Сайт о телевидении

Сайт о телевидении

» » Чем симплексная связь отличается от дуплексной? Дуплексная радиосвязь

Чем симплексная связь отличается от дуплексной? Дуплексная радиосвязь

Под дуплексным режимом работы модема понимается возможность передавать и принимать информацию одновременно. Проблема для модема заключается не в способности канала передавать дуплексную информацию, т.к. обычный телефонный канал – дуплексный, а в возможности демодулятора модема распознать входной сигнал на фоне отраженного от аппаратуры АТС собственного выходного сигнала. При этом его мощность может быть не только сравнима, но в большинстве случаев значительно превосходить мощность принимаемого полезного сигнала (так как объединение и разделение передачи и приема производится с помощью дифсистем, которые невозможно идеально настроить на полное подавление сигнала передатчика местного модема). Поэтому, могут ли модемы передавать информацию одновременно в обе стороны определяется возможностями протокола физического уровня.

Соединение абонента передачи данных с телефонным каналом может осуществляться с помощью четырехпроводного окончания (главным образом с арендованными каналами) и/или двухпроводным окончанием (в основном с коммутируемыми каналами). При четырехпроводном окончании передача и прием осуществляются независимо друг от друга. В этом случае каждая пара используется для передачи информации только в одном направлении и проблемы разделения входного сигала и отраженного выходного не существует.

Передача данных по телефонным каналам с двухпроводным окончанием организуется с использованием одного из следующих методов:

    поочередной передачи в каждом из направлений (полудуплексный режим);

    частотного разделения направлений передачи (дуплексный режим: симметричный или ассимметричный – в зависимости от равенства или неравенства скоростей передачи в разных направлениях);

    одновременной передачи в обоих направлениях с подавлением на приеме отраженного сигнала собственного передатчика (дуплексный режим с эхокомпенсацией).

Наиболее простым в реализации и наименее эффективным по использованию канала связи является метод поочередной передачи (полудуплексный), т.к. передача ведется только в одном направлении, и имеют место потери времени на смену направлений передачи. Ввиду отсутствия проблем с взаимным проникновением подканалов передачи, а также с эхо-отражением, полудуплексные протоколы в общем случае характеризуются большей помехоустойчивостью и возможностью использования всей ширины полосы пропускания канала. Этот метод применяется при малых скоростях передачи. Все протоколы, предназначенные для факсимильной связи – полудуплексные. С освоением более высоких скоростей появилась возможность организации на базе этого метода псевдодуплексной передачи (дуплексный режим оконечного оборудования данных при полудуплексной передаче в канале) – т.н. метод "ping-pong".

Модемные протоколы

Модемы можно классифицировать в соответствии с реализованными в них протоколами. Все протоколы, регламентирующие те или иные аспекты функционирования модемов могут быть отнесены к двум большим группам: международные и фирменные.

Протоколы международного уровня разрабатываются под эгидой ITU-T и принимаются им в качестве рекомендаций (ранее ITU-T назывался Международным консультативным комитетом по телефонии и телеграфии – МККТ, международная аббревиатура CCITT). Все рекомендации ITU-T относительно модемов относятся к серии V. Фирменные протоколы разрабатываются отдельными компаниями – производителями модемов, с целью преуспеть в конкурентной борьбе. Часто фирменные протоколы становятся стандартными протоколами де-факто и принимаются частично либо полностью в качестве рекомендаций ITU-T, как это случилось с рядом протоколов фирмы Microcom. Наиболее активно разработкой новых протоколов и стандартов занимаются такие известные фирмы, как AT&T, Motorolla, U.S.Robotics, ZyXEL и другие.

С функциональной точки зрения модемные протоколы могут быть разделены на следующие группы:

    Протоколы, регламентирующие соединение и алгоритмы взаимодействия модема и DTE (V.10, V.11, V.24, V.25, V.25bis, V.28);

    Протоколы модуляции, определяющие основные характеристики модемовб предназначенных для коммутируемых и выделенных телефонных каналов. К ним относятся такие протоколы, как V.17, V.22, V.32, V.34, HST, ZyX и большое количество других;

    Протоколы защиты от ошибок (V.41, V.42, MNP1-MNP4);

    Протоколы зжатия передаваемых данных, такие как MNP5, MNP7, V.42bis;

    Протоколы согласования параметров связи на этапе ее установления (HandShaking ), например V.8.

