Сайт о телевидении

Сайт о телевидении

» » Тиристор принцип работы. Что такое тиристор

Тиристор принцип работы. Что такое тиристор

Тиристор - электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).

Это сухая формулировка, которая для тех, кто только начинает осваивать электротехник у, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес

Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.

Способ обозначения на схемах показан на рисунке 1.

Электронный элемент имеет следующие выводы:

  • анод положительный вывод;
  • катод отрицательный вывод;
  • управляющий электрод G.

Принцип действия тиристора

Основное применение этого типа элементов это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность . При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Схема включения

Схема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Характеристики

К основным характеристикам можно отнести следующие:

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.

Симисторы

Хотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т.е. ток пропускается только в одну сторону).

Схема тиристора

Этот преобразователь имеет два устойчивых состояния: закрытое (состояние низкой проводимости) и открытое (состояние высокой проводимости). Назначение тиристора – выполнение функции электроключа, особенность которого – невозможность самостоятельного переключения в закрытое состояние. Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока. Основным материалом при производстве этого полупроводникового устройства является кремний. Корпус изготавливается из полимерных материалов или металла – для моделей, работающих с большими токами.

Устройство тиристора и области применения

В состав прибора входят 3 электрода:

  • анод;
  • катод;
  • управляющий электрод.

В отличие от двухслойного диода, тиристор состоит из 4-х слоев – p-n-p-n. Оба устройства пропускают ток в одну сторону. На большинстве старых моделей его направление обозначается треугольником. Внешнее напряжение подается знаком «-» на катодный электрод (область с электропроводностью n-типа), «+» – на анодный электрод (область с электропроводностью p-типа).

Тиристоры применяют в сварочных инверторах, блоках питания зарядного устройства для автомобиля, в генераторах, для устройства простой сигнализации, реагирующей на свет.

Принцип работы тиристоров

В специализированной литературе тиристор называется «однооперационным» и относится к группе не полностью управляемых радиодеталей. Он переходит в активное состояние при получении импульса определенной полярности от объекта управления. На скорость активации и последующее функционирование оказывают влияние:

  • характер нагрузки – индуктивная, реактивная;
  • величина тока нагрузки;
  • скорость и амплитуда увеличения управляющего импульса;
  • температура среды устройства;
  • уровень напряжения.

Переключение из одного состояния в другое осуществляется с помощью управляющих сигналов. Для полного отключения тиристора требуется выполнить дополнительные действия. Выключение осуществляется несколькими способами:

  • естественное выключение (естественная коммутация);
  • принудительное выключение (принудительная коммутация), этот вариант может осуществляться множеством способов.

При эксплуатации возможны незапланированные переключения из одного положения в другое, которые провоцируются перепадами характеристик электроэнергии и температуры.

Классификационные признаки

По способу управления различают следующие виды тиристоров:

Диодные (динисторы)

Активируются импульсом высокого напряжения, подаваемым на анод и катод. В конструкции присутствуют 2 электрода, без управляющего.

Триодные (тринисторы)

Разделяются на две группы. В первой управляющее напряжение поступает катод и электрод управления, во второй – на анод и управляющий электрод.

Симисторы

Выполняют функции двух включенных параллельно тиристоров.

Оптотиристоры

Их функционирование осуществляется под действием светового потока. Функцию управляющего электрода выполняет фотоэлемент.

По обратной проводимости тиристоры разделяются на:

  • обратно проводящие;
  • обратно непроводящие;
  • с ненормируемым обратным значением напряжения;
  • пропускающие токи в двух направлениях.

Основные характеристики тиристоров, на которые стоит обратить внимание при покупке

  • Максимально допустимый ток. Эта величина характеризует наибольшее значение тока открытого тиристора. У мощных устройств она составляет несколько сотен ампер.
  • Максимально допускаемый обратный ток.
  • Прямое напряжение. Этот параметр тиристора равен падению напряжения при максимально возможном токе.
  • Обратное напряжение. Характеризует максимально допустимое напряжение на устройстве, находящемся в закрытом состоянии, при котором оно не утрачивает способность выполнять свои функции.
  • Напряжение включения. Это наименьшая величина, при которой возможно функционирование тиристора.
  • Минимальный ток управляющего электрода. Равен величине тока, которого достаточно для активации устройства.
  • Наибольшая допустимая рассеиваемая мощность.

