Сайт о телевидении

Сайт о телевидении

» » Амплитудная модуляция сигнала и ее виды. Амплитудно-модулированные сигналы и их спектры

Амплитудная модуляция сигнала и ее виды. Амплитудно-модулированные сигналы и их спектры

Предупреждаю сразу: сильно просто не получится. Слишком уж сложная штука модуляция.

Что бы понять, что такое модуляция, нужно знать, что такое частота, с этого и начнём.
Для примера возьмём качели: частота качания качелей, это число полных колебаний, качелей в секунду.
Полных, это значит что одно колебание, это движение качели от самого крайнего левого положения, вниз, через центр до самого максимального уровня справа и потом опять через центр до того же уровня слева.
Обычные дворовые качели имеют частоту порядка 0,5 герца, значит что полное колебание они совершают за 2 секунды.
Динамик звуковой колонки качается гораздо быстрее, воспроизводя ноту "Ля" первой октавы (440 герц), он совершает 440 колебаний в секунду.
В электрических цепях колебания, это качание напряжения, от максимального положительного значения, вниз, через ноль напряжения до максимального отрицательного значения, вверх, через ноль опять до максимального положительного. Или от максимального напряжения, через некое среднее до минимального, потом опять через среднее, опять до максимального.
На графике (или экране осциллографа) это выглядит так:

Частота колебаний напряжения на выходе радиостанции излучающей несущую на 18 канале сетки C в "европпе" будет 27175000 колебаний в секунду или 27 мегагерц и 175 килогерц (мега - миллион; кило - тысяча).

Что бы сделать модуляцию наглядной, выдумаем два неких сигнала, один частотой 1000Гц, второй 3000Гц, графически они выглядят так:

Заметим, как отображены эти сигналы на графиках слева. Это графики частоты и уровня. Чем больше частота сигнала, тем правее будет изображён на таком графике сигнал, чем больше его уровень (мощность), тем выше линия этого сигнала на графике.

Теперь представим, что оба эти сигнала мы сложили, то есть в готовом виде наш вымышленный тестовый сигнал есть сумма двух сигналов. Как сложили? Очень просто - поставили микрофон и посадили двух людей перед ним: мужика, который кричал на частоте 1000Гц и бабу, которая верещала на 3000Гц, на выходе микрофона мы получили наш тестовый сигнал, который выглядит так:

И вот именно этот тестовый сигнал мы и будем "подавать" на микрофонный вход нашего вымышленного передатчика, изучая что получается на выходе (на антенне) и как всё это влияет на разборчивость и дальность связи.

О модуляции вообще

Модулированный сигнал несущей на выходе любого передатчика в любом случае (при любой модуляции) получается методом сложения или умножения сигнала несущей на сигнал, который нужно передать, например сигнал с выхода микрофона. Разница между модуляциями лишь в том, что умножается, с чем складывается и в какой части схемы передатчика это происходит.
В плане приёма, тут всё сводится к тому, что бы из принятого сигнала выделить то, чем был модулирован сигнал, усилить это и сделать понятным (слышимым, видимым).

Амплитудная модуляция - AM (АМ, амплитудная модуляция)

Как можно видеть, при амплитудной модуляции уровень напряжения колебаний высокой частоты (несущей) напрямую зависит от величины напряжения поступающего с микрофона.
Напряжение на выходе микрофона увеличивается, увеличивается и напряжение несущей на выходе передатчика, то есть больше мощности на выходе, меньше напряжение с микрофона, меньше напряжение на выходе. Когда напряжение на выходе микрофона в некой центральной позиции, то передатчик излучает некую центральную мощность (при АМ модуляции в 100% при тишине перед микрофоном 50% мощности).
Глубиной АМ модуляции называется уровень влияния сигнала с микрофона на уровень выходной мощности передатчика. Если виляние 30% то значит самый сильный отрицательный импульс напряжения с микрофона уменьшит уровень несущей на выходе на 30% от максимальной мощности.
А вот так выглядит спектр сигнала с AM модуляцией (распределение его компонентов по частотам):

По центру, на частоте 27175000 Гц у нас несущая, а ниже и выше по частоте "боковые полосы", то есть суммы сигнала несущей и звуковых частот нашего тестового сигнала:
27175000+1000Гц и 27175000-1000Гц
27175000+3000Гц и 27175000-3000Гц
Сигналы "несущая минус звук" - нижняя боковая полоса, а "несущая плюс звук" - верхняя боковая полоса.
Не трудно заметить, что для передачи информации достаточно только одной боковой полосы, вторая лишь повторяет ту же самую информацию, но только с противоположным знаком попусту расходуя мощность передатчика на излучение этой дублирующей информации в эфир.
Если убрать несущую, которая полезной информации вообще не содержит и одну из боковых полос, то получиться SSB модуляция (по-русски: ОБП) - модуляция с одной боковой полосой и отсутствующей несущей (однополосная модуляция).

SSB модуляция (ОБП, однополосная модуляция)

Вот так выглядит SSB на выходе передатчика:

Видно, что этот сигнал мало чем отличается от АМ модуляции. Оно и понятно, SSB это продолжение AM, то есть SSB создаётся из АМ модуляции, из сигнала которой удаляется не нужная боковая полоса и несущая.
Если же взглянуть на спектр сигнала, то разница очевидна:

Здесь нет ни несущей ни дублирующей боковой полосы (на этом графике показана USB, т.е. однополосная модуляция, где оставлена верхняя боковая полоса, есть ещё и LSB, это когда оставлена нижняя боковая полоса).
Нет несущей, нет дублирующей боковой - вся мощность передатчика уходит только на передачу полезной информации.
Только принять такую модуляцию на обычный АМ приёмник невозможно. Для приёма нужно восстановить "отправную точку" - несущую. Сделать это просто - частота на которой работает передатчик известна, значит нужно лишь добавить несущую такой же частоты и отправная точка появиться. Любопытный читатель наверно уже заметил, что если не известна частота передатчика, то отправная точка будет не правильная, мы добавим не ту несущую, что же мы при этом услышим? А услышим мы при этом голос или "быка" или "гномика". Произойдёт это потому, что приёмник в данном виде модуляции не знает, какие частоты были у нас изначально, то ли это были 1000Гц и 3000Гц, то ли 2000Гц и 4000Гц, то ли 500Гц и 2500Гц - "расстояния" то между частотами верные, а вот начало сместиться, как результат или "пи-пи-пи" или "бу-бу-бу".

