа

Раствор хлорного железа рабочей концентрации обладает доволь­но высокой вязкостью, поэтому рекомендуется покачивать емкость, чтобы обеспечить постоянное обновление активного вещества у по­верхности платы. Необходимо контролировать процесс травления. Если во втором случае вы можете испортить лист фотобумаги, то в первом — рискуете анну­лировать результаты собственного труда, вложенного в изготовление защитного рисунка на плате. Дело в том, что в результате подтравливания боковых поверхностей дорожек толщина их постепенно умень­шается и, если оставить плату в растворе на длительное время, самые тонкие из них могут полностью исчезнуть.

Внимание! Пятна на одежде от хлорного железа вывести практи­чески невозможно.

Операция травления заканчивается тщательной промывкой платы в водопроводной воде. Пленка, защищавшая дорожки при травлении, легко удаляется с помощью растворителя или наждачной бумаги. Мед­ные дорожки будут меньше окисляться в процессе эксплуатации, а припайка выводов компонентов будет происходить быстрее и каче­ственней, если их предварительно обезжирить ацетоном или чистым бензином и затем облудить припоем.

ПАССИВНЫЕ КОМПОНЕНТЫ

К этой категории относятся обычные резисторы всех номиналов и размеров, а также переменные и подстроечные резисторы, сопротив­ление на выводах которых можно регулировать. Сюда попадают также конденсаторы, трансформаторы и катушки индуктивности.

Резисторы (сопротивления)

На принципиальных схемах, то есть схемах, изображающих структу­ру соединения компонентов, резисторы принято обозначать латинс­кой буквой «R». Справа от нее пишется порядковый номер резисто­ра, позволяющий найти его на принципиальной и монтажной схемах, а также в таблице, где указаны его параметры — номинальное значе­ние сопротивления, мощность и др.

Единицей измерения сопротив­ления в международной системе СИ является ом, а его условным обозначением — Q (омега). Производные от ома единицы получаются добавлением букв, обозначающих принятые в этой системе множите­ли.

Так, 1 МОм = 1 ООО кОм = 1 ООО ООО Ом. Маркировка резисторов может быть цветовая, а также символьная, то есть такая, когда номинал, мощность и группа допус­ка обозначены с помощью буквенно-цифрового кода.

Так, например, резистор R с четырьмя цветными полосками имеет номинал 390 кОм. Первое оранжевое кольцо на его корпусе соответствует цифре 3, второе белое — цифре 9, а третье желтое обозначает множитель — 10 000. Следовательно, но­минал сопротивления R5 равен 39 X 10 000 = 390 000 Ом = 390 кОм. Четвертое кольцо определяет группу допуска (например, бронзовая маркировка соответствует отклонению от номинала в пределах ±5%).

Полярность установки резисторов на плате не имеет значения. Суще­ствует стандартный ряд номиналов резисторов. Например, в группе допуска ±10% между номиналами 10 и 100 Ом можно встретить толь­ко следующие значения: 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 и 82 Ом.

Конденсаторы

Конденсаторы часто называют емкостями, что довольно удачно ха­рактеризует их как «резервуары» для накопления электрических за­рядов. Единицей измерения емкости в системе СИ является фарада (Ф). На практике такие значения емкости встречаются очень редко.

К примеру, рассчитанная электрическая емкость Земного шара не до­стигает одной фарады. Поэтому в электронике используют произ­водные от фарады единицы: микрофарады (мкФ), нанофарады (нФ) и пикофарады (пФ): 1 Ф = 1000 мФ = 1 000 000 мкФ =10^9 нФ = 10^12 пФ.

В зависимости от назначения применяют различные типы конден­саторов, названия которых произошли от вида диэлектрического мате­риала, разделяющего положительные и отрицательные заряды. Кон­денсаторы бывают керамическими, бумажными, пленочными и т.д.

Керамические конденсаторы имеют номинальные значения элект­рической емкости в диапазоне от нескольких пикофарад до нескольких нанофарад. Емкость пленочных конденсаторов обычно находится в пределах 1-1000 нФ. Номинал конденсатора в основном приводится в буквенно-цифровом обозначении, например 102 — это 1000 пф, 103 — 10 000 пф или 10 нф и т.п.

Если для вышеперечисленных конденсаторов полярность включе­ния значения не имеет, то для так называемых «электролитических» конденсаторов правильное направление напряжения является непре­менным условием их работы, а в некоторых случаях и безопасности окружающих. Неправильное включение электролитического конден­сатора чревато его быстрым разогревом, ведущим к вскипанию содер­жащегося в нем электролита. Корпус конденсато­ра не выдерживает внутреннего давления и разрывается!

Полярность включения электролитических конденсаторов, как правило, обознача­ется на корпусе. При вполне приемлемых размерах электролитичес­кие конденсаторы обычно имеют номинал от 0,47 до 10 000 мкФ и выше, что определяется конкретной конструкцией.

Любое техническое решение — это компромисс, при котором высо­кие показатели по одному из параметров достигаются за счет сниже­ния других. В случае электрических конденсаторов, чтобы добиться высоких значений емкости, пришлось пожертвовать точностью и дол­говечностью. Срок таких конденсаторов в несколько раз меньше, чем у их керамических и пленочных собратьев.