Проверка тиристора на исправность

Прибор можно проверить несколькими способами, один из них – использование специального самодельного тестера, собираемого по представленной ниже схеме.

Данный прибор можно рассматривать и применять в качестве электронного выключателя или ключа, которые управляются с помощью нагрузки слабыми сигналами, а также могут переключаться из одного режима в другой. Общее количество современных тиристоров разделяется по способу управления и по степени проводимости, одно направление или два (такие приборы также называют симисторами).

Тиристоры также характеризуются нелинейной вольтамперной особенностью с наличием участка отрицательного дифференциального сопротивления. Эта особенность делает подобные приборы схожими с транзисторными ключами, но имеются между ними и различия. Так в переход из одного состояния в другое в цельной электрической цепи происходит путем лавинообразного скачка, а также методом внешнего воздействия на сам прибор. Последнее осуществляется двумя вариантами – токовым напряжением или воздействием света фототиристора.

Применение и типы тиристоров

Сфера применения данных приборов довольно разнообразна – это электронные ключи, современные системы CDI, механически управляемые выпрямители, диммеры или регуляторы мощности, а также инверторные преобразователи.

Как уже говорилось выше, подобные приборы разделяются на диодные и триодные. Первый тип также называют динисторами с двумя выводами, он разделяется на приборы, не имеющие возможность осуществлять проводимость в обратном направлении, на тип с проводимостью в обратном направлении и на симметричные приборы. Второй включает в себя триодные тиристоры с проводимостью в обратном направлении, приборы с отсутствием проводимости в обратном направлении, симметричные тиристоры, ассиметричные приборы и запираемые тиристоры.

Между ними, кроме количества выводов, нет существенных и принципиальных различий. Но, если в динисторе открытие происходит после достижения между анодом и катодом напряжения, зависящего от типа устройства, то в тиристоре имеющееся напряжение может быть в разы снижено или вовсе снято с помощью подачи токового импульса.

Существуют различия между триодными тиристорами и запираемыми приборами. Так у первого типа переключение в режим закрытого состояния происходит после снижения тока или после изменения полярности, а у запираемых устройств переход в открытое осуществляется путем воздействия тока на управляющий электрод.

Тиристор это четырёхслойный полупроводниковый прибор, слои расположены последовательно их типы проводимости чередуются: p‑n‑p‑n. p‑n‑переходы между слоями на рисунке обозначены как «П1», «П2» и «П3». Контакт присоединенный к внешнему p‑слою называется анодом, к внешнему n‑слою - катодом. В принципе тиристор может иметь до двух управляющих электродов, присоединённых к внутренним слоям. Но обычно изготавливаются тиристоры с одним управляющим электродом, либо вообще без управляющих электродов (такой прибор называется динистором).

Для включения тиристора достаточно кратковременно подать сигнал на управляющий электрод — тиристор откроется и будет оставаться в этом состоянии пока ток через тиристор не станет меньше тока удержания.

Итак, главный принцип работы тиристора и схем на его основе — открываем тиристор подачей сигнала на усправляющий электрод, закрываем снижая ток анод-катод.

Как и в биполярном транзистор главную роль в принципе действия играют неосновные носители заряда (ННЗ) и обратно-смещенный p-n- переход. Пока неосновных носителей мало переход закрыт, но стоит подкинуть ННЗ к переходу и он откроется.
В тиристоре есть два основных способа добавить ННЗ:
1) закачать ток в управляющий электрод;
2) поднять напряжение настолько чтобы возник лавинный пробой.

Динисторное включение тиристора

Для начала рассмотрим второй случай, то есть когда управляющий электрод тиристора отключен.

При подаче напряжения прямой полярности, крайние переходы смещаются в прямом направлении, а средний – в обратном. При значительном увеличении напряжения на силовых электродах, через крайние (П1 и П3), примыкающие к среднему, переходы начинают перемещаться неосновные носители, уменьшая его сопротивление. Процесс происходит медленно, а сопротивление остается большим, но лишь до определенного момента. При некотором значении напряжения (как правило, несколько сотен вольт) процесс становится лавинным(точка 1 на ВАХ), неосновные носители заряда заменяются основными, отпирая средний переход (П2) и уменьшая сопротивление анод-катод. Тиристор отпирается, а падение напряжения между силовыми электродами падает до единиц Вольт (точка 2 на ВАХ).