CW модуляция (телеграф)

С телеграфом всё просто - это сигнал 100% АМ модуляция, только резкая: или сигнал есть на выходе передатчика или сигнала нет. Нажат телеграфный ключ - есть сигнал, отпущен - нет ничего.
Выглядит на графиках телеграф вот так:

Соответственно спектр телеграфного сигнала:

То есть частота несущей 100% промодулирована нажатиями на телеграфный ключ.
Почему на спектре 2 палочки немного отступая от сигнала "центральной частоты" а не одна единственная - несущей?
Здесь всё просто: как бы то ни было, телеграф это АМ, а АМ это сумма сигналов несущей и модуляции, так как телеграф (морзянка), это серия нажатий на ключик то это тоже колебания с некоторой но частотой, пусть и низкой по сравнению со звуком. Именно на частоту нажатия на ключик и отступают боковые полосы телеграфного сигнала от несущей.
Как передавать такие сигналы?
В простейшем случае - нажимая на кнопку передачи во время молчания перед микрофоном.
Как принимать такие сигналы?
Для приёма нужно несущую, появляющуюся в эфире в такт нажатиям на ключ, превратить в звук. Методов много, самый простой - подключить к выходу детектора АМ приёмника схему, которая пикает каждый раз как на детекторе появляется напряжение (т.е. на детектор поступает несущая). Более сложный и разумный способ - смешать сигнал поступающий из эфира с сигналом генератора (гетеродина) встроенного в приёмник, а разность сигналов подать на усилитель звука. Так если частота сигнала в эфире 27175000Гц, частота генератора приёмника 27174000, то на вход усилителя звуковой частоты поступит сигнал 27175000+27174000=54349000Гц и 27175000-27174000=1000Гц, естественно первый из них не звуковой а радиосигнал, его усилитель звука не усилит, а вот второй, 1000Гц, это уже слышимый звук и его он усилит и мы услышим "пииии", пока есть в эфире несущая и тишину (шумы эфира) когда нет.
Кстати, когда включаются двое на передачу одновременно, эффект "пииии" возникающий от сложения и вычитания несущих в приёмнике, думаю, замечали многие. То что слышно - разница между сигналами несущих возникающая в нашем приёмнике.

FM модуляция (ЧМ, частотная модуляция)

Собственно суть частотной модуляции проста: частота несущей в такт напряжению на выходе микрофона немного меняется. Когда напряжение на микрофоне увеличивается, увеличивается и частота, когда уменьшается напряжение на выходе микрофона, то уменьшается и частота несущей.
Уменьшение и увеличение частоты несущей происходит в небольших пределах, например для Си-Би радиостанций это плюс/минус 3000Гц при частоте несущей порядка 27000000Гц, для радиовещательных станций FM диапазона, это плюс/минус 100000Гц.
Параметр ЧМ модуляции - индекс модуляции. Соотношение звука максимальной частоты которую пропустит микрофонный усилитель передатчика к максимальному изменению частоты несущей при самом громком звуке. Не трудно заметить, что для Си-Би это 1 (или 3000/3000), а для вещательных станций FM это примерно 6 ... 7 (100000/15000).
При ЧМ модуляции несущая по уровню (мощность сигнала передатчика) всегда постоянна, она не меняется от громкости звуков перед микрофоном.
В графическом виде, на выходе передатчика ЧМ модуляция выглядит так:

При ЧМ модуляции, как и при АМ на выходе передатчика есть и несущая и две боковые полосы, так как частота несущей болтается в такт модулирующему сигналу, отступая от центра:

DSB, ДЧТ, фазовая и другие виды модуляции

Справедливости ради, нужно отметить, что существуют и другие виды модуляции несущей:
DSB - две боковые полосы и отсутствующая несущая. DSB, по сути АМ модуляция у которой удалена (вырезана, подавлена) несущая.
ДЧТ - двухчастотный телеграф, по сути, есть не что иное, как частотная модуляция, но нажатиями телеграфного ключа. Например, точке соответствует сдвиг несущей на 1000Гц, а тире на 1500Гц.
Фазовая модуляция - модуляция фазы несущей. Частотная модуляция при малых индексах 1-2 по сути есть фазовая модуляция.

В некоторых системах (телевидение, FM стерео радиовещание) модуляция несущей осуществляется ещё одной промодулированной несущей, а она уже и несёт полезную информацию.
Например, упрощённо, FM стерео вещательный сигнал, это несущая промодулированная частотной модуляцией, сигналом который сам есть несущая промодулированная DSB модуляций, где одна боковая - это сигнал левого канала, а другая боковая полоса это сигнал правого канала звука.

Важные аспекты приёма и передачи сигналов АМ, ЧМ и SSB

Так как АМ и SSB это модуляции, у которых выходной сигнал передатчика пропорционален напряжению, поступающему с микрофона, то важно, что бы он линейно усиливался, как на приёмной, так и на передающей стороне. То есть если усилитель усиливает в 10 раз, то при напряжении на его входе 1 вольт на выходе должно быть 10 вольт, а при 17 вольтах на входе на выходе должно быть точно 170 вольт. Если усилитель будет не линеен, то есть при напряжении на входе 1 вольт усиление 10 и на выходе 10 вольт, а при 17 вольтах на входе усиление окажется лишь 5 и на выходе будет 85 вольт, то появятся искажения - хрипы и хрюки при громких звуках перед микрофоном. Если усиление будет наоборот меньше для малых входных сигналах, то будут хрипы при тихих звуках и неприятные призвуки даже при громких (потому что в начале своего колебания любой звук проходит зону близкую к нулю).
Особенна важна линейность усилителей для SSB модуляции.

