Сайт о телевидении

Сайт о телевидении

» » Способы минимизации логических функций. Минимизация логических функций

Способы минимизации логических функций. Минимизация логических функций

Существует два направления минимизации:

  • Ш Кратчайшая форма записи (цель - минимизировать ранг каждого терма);
  • Ш Получение минимальной формы записи (цель - получение минимального числа символов для записи всей функции сразу).
  • 1. Метод эквивалентных преобразований

В основе метода минимизации булевых функций эквивалентными преобразованиями лежит последовательное использование законов булевой алгебры. Метод эквивалентных преобразований целесообразно использовать лишь для простых функций и для количества логических переменных не более 4-х. При большем числе переменных и сложной функции вероятность ошибок при преобразовании возрастает.

2. Метод Квайна.

При минимизации по методу Квайна предполагается, что минимизируемая логическая функция задана в виде СДНФ. Здесь используется закон неполного склеивания. Минимизация проводится в два этапа: нахождение простых импликант, расстановка меток и определение существенных импликант.

Непомеченные термы называются первичными импликантами. Полученное логическое выражение не всегда оказывается минимальным, поэтому исследуется возможность дальнейшего упрощения.

Для этого:

  • Ш Составляются таблицы, в строках которых пишутся найденные первичные импликанты, а в столбцах указываются термы первичной ФАЛ.
  • Ш Клетки этой таблицы отмечаются в том случае, если первичная импликанта входит в состав какого-нибудь первичного терма.
  • Ш Задача упрощения сводится к нахождению такого минимального количества импликант, которые покрывают все столбцы.

Алгоритм метода Квайна (шаги):

  • 1. Нахождение первичных импликант (исходные термы из ДНФ записывают в столбик и склеиваю сверху вниз, непомеченные импликанты переходят в функции на этом шаге).
  • 2. Расстановка меток избыточности (составляется таблица, в которой строки - первичные импликанты, столбцы - исходные термы, если некоторый min-терм содержит первичный импликант, то на пересечении строки и столбца ставим метку).
  • 3. Нахождение существенных импликант (если в каком-либо столбце есть только одна метка, то первичный импликант соответствующей строки является существенным).
  • 4. Строка, содержащая существенный импликант и соответствующие столбцы вычеркиваются (если в результате вычеркивания столбцов появятся строки первичных импликант, которые не содержат метки или содержат одинаковые метки в строках, то такие первичные импликанты вычеркиваются, а в последнем случае оставляется одна меньшего ранга).
  • 5. Выбор минимального покрытия (из таблицы, полученной на шаге 3 выбирают такую совокупность первичных импликант, которая включает метки во всех столбцах по крайней мере по одной метке в каждом, при нескольких возможных вариантах отдается предпочтение покрытию с минимальным суммарным числом элементов в импликантах, образующих покрытие).
  • 6. Результат записывается в виде функции.

Пусть задана функция:

Для удобства изложения пометим каждую конституенту единицы из СДНФ функции F каким-либо десятичным номером (произвольно). Выполняем склеивания. Конституента 1 склеивается только с конституентой 2 (по переменной х3) и с конституентой 3 (по переменной х2) конституента 2 с конституентой 4 и т. д. В результате получаем:

Заметим, что результатом склеивания является всегда элементарное произведение, представляющее собой общую часть склеиваемых конституент.

с появлением одного и того же элементарного произведения. Дальнейшие склеивания невозможны. Произведя поглощения (из полученной ДНФ вычеркиваем все поглощаемые элементарные произведения), получим сокращенную ДНФ:

Переходим к следующему этапу. Для получения минимальной ДНФ необходимо убрать из сокращенной ДНФ все лишние простые импликанты. Это делается с помощью специальной импликантной матрицы Квайна. Строки такой матрицы отмечаются простыми импликантами булевой функции, т. е. членами сокращенной ДНФ, а столбцы -- конституентами единицы, т. е. членами СДНФ булевой функции.

Импликантная матрица имеет вид см. табл. 1.1

Таблица 1.1 Импликантная матрица

Как уже отмечалось, простая импликанта поглощает некоторую конституенту единицы, если является ее собственной частью. Соответствующая клетка импликантной матрицы на пересечении строки (с рассматриваемой простой импликантой) и столбца (с конституентой единицы) отмечается крестиком (табл. 1.). Минимальные ДНФ строятся по импликантной матрице следующим образом:

  • 1. ищутся столбцы импликантной матрицы, имеющие только один крестик. Соответствующие этим крестикам простые импликанты называются базисными и составляют так называемое ядро булевой функции. Ядро обязательно входит в минимальную ДНФ.
  • 2. рассматриваются различные варианты выбора совокупности простых импликант, которые накроют крестиками остальные столбцы импликантной матрицы, и выбираются варианты с минимальным суммарным числом букв в такой совокупности импликант.

Следовательно функция имеет вид:

3. Метод Квайна-Мак-Класки.