Приставки “bis” и “ter” в названиях протоколов обозначают, соответственно, вторую и третью модификацию существующих протоколов или протокол, связанный с исходным протоколом. При этом исходный протокол, как правило, остается поддерживаемым.

Некоторую ясность среди многообразия модемных протоколов может внести их условная классификация, приведенная на схеме.

Технология коммутации сама по себе не имеет непосредственного отношения к методу доступа к среде, который используется портами коммутатора. При подключении к порту коммутатора сегмента, представляющего собой разделяемую среду, данный порт, как и все остальные узлы такого сегмента, должен поддерживать полудуплексный режим.

Однако когда к каждому порту коммутатора подключен не сегмент, а только один компьютер, причем по двум физически раздельным каналам, как это происходит почти во всех стандартах Ethernet, кроме коаксиальных версий Ethernet, ситуация становится не такой однозначной. Порт может работать как в обычном полудуплексном режиме, так и в дуплексном.

В полудуплексном режиме работы порт коммутатора по-прежнему распознает коллизии. Доменом коллизий в этом случае является участок сети, включающий передатчик коммутатора, приемник коммутатора, передатчик сетевого адаптера компьютера, приемник сетевого адаптера компьютера и две витые пары, соединяющие передатчики с приемниками. Коллизия возникает, когда передатчики порта коммутатора и сетевого адаптера одновременно или почти одновременно начинают передачу своих кадров.

В дуплексном режиме одновременная передача данных передатчиком порта коммутатора и сетевого адаптера коллизией не считается. В принципе, это достаточно естественный режим работы для отдельных дуплексных каналов передачи данных, и он всегда использовался в протоколах глобальных сетей. При дуплексной связи порты Ethernet стандарта 10 Мбит/с могут передавать данные со скоростью 20 Мбит/с - по 10 Мбит/с в каждом направлении.

Уже первые коммутаторы Kalpana поддерживали оба режима работы своих портов, позволяя использовать коммутаторы для объединения сегментов разделяемой среды, как делали их предшественники-мосты, и в то же время позволяя удваивать скорость обмена данными на предназначенных для связи между коммутаторами портах за счет работы этих портов в дуплексном режиме.

Долгое время коммутаторы Ethernet сосуществовали в локальных сетях с концентра торами Ethernet: на концентраторах строились нижние уровни сети здания, такие как сети рабочих групп и отделов, а коммутаторы служили для объединения этих сегментов в общую сеть.

Постепенно коммутаторы стали применяться и на нижних этажах, вытесняя концентраторы, так как цены коммутаторов постоянно снижались, а их производительность росла (за счет поддержки не только технологии Ethernet со скоростью 10 Мбит/с, но и всех последующих более скоростных версий этой технологии, то есть Fast Ethernet со скоростью 100 Мбит/с, Gigabit Ethernet со скоростью 1 Гбит/с и 10G Ethernet со скоростью 10 Гбит/с). Этот процесс завершился вытеснением концентраторов Ethernet и переходом к полностью коммутируемым сетям, пример такой сети показан на рис. 1

Рис. 1 Полностью коммутируемая сеть Ethernet.

В полностью коммутируемой сети Ethernet все порты работают в дуплексном режиме, а продвижение кадров осуществляется на основе МАС-адресов. При разработке технологий Fast Ethernet и Gigabit Ethernet дуплексный режим стал одним из двух полноправных стандартных режимов работы узлов сети. Однако уже практика применения первых коммутаторов с портами Gigabit Ethernet показала, что они практически всегда применяются в дуплексном режиме для взаимодействия с другими коммутаторами или высокоскоростными сетевыми адаптерами. Поэтому при разработке стандарта 10G Ethernet его разработчики не стали создавать версию для работы в полудуплексном режиме, окончательно закрепив уход разделяемой среды из технологии Ethernet.