Для выравнивания уровней сигналов в приёмниках АМ и SSB используются специальные узлы схемы - автоматические регуляторы усиления (схемы АРУ). Задача АРУ выбирать такое усиление узлов приёмника, что бы и сильный сигнал (от близкого корреспондента) и слабый (от удалённого), в конце концов, оказались примерно одинаковыми. Если АРУ не использовать, то слабые сигналы будут слышны тихо-тихо, а сильные разорвут излучатель звука приёмника в клочки, как капля никотина разрывает хомяка. Если же АРУ будет слишком быстро реагировать на изменение уровня, то она начнёт не просто выравнивать уровни сигналов от близких и далёких корреспондентов, но и внутри сигнала "душить" модуляцию - уменьшая усиление при повышении напряжения и повышая при понижении, сводя всю модуляцию к немодулированному сигналу.

Для ЧМ модуляции не требуется особой линейности усилителей, при ЧМ модуляции информацию несёт изменение частоты и никакое искажение или ограничение уровня сигнала не может изменить частоту сигнала. Собственно в приёмнике ЧМ вообще обязательно установлен ограничитель уровня сигнала, так как уровень не важен, важна частота, а изменение уровня будет только мешать выделить изменения частоты и превратить ЧМ несущую в звук сигнала, которым она промодулирована.
К слову сказать, именно из-за того, что в ЧМ приёмнике все сигналы ограничиваются, то есть слабые шумы имеют почти тот же уровень, что и сильный полезный сигнал, в отсутствии сигнала ЧМ детектор (демодулятор) так сильно шумит - он пытается выделить изменение частоты шумов на входе приёмника и шумов самого приёмника, а в шумах изменение частоты сильно велико и случайно, вот и слышны случайные сильные звуки: громкий шум.
В АМ и SSB приёмнике шума при отсутствии сигнала меньше, так как сам шум приёмника по уровню всё же мал и шумы на входе по сравнению с полезным сигналом по уровню малы, а для AM и SSB важен именно уровень.

Для телеграфа тоже не очень важна линейность, там информацию несёт само наличие или отсутствие несущей, а её уровень лишь побочный параметр.

ЧМ, АМ и SSB на слух

В сигналах АМ и SSB гораздо заметнее импульсные помехи, такие как треск неисправного зажигания автомобилей, щелчки грозовых разрядов или рокот от импульсных преобразователей напряжения.
Чем слабее сигнал, чем меньше его мощность, тем тише звук на выходе приёмника, а чем сильнее, тем громче. Хотя АРУ и делает своё дело, выравнивая уровни сигналов, но её возможности не бесконечны.
Для SSB модуляции практически невозможно пользоваться шумоподавителем и вообще понять, когда другой корреспондент отпустил передачу, так как при молчании перед микрофоном в SSB передатчик в эфир ничего не излучает - нет несущей, а если перед микрофоном тишина, то нет и боковых полос.

ЧМ сигналы меньше подвержены влиянию импульсных помех, но из-за сильного шума ЧМ детектора в отсутствии сигнала просто невыносимо сидеть без шумоподавителя. Каждое выключение передачи корреспондента в приёмнике сопровождается характерным "пшык" - детектор уже начал переводить шумы в звук, а шумоподавитель ещё не закрылся.

Если слушать АМ на ЧМ приёмник или наоборот, то будет слышно хрюканье, но разобрать о чём речь всё же можно. Если на ЧМ или АМ приёмник послушать SSB, то будет только дикая аудио-каша из "хрю-жу-жу-бжу" и совершенно никакой разборчивости.
На SSB приёмник можно прекрасно послушать CW (телеграф), АМ, а с некоторыми искажениями и ЧМ с малыми индексами модуляции.

Если включаются одновременно две или больше АМ или ЧМ радиостанций на одной частоте, то получается каша из несущих, этакий писк и визг среди которого ничего не разобрать.
Если же включатся два или больше SSB передатчика на одной частоте, то в приёмнике будет слышно всех, кто говорил, так как несущей у SSB нет и биться (смешиваться до свиста) нечему. Слышно всех, так, словно все сидят в одной комнате и разом заговорили.

Если у АМ или ЧМ частота приёмника не точно совпадает с частотой передатчика, то появляются искажения на громких звуках, "подхрипывания".
Если у SSB передатчика частота меняется в такт уровню сигнала (например, аппаратура не тянет по питанию), то в голосе слышно бульканье. Если плавает частота приёмника или передатчика, то звук плавает по частоте, то "бубнит", то "чирикает".

Эффективность видов модуляции - АМ, ЧМ и SSB

Теоретически, подчёркиваю - теоретически, при равной мощности передатчика, дальность связи от вида модуляции будет зависеть так:
АМ = Расстояние * 1
ЧМ = Расстояние * 1
SSB = Расстояние * 2
В той самой теории, энергетически, SSB выигрывает у АМ в 4 раза по мощности, или в 2 раза по напряжению. Выигрыш появляется за счёт того, что мощность передатчика не расходуется на излучение бесполезной несущей и попусту дублирующей информацию второй боковой полосы.
На практике выигрыш меньше, так как мозг человека не привык слышать шумы эфира в паузах между громкими звуками и несколько страдает разборчивость.
ЧМ тоже модуляция "с сюрпризом" - одни умные книги говорят, что АМ и ЧМ одна другой не лучше, а то и вовсе ЧМ хуже, другие утверждают, что при малых индексах модуляции (а это Си-Би и радиолюбительские радиостанции) ЧМ выигрывает у АМ в 1,5 раза. На деле, по субъективному мнению автора ЧМ "пробивнее", чем АМ примерно в 1,5 раза, прежде всего, потому что ЧМ менее подвержена импульсным помехам и качаниям уровня сигнала.

Аппаратура АМ, ЧМ и SSB в плане сложности и переделки одного в другое

Самая сложная аппаратура это SSB.
По сути SSB аппарат с лёгкостью может работать в AM или ЧМ после ничтожно малой переделки.
Переделать АМ или ЧМ приёмопередатчик в SSB почти невозможно (потребуется ввести в схему очень, очень много дополнительных узлов и полностью переделать блок передатчика).
От автора: переделка АМ или ЧМ аппарата в SSB лично мне кажется полным безумием.
SSB аппарат "с нуля" - собирал, но что бы переделать АМ или ЧМ в SSB - нет.

Второй по сложности, это ЧМ аппарат.
По сути ЧМ аппарат уже содержит в приёмнике всё, что нужно для детектирования АМ сигналов, так как у него тоже есть АРУ (автоматическая регулировка усиления) и следовательно детектор уровня принимаемой несущей, то есть по сути полноценный АМ приёмник, только работающий где-то там, внутри (от этой части схемы работает и пороговый шумоподавитель).
С передатчиком будет сложнее, так как почти все его каскады работают в не линейном режиме.
От автора: переделать можно, но никогда в этом не было нужды.