Наконец, следует обратить внимание на то, что величина рабочего напряжения, указанная на корпусе любого типа конденсатора, должна быть не меньше приведенной в схеме.

Трансформаторы

Электронные устройства, работающие от другого напряжения сети переменного тока, требу­ют применения трансформаторов напряжения. Трансформатор пред­ставляет собой сердечник замкнутой конструкции, изготовленный из специальной стали, на котором смонтирована одна (или более) ка­тушка с изолированным медным (реже — алюминиевым) проводом, уложенным в виде нескольких обмоток, имеющих различное количе­ство витков.

Конструкция трансформаторов может быть совершенно различ­ной:

Мощность трансформа­тора, выраженная в вольт-амперах (ВА), определяет его нагрузочную способность, то есть ту номинальную мощность, которую он может от­давать в нагрузку, не перегреваясь. Расположение выводов первичной и вторичной обмоток исключает возможность неправильной установ­ки на плате.

АКТИВНЫЕ КОМПОНЕНТЫ

В данном случае речь идет о полупроводниковых приборах, без кото­рых существование современной электроники было бы немыслимо.

Для всех компонентов этого класса полярность подключения выво­дов к схеме имеет принципиальное значение.

Второе немаловажное условие — при пайке выводов активных компонентов перегрев абсо­лютно недопустим!

Полупроводниковые диоды

На принципиальной схеме устройства полупроводниковые диоды при­нято обозначать буквами «VD». Изображение диода на схеме напо­минает стрелку, направленную от его анода к катоду. Это направление, как правило, совпадает с направлением тока через диод в открытом со­стоянии.

Исключением является полупроводниковый диодный стаби­лизатор напряжения — стабилитрон . Он обычно включается в обрат­ной полярности по отношению к напряжению питания. Его функция состоит в ограничении напряжения на определенном уровне, называ­емом пороговым напряжением стабилитрона.

Особым типом полупроводникового прибора является светодиод. Он способен преобразовывать электрическую энергию в электромаг­нитное излучение в Видимом или инфракрасном (ИК) диапазоне. Цвет свечения зависит от используемого полупроводникового материала.

Встречаются самые разнообразные по форме и размерам светодиоды: диаметром 3, 5 и 10 мм, круглые, плоские, треугольные, двухцветные, мигающие, красные, зеленые, желтые, оранжевые и даже синие 🙂 . Пе­ред установкой светодиода необходимо проверить маркировку като­да и анода. Последовательно со светодиодом обязательно включают резистор, ограничивающий ток прибора. Для разных типов светодиодов рабочее значение тока может быть в пределах от 10 до 50 мА.

Биполярные транзисторы

Биполярный транзистор — «старожил» в семействе полупроводниковых приборов. Тем не менее он продолжает исправно служить людям наряду с интегральными микросхемами, изрядно потеснившими его за последние годы в современных электронных устройствах. Транзистор имеет три вывода: базу, эмиттер и коллектор. Биполярные транзисторы бывают двух типов проводимости: п-р-п (обратной) или p-n-р (прямой).

Пайка выводов транзи­стора производится строго поочередно, кратковременными касания­ми места контакта паяльником. При этом нужно делать паузы между касаниями, чтобы дать выводам остыть. Во избежание излишнего пе­регрева корпуса не рекомендуется укорачивать выводы транзистора.

Транзисторы различают также по номинальной мощности. Есть транзисторы в металлическом корпусе, соединенном с коллектором. Металличес­кий корпус служит для отвода тепла, выделяющегося на коллекторе при прохождении больших токов.

Существуют так называемые «составные» транзисторы. Такая схема соединения применяется, когда нужно получить большой ко­эффициент усиления по току.

Интегральные схемы

Интегральная микросхема — это миниатюрное электронное устрой­ство, содержащее множество полупроводниковых приборов и других компонентов, заключенных в единый корпус с выводами для внешне­го соединения. В зависимости от функционального назначения коли­чество выводов может быть любое.

В приложениях приводятся схемы расположения выводов интегральных схем, используемых в предлагаемых устройствах. Общая рекомендация по монтажу интег­ральных схем заключается в том, что желательно монтировать мик­росхемы на специальных панелях, предварительно припаянных к пла­те. В этом случае вы исключаете возможность перегрева достаточно дорогого и «капризного» компонента, каким является полупроводни­ковая микросхема.

Установка интегральных схем производится по окончании всех операций припаивания. Следите за тем, чтобы поло­жение ключа на панели совпадало с ключом печатной платы!

ПАЙКА ОЛОВЯННО-СВИНЦОВЫМ ПРИПОЕМ (ПОС)

Припаивание компонентов оловом обеспечивает их механическое крепление и электрический контакт. Для этого потребуется электрический паяльник мощностью 25-40 Вт, желательно оснащенный терморе­гулятором. Паяльник должен иметь длинное тонкое жало, которое следует периодически очищать при помощи влажной губки.

Оловянно-свинцовый припой (40% олова и 60% свинца) часто продается в виде тонкой проволоки с каналом, заполненным флюсом на бескислородной основе. Температура плавления припоя составляет 180-190 °С. При этом образуются пары, содержащие некоторое коли­чество свинца. Поэтому во время пайки старайтесь не вдыхать пары флюса. Работайте в хорошо проветриваемом помещении с постоянным притоком свежего воздуха.