Дальнейший рост тока ведет только к небольшому росту падения напряжения на тиристоре участок ВАХ от точки 2 до точки 3, это рабочий режим открытого тиристора.


Чтобы закрыть тиристор нужно снизить протекающий ток ниже тока удержания. Причем падение напряжения соответствующее этому току многократно ниже отпирающего напряжения.

Но зачем тиристору управляющий электрод? Какие преимущества есть у тиристора перед динистором? Дело в том, что подавая напряжение через резистор на управляющий электрод можно увеличивать концентрацию неосновных носителей заряда, что в свою очередь будет снижать величину напряжения включения тиристора.

А при какой-то величине тока управляющего электрода больше не будет горба на ВАХ, т.е. ВАХ тиристора станет похожа на ВАХ диода, кстати этот ток называют током спрямления.


Режим обратного запирания тиристора

При обратном включении тиристора крайние переходы (П1 и П3) смещаются в обратном направлении, а средний в прямом (П2). Тиристор остается закрытым пока не наступит тепловой пробой.

Физические процессы

Если пары по физическим основам электроники на которых рассматривался транзистор я ещё как-то выдерживал, то энергетические зонные диаграммы объясняющие принцип работы тиристора уже были слишком сложны. Очень много ньюансов в концетрациях носителей заряда, толщинах слоев и уровне легирования.
Конечно, чтобы изготовить тиристор с хорошими характеристиками физические процессы протекающие в кристалле полупроводника нужно знать и понимать. Но для разработки электронных схем достаточно знать вольт-амперную характеристику тиристора и его транзисторную модель.


Одну четрехслойную полупроводниковую структуру можно представить как две трехслойные, если посмотреть на рисунок, то в трехслойных структурах можно увидеть два биполярных транзистора n-p-n и p-n-p структуры.


Пока оба транзистора закрыты, ток через них не протекает. Но стоит открытся хоть одному из них, то он тут же откроет второй. Ток коллектора первого транзистора поступит в базу второго и откроет его, а ток коллектора второго, будет являтся базовым для первого и будет поддерживать открытым первый транзистор. Получаетя что оба транзистора поддерживают друг друга в открытом состоянии. И чтобы они закрылись, нужно снизить ток через ниж ниже определенной величины, так называемого тока удержания.

— устройство, обладающее свойствами полупроводника, в основе конструкции которого лежит монокристалический полупроводник, имеющий три или больше p-n-переходов.

Его работа подразумевает наличие двух стабильных фаз:

  • «закрытая» (уровень проводимости низкий);
  • «открытая» (уровень проводимости высоки).

Тиристоры — устройства, выполняющие функции силовых электронных ключей. Другое их наименование — однооперационные тиристоры. Данный прибор позволяет осуществлять регуляцию воздействия мощных нагрузок посредством незначительных импульсов.

Согласно вольт-амперной характеристике тиристора, увеличение силы тока в нём будет провоцировать снижение напряжения, то есть появится отрицательное дифференциальное сопротивление.

Кроме того, эти полупроводниковые устройства могут объединять цепи с напряжением до 5000 Вольт и силой тока до 5000 Ампер (при частоте не более 1000 Гц).

Тиристоры с двумя и тремя выводами пригодны для работы как с постоянным, так и с переменным током. Наиболее часто принцип их действия сравнивается с работой ректификационного диода и считается, что они являются полноценным аналогом выпрямителя, в некотором смысле даже более эффективным.

Разновидности тиристоров отличаются между собой:

  • Способом управления.
  • Проводимостью (односторонняя или двусторонняя).

Общие принципы управление

В структуре тиристора имеется 4 полупроводниковых слоя в последовательном соединении (p-n-p-n). Контакт, подведённый к наружному p-слою — анод, к наружному n-слою — катод. Как результат, при стандартной сборке в тиристоре максимально может быть два управляющих электрода, которые крепятся к внутренним слоям. Соответственно подключённому слою проводники, по типу управления устройства делятся на катодные и анодные. Чаще используется первая разновидность.

Ток в тиристорах течёт в сторону катода (от анода), поэтому соединение с источником тока осуществляет между анодом и плюсовым зажимом, а также между катодом и минусовым зажимом.