АМ аппаратура самая простая.
Что бы переделать АМ приёмник в ЧМ, потребуется ввести новые узлы - ограничитель и ЧМ детектор. По факту ограничитель и ЧМ детектор, это 1 микросхема и чуть-чуть деталей.
Переделка АМ передатчика в ЧМ значительно проще, так как нужно лишь ввести цепочку, которая будет "болтать" частоту несущей в такт напряжению, поступающему с микрофона.
От автора: пару раз переделывал АМ трансивер в АМ/ЧМ, в частности Си-Би радиостанции "Cobra 23 plus" и "Cobra 19 plus".

» её автор довольно сумбурно попытался представить своё понимание формирования спектра при амплитудной модуляции. Но отсутствие иллюстраций и избыток математики с привлечением интегральных преобразований помешало сообществу понять мысли автора и оценить статью по достоинству; в то время как тема это достаточно простая - и рассмотреть которую мы попробуем ещё раз, на этот раз с картинками и привлечением Wolfram Mathematica.

Итак, идея амплитудной модуляции состоит в том, чтобы передавать низкочастотный сигнал - голос или музыку - модулируя высокочастотный (несущий) сигнал, многократно превышающий слышимый диапазон и занимающий узкую полосу частот в радиоэфире. Сама модуляция осуществляется простым умножением сигнала на несущий:

Здесь у нас в качестве несущей выступает синусоида с частотой 5:

А сам сигнал - с частотой 1:

Можно заметить, что сигнал смещён вверх и имеет только положительные значения. Это не случайно и является обязательным условием для возможности последующего его корректного восстановления. Как же его восстановить? Очень просто! Нужно сдвинуть фазу промодулированного сигнала на 90 градусов (операция, известная как преобразование Гильберта), и посчитать корень из суммы квадратов модулированного и преобразованного сигналов:

В более простом (но грубом) варианте преобразование Гильберта можно заменить задержкой сигнала на четверть периода несущий частоты, а итоговый сигнал дополнительно отфильтровать фильтром низких частот. В ещё более простом варианте можно вообще не считать корней и квадратов, а отфильтровать сигнал по абсолютному значению (что и применяется обычно в радиоприёмниках).

Теперь посмотрим, что у нас происходит со спектрами. Посчитаем преобразование Фурье от несущей:

Так как дельта-функция Дирака не является функцией в классическом смысле, её график нельзя построить стандартным способом; поэтому сделаем это вручную, используя общепринятое начертание:

Ожидаемо получили ту же частоту, что и в начальной формуле. Наличие ещё одной такой же частоты, но со знаком минус, не случайно - это явление называется Hermitian symmetry и является следствием того, что рассматриваемая функция сугубо действительная и в комплексном представлении имеет нулевую мнимую компоненту. Отсутствие мнимых компонент в спектре после преобразования обусловлено тем, что изначально наши функции ещё и чётные (симметричные относительно нуля).

Теперь сделаем преобразование Фурье для самого сигнала:

Здесь мы дополнительно получили дельта-функцию Дирака в центре координат - вследствие наличия в сигнале постоянной составляющей, которая не имеет колебаний по определению - что позволяет её рассматривать как нулевую частоту.

Что же будет со спектром, если их перемножить? Посмотрим:

Из теории мы знаем, что умножение во временном домене равносильно свертке в частотном (и наоборот, что широко используется при FIR-фильтрации). А поскольку один из подвергаемых свёртке сигналов состоял только из одной (положительной и отрицательной) частоты, то в результате свёртки мы получили просто линейный перенос сигнала вверх по частоте (в обе стороны). И так как симметрия осталась, сигнал у нас по-прежнему не имеет мнимой компоненты.

Приведём его теперь к комплексному (аналитическому) виду, обнулив отрицательную область частот:

И сделаем обратное преобразование Фурье:

Так как функция теперь комплексная, для построения её графика необходимо отдельно извлечь действительную и мнимую компоненты:

Теперь у нашего сигнала появилась мнимая компонента, представляющая собой сдвинутый на 90 градусов исходный сигнал. Это будет более очевидным, если представить полученную функцию в тригонометрическом виде:

Пока не очень очевидно. Попробуем упростить:

Теперь больше похоже на правду - и как видим, функция нашего исходного сигнала тоже упростилась. Попробуем её вернуть к оригинальному виду:

Множитель 1/2 появился не случайно - ведь обнулив половину спектра, мы соответственно и уменьшили мощность сигнала. Ну а теперь, имея модулированный комплексный сигнал, мы можем взять и этот модуль посчитать:

Модуль комплексного числа как раз и считается через корень суммы квадратов мнимого и действительных компонентов. И отсюда понятно, почему кодируемый сигнал должен состоять только из положительных значений - если он будет включать отрицательные значения, то после восстановления они также станут положительными, что и называется перемодуляцией:

Восстановление сигнала также возможно и при помощи квадратурного гетеродина - когда модулированный сигнал снова умножается на несущую частоту, но на этот раз - комплексную:

За счёт того, что комплексная частота в частотной области имеет только один импульс без дублирования его в отрицательной области частот - то в результате свёртки мы получим линейный перенос спектра, при которой отрицательная часть спектра встанет обратно в центр, а положительная - сдвинется ещё дальше, и её останется только отфильтровать фильтром нижних частот.

Заключение

Как видим, в рассмотрении амплитудной модуляции через преобразовании Фурье нет ничего сложного; если же рассматривать её исключительно на школьном уровне, то достаточно вспомнить, что произведение (несущей) суммы (представление сигнала в виде тригонометрического ряда) равнозначно сумме произведений (каждого члена ряда по отдельности на несущую частоту) - и, соответственно, каждое такое произведение раскладывается на сумму двух синусоид по уже озвученной автором исходной статьи формуле.