Обратная связь

Данный принцип работы, естественно подразумевает только соединение типа точка-точка. Но это скорее большой плюс, чем минус. Дело в том, что в этом случае отпадает необходимость в каком либо ручном тюнинге (согласовании), установке дополнительных резисторов (они уже встроены), а сама линия всегда будет работать в наиболее оптимальном режиме. Все что потребуется это обжать концы кабеля в типовые телефонные коннекторы и воткнуть в соответствующие гнезда, по аналогии с тем как монтируются сети Ethernet. На следующем рисунке представлена схема сети RS-.5.

Рисунок 2

В моей реализации преобразователи RS-.5 не имеют собственного источника питания трансмиттера. Дело в том, что кабель типа витая пара всегда имеет как минимум 2 пары проводов. Поэтому, я задействовал еще одну пару проводов для передачи напряжения питания всех трансмиттеров в линии/сети. Это позволяет избавиться от dc/dc конвертеров (вещь довольно не дешевая). Все приемопередающие части преобразователей можно питать от одного источника питания. Если сеть большая ИП может быть и больше чем один естественно.
На картинке нарисована коробочка с двумя портами и надписью RS-.5 Switch - на самом деле возможность коммутировать данные в сети асинхронной передачи данных определяется используемым протоколом. На практике я такого не встречал ни в одном протоколе, но реализовать нетрудно.

После проработки основных принципов была разработана принципиальная схема UART to RS.5 трансмиттера (Рисунок 3).

Рисунок 3

Хотя там разрабатывать нечего. Оптроны выбрал самые дешевые из не самых медленных - H11L1. Заявленная скорость до 1Мб. На скорости 115200 работает хорошо. Хотя есть неприятный момент: один оптрон работал вплоть до скорости 921 600 бит в секунду, тогда как другой спотыкался уже на 230 400 бит в секунду. При осциллографической диагностике оказалось что все оптроны H11L1 перетягивают задний фронт. В общем это не проблема, можно оптроны подобрать по вкусу.
Так все выглядит в железе (конечно же это тестовые железки):

Рисунок 4

Рисунок 5

Интересная особенность: если с одного конца отсоединить коннектор, то трансмиттер на другом конце будет принимать свое эхо. В дальнейшем хочу попробовать на основе этого эффекта и на таком же модуле сделать измеритель длины кабеля.

В зависимости от направления возможной передачи данных способы передачи

данных по линии связи делятся на следующие типы:

□ симплексный - передача осуществляется по линии связи только в одном на-

правлении;

□ полудуплексный - передача ведется в обоих направлениях, но попеременно

во времени (примером такой передачи служит технология Ethernet);

□ дуплексный - передача ведется одновременно в двух направлениях.

Режим, при котором передача ведётся в обоих направлениях, но с разделением по времени называют полудуплексным. В каждый момент времени передача ведётся только в одном направлении.

Разделение во времени вызвано тем, что передающий узел в конкретный момент времени полностью занимает канал передачи. Явление, когда несколько передающих узлов пытаются в один и тот же момент времени осуществлять передачу, называется коллизией и при методе управления доступом CSMA/CD считается нормальным, хотя и нежелательным явлением.

Этот режим применяется тогда, когда в сети используется коаксиальный кабель или в качестве активного оборудования используются концентраторы.

В зависимости от аппаратного обеспечения одновременный приём/передача в полудуплексном режиме может быть или физически невозможен (например, в связи с использованием одного и того же контура для приёма и передачи в рациях) или приводить к коллизиям.

Режим, при котором, в отличие от полудуплексного, передача данных может производиться одновременно с приёмом данных.

Суммарная скорость обмена информацией в данном режиме может достигать вдвое большего значения. Например, если используется технология Fast Ethernet со скоростью 100 Мбит/с, то скорость может быть близка к 200 Мбит/с (100 Мбит/с - передача и 100 Мбит/с - приём).

Дуплексная связь обычно осуществляется с использованием двух каналов связи: первый канал - исходящая связь для первого устройства и входящая для второго, второй канал - входящая для первого устройства и исходящая для второго.

В ряде случаев возможна дуплексная связь с использованием одного канала связи. В этом случае устройство при приёме данных вычитает из сигнала свой отправленный сигнал, а получаемая разница является сигналом отправителя (модемная связь по телефонным проводам, GigabitEthernet).