Тиристоры с управляющим электродом могут быть:

  • Запираемыми;
  • Незапираемыми.

Показательным свойством незапираемых приборов является отсутствие у них реакции на сигнал с управляющего электрода. Единственный способ закрыть их — снизить уровень протекающего сквозь них тока так, чтобы он уступал силе тока удержания.

Управляя тиристором следует учитывать некоторые моменты. Устройство данного типа сменяет фазы работы с «выключен» на «включён» и обратно скачкообразно и только при условии внешнего воздействия: при помощи тока (манипуляции с напряжением) или фотонов (в случаях с фототиристором).

Чтобы разобраться в данном моменте необходимо помнить, что у тиристора преимущественно имеется 3 вывода (тринистор): анод, катод и управляющий электрод.

Уэ (управляющий электрод) как раз таки и отвечает за то, чтобы включать и выключать тиристор. Открытие тиристора происходит при условии, что приложенное напряжение между А (анодом) и К (катодом) становится равным или превосходит объём напряжения работы тринистора. Правда, во втором случае потребуется воздействие импульса положительной полярности между Уэ и К.

При постоянной подаче питающего напряжения тиристор может быть открыт бесконечно долго.

Чтобы перевести его в закрытое состояние, можно:

  • Снизить уровень напряжения между А и К до нуля;
  • Понизить значение А-тока таким образом, чтобы показатели силы тока удержания оказались больше;
  • Если работа цепи построена на действии переменного тока, выключение прибора произойдёт без постороннего вмешательства, когда уровень тока сам снизится до нулевого показания;
  • Подать запирающее напряжение на Уэ (актуально только в отношении запираемых разновидностей полупроводниковых устройств).

Состояние закрытости тоже длится бесконечно долго, пока не возникнет запускающий импульс.

Конкретные способы управления

  • Амплитудный .

Представляет собой подачу положительного напряжения изменяющейся величины на Уэ. Открытие тиристора происходит, когда величины напряжения довольно, чтобы пробиться через управляющий переход тока спрямления (Iспр.). При помощи изменения величины напряжения на Уэ, появляется возможность изменения времени открытия тиристора.

Главный недочёт этого метода — сильное влияние температурного фактора. Кроме того, для каждой разновидности тиристора потребуется резистор другого вида. Этот момент не добавляет удобства в эксплуатации. Помимо этого время открытия тиристора возможно корректировать лишь пока длится первая 1/2 положительного полупериода сети.

  • Фазовый.

Заключается в смене фазы Uупр (в соотношении с напряжением на аноде). При этом применяется фазовращательный мост. Главный минус — малая крутизна Uупр, поэтому стабилизировать момент открытия тиристора можно лишь ненадолго.

  • Фазово-импульсный .

Рассчитан на преодоление недостатков фазового метода. С этой целью на Уэ подаётся импульс напряжения с крутым фронтом. Данный подход в настоящее время наиболее распространён.

Тиристоры и безопасность

Из-за импульсности своего действия и наличия обратного восстановительного тока тиристоры очень сильно повышает риск перенапряжения в работе прибора. Помимо этого опасность перенапряжения в зоне полупроводника высока, если в других частях цепи напряжения нет вовсе.

Поэтому во избежание негативных последствий принято использовать схемы ЦФТП. Они препятствуют появлению и удержанию критический значений напряжения.

Двухтранзисторная модель тиристора

Из двух транзисторов вполне можно собрать динистор (тиристор с двумя выводами) или тринистор (тиристор с тремя выводами). Для этого один из них должен иметь p-n-p-проводимость, другой — n-p-n-проводимость. Выполнены транзисторы могут быть как из кремния, так и из германия.

Соединение между ними осуществляется по двум каналам:

  • Анод от 2-го транзистора + Управляющий электрод от 1-го транзистора;
  • Катод от 1-го транзистора + Управляющий электрод от 2-го транзистора.

Если обойтись без использования управляющих электродов, то на выходе получится динистор.

Совместимость выбранных транзисторов определяется по одинаковому объёму мощности. При этом показания тока и напряжения должны быть обязательно больше требуемых для нормального функционирования прибора. Данные по напряжению пробоя и току удержания зависят от конкретных качеств использованных транзисторов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.