Внимательный читатель также мог заметить, что раз в результате модуляции мы получили симметричный относительно несущей частоты спектр - значит, имеет место быть избыточность данных и можно оставить только одну боковую полосу, сократив тем самым занимаемую полосу частот в радиоэфире. Такая технология действительно

Лекция 11

Амплитудная модуляция

Модуляция (лат. modulatio - мерность, размерность ) - процесс изменения одного или нескольких параметров высокочастотного модулируемого колебания по закону информационного низкочастотного сообщения. То есть процесс модуляции означает процесс, при котором высокочастотная волна используется для переноса низкочастотной волны

В результате спектруправляющего сигнала переносится в область высоких частот, ведь для эффективного вещания в пространство необходимо чтобы все приёмо-передающие устройства работали на разных частотах и «не мешали» друг другу. Это процесс «посадки» информационного колебания на априорно известную несущую.

Передаваемая информация заложена в управляющем сигнале. Роль переносчика информации выполняет высокочастотное колебание, называемое несущим. В качестве несущего могут быть использованы колебания различной формы (прямоугольные, треугольные и т. д.), однако чаще всего применяютсягармонические колебания.

В зависимости от того, какой из параметров несущего колебания изменяется, различают вид модуляции (амплитудная,частотная,фазоваяи др.). Модуляция дискретным сигналом называется цифровой модуляцией илиманипуляцией.

Виды модуляций

Общий принцип модуляции состоит в изменении одного или нескольких параметров несущего колебания (электромагнитного колебания) f(t,a,в,...) в соответствии с передаваемым сообщением. Так, если в качестве переносчика выбрано гармоническое колебание f(t) - U cos(ω 0 t + φ) , то можно образовать три вида модуляции: амплитудную (AM), частотную (ЧМ) и фазовую (ФМ).

Применение радиоимпульсов позволяет получить ещё два вида модуляции: по частоте и по фазе высокочастотного заполнения.

В ряде случаев каналы связи обладают более широкой полосой пропускания, чем это требуется для передачи одного сообщения. Так спектр телефонного сигнала согласно нормам Международного консультативного комитета по телеграфии и телефонии (МККТТ) ограничивается полосой частот от 300 до 3400 Гц. Оказывается, что в этом диапазоне частот можно одновременно передавать несколько телеграфных сообщений. Реализация подобной возможности обеспечивается при различной модуляции сигналов (амплитудной, частотной, импульсно-кодовой), находящих широкое применение в средствах диспетчерской связи.

Наиболее простым, а потому самым распространенным, является способ амплитудной модуляции (АМ). Сущность его состоит в том, что амплитуда напряжения (или тока), вырабатываемого специальным генератором, подвергается изменению по закону модулирующего сигнала (рис 1.26). Для простоты модулирующий сигнал представлен суммой постоянной составляющей и первой гармоники с круговой частотой и амплитудой

(t)=+cost (1.26)

б)

Временные диаграммы а – модулирующий сигнал; б – колебания с АМ

Постоянной составляющей сигнала нулевой гармоники соответствует неизменное по амплитуде напряжение несущей частоты:

(t)=cost (1.27)

Когда к постоянной составляющей добавляется еще гармоническое колебание (1.26), то амплитуда несущей частоты начинает изменяться соответственно этому закону:

(t)=+cost (1.28)

Колебания несущей частоты с амплитудой, определяемой выражением (1.28), представляют собой сигнал с АМ:

(t)cost=(+cost)(1.29)

Отношение амплитуд модулирующего сигнала и несущей частоты называется коэффициентом модуляции:

m= (1.30)

В результате раскрытия скобок и тригонометрического преобразования косинусов выражение (1.29) с учетом формулы (1.30) приводится к виду:

u(t)=cost+

Сигнал с АМ состоит из трех разных частот: несущей и двух боковых , Спектр нормированных амплитуд такого сигнала иллюстрирует тот факт, что амплитудная модуляция сигналами, занимающими полосу частот от нуля доприводит к получению таких же полос, зеркально расположенных относительно несущей частоты. Таким образом, наряду с расширением полосы частот при АМ происходит еще смещение спектра сигнала в область несущей частоты.

В системах с амплитудной модуляцией (АМ) модулирующая волна изменяет амплитуду высокочастотной несущей волны. Анализ частот на выходе показывает присутствие не только входных частот Fc и Fm, но также их сумму и разность: Fc + Fm и Fc - Fm. Если модулирующая волна является комплексной, как например сигнал речи, который состоит из множества частот, то суммы и разности различных частот займут две полосы, одна ниже, другая выше несущей частоты. Их называют верхней и нижней боковыми. Верхняя полоса является копией изначального разговорного сигнала, только сдвинутого на частоту Fc. Нижняя полоса это инвертированная копия изначального сигнала, т.е. верхние частоты в оригинале являются нижними частотами в нижней боковой. Нижняя боковая это зеркальное отображение верхней боковой по отношению к частоте несущей Fc. Система с АМ, которая передает обе боковых и несущую, известна, как двухполосная система (DSB - double sidebaud). Несущая не несет никакой полезной информации и может быть убрана, но с несущей или без, полоса сигнала DSB вдвое больше полосы изначального сигнала. Для сужения полосы возможно вытеснение не только несущей, но и одной из боковых, так как они несут одну информацию. Этот вид работы известен, как однополосная модуляция с подавленной несущей (SSB-SC - Single SideBand Suppressed Carrier). Демодуляция сигнала АМ достигается путем смешивания модулированного сигнала с несущей той же самой частоты, что и на модуляторе. Изначальный сигнал затем получают, как отдельную частоту (или полосу частот) и его можно отфильтровать от других сигналов. При использовании SSB-SC несущая для демодуляции генерируется на месте и она может не совпадать каким либо образом с частотой несущей на модуляторе. Небольшая разница между двумя частотами является причиной несовпадения частот, что присуще телефонным цепям.

Спектр сигнала с АМ

Амплитудная модуляция (w м <

Как известно, АМ - вид модуляции, при которой амплитуда несущего сигнала изменяется по закону модулирующего (информационного) сигнала. Существует немало источников с теоретическим и практическим описанием АМ. Описание даётся, прежде всего, для того, чтобы показать частотный состав АМ сигнала. В качестве модулирующего сигнала обычно рассматривают однотональный сигнал. Данный сигнал задаётся простой функцией синуса. У меня всегда спрашивали, да и я задавался вопросом, как описать АМ на случай, если в качестве модулирующего сигнала будет произвольный сигнал. Именно произвольный сигнал, частотный спектр которого состоит из множества компонент, представляет интерес, так как АМ применяется в радиовещании для передачи звука.