    Понятие ИКТ

интегральная технология передачи данных и обработки данных.

#ИКТ, именуемая также ITT, появилась в результате объединения технологий обработки и передачи данных в единое целое. Сегодня развитие и использование ИКТ определяет движение к созданию информационного общества. Так, в декабре 1999 г. Европейская Комиссия объявила о новом проекте, именуемом E-Europa - “Электронная Европа”. Его цель - преобразование европейского индустриального общества в информационное. Этот проект включает:

совершенствование сети Internet, расширение набора ее информационных ресурсов;

использование ресурсов Internet для обучения;

обеспечение быстрого и дешевого доступа к Internet;

развитие платежной системы, в том числе - компьютерных карточек;

вовлечение в электронное сообщество нетрудоспособных граждан;

развитие здравоохранения и обеспечение безопасности транспорта на основе информационно-коммуникационных технологий;

обеспечение прозрачности деятельности правительств путем создания множества сайтов Web.

К информационно-коммуникационным технологиям, в первую очередь, относятся:

    доступ и работа в информационных сетях;

    цифровое телевидение;

    электронная почта и факсимильная связь;

    работа с базами данных и хранилищами сообщений.

В технических системах часто возникает задача связать две подсистемы или два узла для организации информационного обмена между ними. Полученную коммуникативную связь называют каналом связи .

Каналы связи можно разделить по типу передаваемого сигнала (электрический, оптический, радиосигнал и т.д.), по среде передачи данных (воздух, электрический проводник, оптоволокно и т.д.) и по многим другим характеристикам. В этой статье речь пойдёт о делении каналов связи по режимам и правилам приёма и передачи информации. По указанным признакам каналы связи делят на симплексные, полудуплексные и дуплексные.

Симплексная связь

Симплексный канал связи — это односторонний канал, данные по нему могут передаваться только в одном направлении. Первый узел способен отсылать сообщения, второй может только принимать их, но не может подтвердить получение или ответить. Типичным примером каналов связи этого типа является речевое оповещение в школах, больницах и других учреждениях. Другой пример — радио и телевидение.

При симплексной передаче данных один узел связи имеет передатчик, а другой (другие) приёмник.


Полудуплексная связь

При полудуплексном типе связи оба абонента имеют возможность принимать и передавать сообщения. Каждый узел имеет в своём составе и приёмник, и передатчик, но одновременно они работать не могут. В каждый момент времени канал связи образуют передатчик одного узла и приёмник другого.

Типичным примером полудуплексного канала связи является рация. По рации обычно происходит приблизительно такой диалог:

— Белка, Белка! Я Мадагаскар! Приём!

— Мадагаскар, я Белка. Приём!

Слово «Приём» делегирует право на передачу сообщения. В этот момент узел, который был приёмником, становится передатчиком и наоборот. Конечно, направление обмена данными меняется не само по себе. Для этого на рации предусмотрена специальная кнопка. Человек, начинающий говорить, зажимает эту кнопку, включая свою рацию в режим передачи. После этого он произносит своё сообщение и кодовое слово «Приём», отпускает кнопку и возвращается в режим приёмника. Кодовое слово даёт другому абоненту понять, что сообщение закончено и он может переключиться в режим передачи для ответного сообщения. Слово «Приём» позволяет избежать коллизий, когда оба абонента начнут передавать одновременно и ни одно из сообщений не будет услышано собеседником.

Дуплексная связь

По дуплексному каналу данные могут передаваться в обе стороны одновременно. Каждый из узлов связи имеет приёмник и передатчик. После установления связи передатчик первого абонента соединяется с приёмником второго и наоборот.

Классическим примером дуплексного канала связи является телефонный разговор. Безусловно, одновременно говорить и слушать собеседника тяжело для человека, но такая возможность при телефонном разговоре имеется, и,согласитесь, разговаривать по дуплексному телефону гораздо удобнее, чем по полудуплексной рации. Электронные же устройства, в отличие от человека, без проблем могут одновременно передавать и принимать сообщения, благодаря своему быстродействию и внутренней архитектуре.