Попробуем описать АМ для вышесказанного случая, принимая во внимание, что модулирующий сигнал можно представить, как непрерывную сумму простых однотональных сигналов разных частот с различными амплитудами и фазами. Не вдаваясь в тонкости математического анализа, данный сигнал можно записать как непрерывную сумму (интеграл) Фурье:

Где – верхний предел частоты сигнала (полоса модулирующего сигнала), - переменная интегрирования, отвечающая за частоту, причём . Функции и - амплитуда и фаза компоненты сигнала на частоте .

Подынтегральное выражение данной формулы представляет собой т.н. тригонометрическую свёртку в амплитудно-фазовый вид слагаемого ряда Фурье, в который можно разложить сигнал. Интеграл в (1) можно назвать интегралом Фурье, так как, фактически, это непрерывная сумма, т.е. непрерывный ряд Фурье, в который раскладывается исходный сигнал. Разложение сигнала в подобный ряд даёт представление о частотном составе этого сигнала. Таким образом, исходный модулирующий сигнал представлен в виде непрерывной суммы синусоид (в данном случае для удобства - ) различных частот от до , каждая из них имеет свою амплитуду фазовый сдвиг . Функция представляет собой частотный спектр исходного сигнала .

Стоит отметить, что сигнал рассматривается на ограниченном промежутке времени . Вообще говоря, если речь идёт о звуковом сигнале, то, как правило, частотный спектр имеет практический смысл рассматривать для очень коротких фрагментов сигнала. Очевидно, чем больше по времени продолжительность сигнала, тем больше низкочастотных (приближающихся к нулю) компонент будут фигурировать в спектральном составе, что нельзя сопоставить со звуковыми частотами в слышимом диапазоне.

Кроме модулирующего сигнала имеется тональный сигнал, представляющий собой несущее колебание с частотой , амплитудой и нулевой начальной фазой:

Причём . Действительно, в радиовещании частота несущей во много раз больше полосы передаваемого сигнала.

Теперь перейдём непосредственно к процессу амплитудной модуляции.

Известно, что АМ сигнал есть результат перемножения сигнала несущей и модулирующего сигнала, предварительно смещённого и «проиндексированного» индексом модуляции , т.е.

Во избежание так называемой перемодуляции .

Подставим исходные данные (1) и (2) в выражение (3), раскроем скобки, внесём под интеграл независящие от переменной интегрирования некоторые множители:

Применим известную школьную тригонометрическую формулу преобразования произведения для подынтегральных функций:

Данная формула носит ключевой характер при АМ и подчёркивает эти самые «две боковые» в спектральном составе АМ сигнала.

Продолжив равенство, разобьём интеграл получившейся суммы на сумму двух интегралов, раскроем скобки и вынесем за скобку нужные множители в аргументах функций:

Три получившихся слагаемых соответственно представляют собой, как видно из равенства, сигнал несущей, сигналы «нижней» и «верхней» боковой. Прежде чем дать конкретное пояснение, продолжим равенство, применив метод замены переменной в следующей конфигурации:

Воспользуемся этой самой заменой:

Поменяв в первом интеграле пределы интегрирования местами (в результате чего изменится знак перед интегралом на противоположный), можно два интеграла объединить в один. Более того, туда же можно внести и первое слагаемое, описывающее сигнал несущей. При этом, естественно, подынтегральные функции амплитуды и фазы необходимо обобщить. Это всё делается условно и для более детальной наглядности, не вдаваясь в тонкости математического анализа. Таким образом, получится:

Таким образом, были введены новые кусочнозаданные функции (4) и (5), описывающие изменение амплитуды и фазы в зависимости от частоты. Глядя на компоненты функции (4), можно заметить, что третья компонента получена путём параллельного переноса функции на , а первая - ещё и с предварительным зеркальным разворотом. Множители-константы перед функциями, уменьшающие амплитуду, я не беру во внимание. То есть, в спектре АМ сигнала имеются три компоненты: несущая, верхняя боковая и нижняя боковая, что и было отражено в (4).

В заключение стоит отметить, что АМ можно описать, применяя более сложный подход, основанный на комплексных сигналах и комплексных числах. Обычный сигнал, о котором шла речь в этой статье, не имеет мнимой компоненты. Принимая во внимание представление с помощью векторных диаграмм на комплексной плоскости, сигнал без мнимой компоненты складывается из двух комплексных сигналов с обоими компонентами. Это очевидно, если представлять однотональный сигнал в виде суммы двух векторов, которые вращаются в противоположные стороны симметрично относительно оси x (Re). Скорость вращения данных векторов эквивалентна частоте сигнала, а направление - знаку частоты (положительная или отрицательная). Из этого следует, что частотный спектр сигнала без мнимой компоненты имеет не только положительную, но и отрицательную составляющую. И, конечно же, он симметричен относительно нуля. Именно при таком представлении можно утвердить, что в процессе амплитудной модуляции спектр модулирующего сигнала переносится по шкале частот вправо от нуля на частоту несущей (и влево тоже). При этом «нижняя боковая» не возникает, она в исходном модулирующем сигнале уже существует, правда располагается в отрицательной области частот. Звучит на первый взгляд странно, так как в природе, казалось бы, не существует отрицательных частот. Но математика преподносит немало сюрпризов.

Теги: Добавить метки

Сигналы, поступающие из источника сообщений (микрофон, передающая телевизионная камера, датчик телеметрической системы), как правило, не могут быть непосредственно переданы по радиоканалу. Дело не только в том, что эти сигналы недостаточно велики по амплитуде. Гораздо существеннее их Относительная низкочастотностъ. Чтобы осуществить эффективную передачу сигналов в какой-либо среде, необходимо перемести спектр этих сигналов из низкочастотной области в область достаточно высоких частот. Данная процедура получила в радиотехнике название модуляции.

4.1. Сигналы с амплитудной модуляцией

Прежде чем изучать этот простейший вид модулированных сигналов, рассмотрим кратко некоторые вопросы, касающиеся принципов модуляции любого вида.

Понятие несущего колебания. Идея способа, позволяющего переносить спектр сигнала в область высоких частот, заключается в следующем. Прежде всего в передатчике формируется вспомогательный высокочастотный сигнал, называемый несущим колебанием. Его математическая модель такова, что имеется некоторая совокупность параметров определяющих форму этого колебания. Пусть - низкочастотное сообщение, подлежащее передаче по радиоканалу. Если, по крайней мере, один из указанных параметров изменяется во времени пропорционально передаваемому сообщению, то несущее колебание приобретает новое свойство - оно несет в себе: информацию, которая первоначально была заключена в сигнале

Физический процесс управления параметрами несущего колебания и является модуляцией.

В радиотехнике широкое распространение получили системы модуляции, использующие в качестве несущего простое гармоническое колебание

имеющее три свободных параметра

Изменяя во времени тот или иной параметр, можно получать различные виды модуляции.

Принцип амплитудной модуляции.

Если переменной оказывается амплитуда сигнала причем остальные два параметра и неизменны, то имеется амплитудная модуляция несущего колебания. Форма записи амплитудно-модулированного, или АМ-сигнала, такова:

Осциллограмма АМ-сигнала имеет характерный вид (см. рис. 4.1). Обращает на себя внимание симметрия графика относительно оси времени. В соответствии с формулой (4.2) AM-сигнал есть произведение огибающей и гармонического заполнения . В большинстве практически интересных случаев огибающая изменяется во времени гораздо медленнее, чем высокочастотное заполнение.

Рис. 4.1. АМ-сигналы при различных глубинах модуляции: а - неглубокая модуляция: б - глубокая модуляция; в - перемодуляция

При амплитудной модуляции связь между огибающей и модулирующим полезным сигналом принято определять следующим образом:

Здесь - постоянный коэффициент, равный амплитуде несущего колебания в отсутствие модуляции; М - коэффициент амплитудной модуляции.

Величина М характеризует глубину амплитудной модуляции. Смысл этого термина поясняется осциллограммами АМ-сигналов, изображенными на рис. 4.1, а-в.

При малой глубине модуляции относительное изменение огибающей невелико, т. е. во все моменты времени независимо от формы сигнала

Если же в моменты времени, когда сигнал достигает экстремальных значений, имеются приближенные равенства

то говорят о глубокой амплитудной модуляции. Иногда вводят дополнительно относительный коэффициент модуляции вверх

и относительный коэффициент модуляции вниз

AM-сигналы с малой глубиной модуляции в радиоканалах нецелесообразны ввиду неполного использования мощности передатчика.

В то же время 100%-ная модуляция вверх в два раза повышает амплитуду колебаний при пиковых значениях модулирующего сообщения. Дальнейший рост этой амплитуды, как правило, приводит к нежелательным искажениям из-за перегрузки выходных каскадов передатчика.

Не менее опасна слишком глубокая амплитудная модуляция вниз. На рис. 4.1, в изображена так называемая перемодуляция Здесь форма огибающей перестает повторять форму модулирующего сигнала.

Однотональная амплитудная модуляция.

Простейший АМ-сигнал может быть получен в случае, когда модулирующим низкочастотным сигналом является гармоническое колебание с частотой . Такой сигнал

называется однотоншьным АМ-сигналом.

Выясним, можно ли такой сигнал представить как сумму простых гармонических колебаний с различными частотами. Используя известную тригонометрическую формулу произведения косинусов, из выражения (4.4) сразу получаем

Формула (4.5) устанавливает спектральный состав однотонального АМ-сигнала. Принята следующая терминология: - несущая частота, - верхняя боковая частота, - нижняя боковая частота.

Строя по формуле (4.5) спектральную диаграмму однотонального АМ-сигнала, следует прежде всего обратить внимание на равенство амплитуд верхнего и нижнего боковых колебаний, а также на симметрию расположения этих спектральных составляющих относительно несущего колебания.

Энергетические характеристики АМ-сигнала.

Рассмотрим вопрос о соотношении мощностей несущего и боковых колебаний. Источник однотонального АМ-сигнала эквивалентен трем последовательно включенным источникам гармонических колебаний:

Положим для определенности, что это источники ЭДС, соединенные последовательно и нагруженные на единичный резистор. Тогда мгновенная мощность АМ-сигнала будет численно равна квадрату суммарного напряжения:

Чтобы найти среднюю мощность сигнала, величину необходимо усреднить по достаточно большому отрезку времени Т:

Легко убедиться в том, что при усреднении все взаимные мощности дадут нулевой результат, - поэтому средняя мощность АМ-сигнала окажется равной сумме средних мощностей несущего и боковых колебаний:

Отсюда следует, что

Так, даже при 100%-ной модуляции (М = 1) доля мощности обоих боковых колебаний составляет всего лишь 50% от мощности смодулированного несущего колебания. Поскольку информация о сообщении заключена в боковых колебаниях, можно отметить неэффективность использования мощности при передаче АМ-сигнала.

Амплитудная модуляция при сложном модулирующем сигнале.

На практике однотональные AM-сигналы используются редко. Гораздо более реален случай, когда модулирующий низкочастотный сигнал имеет сложный спектральный состав. Математической моделью такого сигнала может быть, например, тригонометрическая сумма

Здесь частоты , образуют упорядоченную возрастающую последовательность в то время как амплитуды и начальные фазы Ф, - произвольны.

Подставив формулу (4.9) в (4.3), получим

Введем совокупность парциальных (частичных) коэффициентов модуляции

и запишем аналитическое выражение сложномодудированного (многотонального) АМ-сигнала в форме, которая обобщает выражение (4.4):

Спектральное разложение проводится так же, как и для однотонального АМ-сигнала:

На рис. 4.2, а изображена спектральная диаграмма модулирующего сигнала построенная в соответствии с формулой (4.9). Рис. 4.2,б воспроизводит спектральную диаграмму многотонального АМ-сигнала, отвечающего этому модулирующему колебанию.

Рис. 4.2. Спектральные диаграммы а - модулирующего сигнала; б - АМ-сигнала при многотональной модуляции

Итак, в спектре сложномодулированного АМ-сигнала, помимо несущего колебания, содержатся группы верхних и нижних боковых колебаний. Спектр верхних боковых колебаний является масштабной копией спектра модулирующего сигнала, сдвинутой в область высоких частот на величину Спектр нижних боковых колебаний также повторяет спектральную диаграмму сигнала располагается зеркально относительно несущей частоты

Из сказанного следует важный вывод: ширина спектра АМ-сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего низкочастотного сигнала.

Пример 4.1. Оценить число вещательных радиоканалов, которые можно разместить в диапазоне частот от 0.5 до 1.5 МГц (примерные границы средневолнового вещательного диапазона).

Для удовлетворительного воспроизведения сигналов радиовещания необходимо воспроизводить звуковые частоты от 100 Гц до 12 кГц. Таким образом, полоса частот, отводимая одному АМ-каналу, равна 24 кГц. Чтобы избежать перекрестных помех между каналами, следует предусмотреть защитный интервал шириной в 1 кГц. Поэтому допустимое число каналов

Амплитудно-манипулированные сигналы.

Важным классом многотональных АМ-сигналов являются так называемые манипулированные сигналы. В простейшем случае это - последовательности радиоимпульсов, отделенных друг от друга паузами. Такие сигналы используются в радиотелеграфии и в системах передачи дискретной информации по радиоканалам.

Если s(t) - функция, в каждый момент времени принимающая значение либо 0, либо 1, то амплитудио-манипулированный сигнал представляется в виде

Пусть, например, функция отображает периодическую последовательность видеоимпульсов, рассмотренную в примере 2.1 (см. гл. 2). Считая, что амплитуда этих импульсов на основании (4.14) имеем при

где q - скважность последовательности.

Векторная диаграмма АМ-сигнала.

Иногда полезным может оказаться графическое изображение АМ-сигнала посредством суммы векторов, вращающихся в комплексной плоскости.

Для простоты рассмотрим одиотональную модуляцию. Мгновенное значение несущего колебания есть проекция неподаижного во времени вектора на ось отсчета углов, которая вращается вокруг начала координат с угловой скоростью в направлении часовой стрелки (рис. 4.3).

Верхнее боковое колебание отображается на диаграмме вектором длиной причем его фазовый угол при равен сумме начальных фаз несущего и модулирующего сигналов [см. формулу (4.5).

Рис. 4.3. Векторные диаграммы однотонального АМ-сигнала: а - при ; б - при

Такой же вектор для нижнего бокового колебания отличается лишь знаком в выражении для его фазового угла. Итак, на комплексной плоскости необходимо построить сумму трех векторов

Легко видеть, что эта сумма будет ориентирована вдоль вектора йнес. Мгновенное значение АМ-сигнала при окажется равным проекции конца результирующего вектора на горизонтальную ось (рис. 4.3,а).

С течением времени, помимо отмеченного вращения оси отсчета углов, будут наблюдаться следующие трансформации чертежа (рис. 4.3,6): 1) вектор будет вращаться вокруг точки своего приложения с угловой скоростью в направлении против часовой стрелки, поскольку фаза верхнего бокового колебания возрастает быстрее фазы несущего сигнала; 2) вектор будет вращаться также с угловой скоростью , но в противоположном направлении.

Строя суммарный вектор и проецируя его на ось отсчета углов, можно найти мгновенные значения и в любой момент времени.

Балансная амплитудная модуляция.

Как было показано, значительная доля мощности обычного АМ-сигнала сосредоточена в несущем колебании. Для более эффективного использования мощности передатчика можно формировать АМ-сигналы с подавленным несущим колебанием, реализуя так называемую балайсную амплитудную модуляцию. На основании формулы (4.4) представление однотонального АМ-сигнала с балансной модуляцией таково:

Имеет место перемножение двух сигналов - модулирующего и несущего. Колебания вида (4.16) с физической точки зрения являются биениями двух гармонических сигналов с одинаковыми амплитудами и частотами, равными верхней и нижней боковым частотам.

При многотональной балансной модуляции аналитическое выражение сигнала принимает вид

Как и при обычной амплитудной модуляции, здесь наблюдаются две симметричные группы верхних и ннжних боковых колебаний.

Если рассмотреть осциллограмму биений, может показаться неясным, почему в спектре этого сигнала нет несущей частоты, хотя налицо присутствие высокочастотного заполнения, изменяющегося во времени именно с этой частотой.

Дело в том, что при переходе огибающей биений через нуль фаза высокочастотного заполнения скачком изменяется на 180°, поскольку функция имеет разные знаки слева и справа от нуля. Если такой сигнал подать на высокодобротную колебательную систему (например, -контур), настроенную на частоту то выходной эффект будет очень мал, стремясь к нулю при возрастании добротности. Колебания в системе, возбужденные одним периодом биений, будут гаситься последующим периодом. Именно так с физических позиций принято рассматривать вопрос о реальном смысле спектрального разложения сигнала. К этой проблеме вернемся вновь в гл. 9.

Однополосная амплитудная модуляция.

Еще более интересное усовершенствование принципа обычной амплитудной модуляции заключается в формировании сигнала с подавленной верхней или нижней боковой полосой частот.

Сигналы с одной боковой полосой (ОБП или SSB-сигналы - от англ. single sideband) по внешним характеристикам напоминают обычные AM-сигналы. Например, однотональный ОБП-сигнал с подавленной нижней боковой частотой записывается в виде

Проводя тригонометрические преобразования, получаем

Два последних слагаемых представляют собой произведение двух функций, одна из которых изменяется во времени медленно, а другая - быстро. Принимая во внимание, что «быстрые» сомножители находятся по отношению друг к другу во временной квадратуре, вычисляем медленно изменяющуюся огибающую ОБП-сигнала:

Рис. 4.4. Огибающие однотональных модулированных сигналов при - ОБП-сигнала; 2 - обычного АМ-сигнала

График огибающей ОБП-сигнала, рассчитанный по формуле (4.18) при изображен на рис. 4.4. Здесь же для сравнения построена огибаюшая обычного однотонального АМ-сигнала с тем же коэффициентом модуляции.

Сравнение приведенных кривых показывает, что непосредственная демодуляция ОБП-сигнала по его огибающей будет сопровождаться значительными искажениями.

Дальнейшим усовершенствованием систем ОБП является частичное или полное подавление несущего колебания. При этом мощность передатчика используется еще более эффективно.