Метод представляет собой формализованный на этапе нахождения простых импликант метод Квайна. Формализация производится следующим образом:

  • 1. Все конституенты единицы из СДНФ булевой функции F записываются их двоичными номерами.
  • 2. Все номера разбиваются на непересекающиеся группы. Признак образования і-й группы: і единиц в каждом двоичном номере конституенты единицы.
  • 3. Склеивание производят только между номерами соседних групп. Склеиваемые номера отмечаются каким-либо знаком (зачеркиванием, звездочкой и т.д.).
  • 4. Склеивания производят всевозможные, как и в методе Квайна. Неотмеченные после склеивания номера являются простыми импликантами.

Образуем группы двоичных номеров. Признаком образования і-й группы является і единиц в двоичном номере конституенты единицы (табл.1.2).

Таблица 1.2 Группы двоичных номеров

Склеим номера из соседних групп табл. 1.3 Склеиваться могут только номера, имеющие прочерки в одинаковых позициях. Склеиваемые номера отметим. Результаты склеивания занесем в табл. 1.4.

Таблица 1.4 Результаты склеивания 2

По табл. 5. определяем совокупность простых импликант - 0--1 и 111-, соответствующую минимальной ДНФ. Для восстановления буквенного вида простой импликанты достаточно выписать произведения тех переменных, которые соответствуют сохранившимся двоичным цифрам:

Разбиение конституент на группы позволяет уменьшить число попарных сравнений при склеивании.

4. Метод диаграмм Вейча.

Метод позволяет быстро получать минимальные ДНФ булевой функции f небольшого числа переменных. В основе метода лежит задание булевых функций диаграммами некоторого специального вида, получившими название диаграмм Вейча. Для булевой функции двух переменных диаграмма Вейча имеет вид (Рис 1).

Рис.1.

Каждая клетка диаграммы соответствует набору переменных булевой функции в ее таблице истинности. На (Рис 1) это соответствие показано, в клетке диаграммы Вейча ставится единица, если булева функция принимает единичное значение на соответствующем наборе. Нулевые значения булевой функции в диаграмме Вейча не ставятся. Для булевой функции трех переменных диаграмма Вейча имеет следующий вид (Рис 2).

Рис.2.

Добавление к ней еще такой же таблицы дает диаграмму для функции 4-х переменных (Рис 3).

Рис.3.

Таким же образом, т. е. приписыванием еще одной диаграммы 3-х переменных к только что рассмотренной, можно получить диаграмму для функции 5-ти переменных и т. д., однако диаграммы для функций с числом переменных больше 4-х используются редко.

5. Карты Карно.

Метод карт Карно - это один из графических методов минимизации функции. Эти методы основаны на использовании особенности зрительного восприятия, так как с его помощью можно практически мгновенно распознать те или иные простые конфигурации.

Построим таблицу метода карт Карно (табл. 1.6).

Таблица 1.6 Карты Карно

Теперь подсчитаем совокупность всех крестиков с метками минимальным количеством крестиков. Таких крестиков в нашем случае будет 5: три четырехклеточных и два двухклеточных. Этим крестикам соответствуют следующие простые импликанты:

для первого - X 3 X 4 ;

для второго - X 1 X 3 ;

для третьего - X 2 X 3 ;

для четвертого - X 1 X 2 X 4 ;

для пятого - X 1 X 2 X 4 ;

Минимальная ДНФ будет выглядеть так:

6. Метод неопределенных коэффициентов.

Этот метод может быть использован для любого числа аргументов. Но так как этот метод достаточно громоздок, то применяется только в тех случаях, когда число аргументов не более 5-6.

В методе неопределенных коэффициентов используются законы универсального и нулевого множеств и законы повторения. В начале все коэффициенты неопределенны (отсюда и название метода).

Построим матрицу неопределенных коэффициентов для четырех аргументов. В этом случае мы будем иметь систему из 16-ти уравнений.

Приравняем все коэффициенты 0 в тех строках, которым соответствует 0 в векторе столбце. Затем приравняем 0 соответствующие коэффициенты в других строках. После этих преобразований система примет следующий вид (Рис 4):


Рис.4.

Теперь в каждой строке необходимо выбрать коэффициент минимального ранга и приравнять его единице, а остальные коэффициенты - 0. После этого вычеркиваем одинаковые строки, оставляя при этом одну из них (те строки, у которых все коэффициенты равны 0, также вычеркиваются).

Запишем теперь конъюнкции, соответствующие коэффициентам, равным единицам. Мы получим минимальную ДНФ.

Минимизация логических функций является одной из типовых задач в процессе обучения схемотехнике. Посему считаю, что такая статья имеет место быть, надеюсь Вам понравится.

Зачем это нужно?

Сложность логической функции, а отсюда сложность и стоимость реализующей ее схемы (цепи), пропорциональны числу логических операций и числу вхождений переменных или их отрицаний. В принципе любая логическая функция может быть упрощена непосредственно с помощью аксиом и теорем логики, но, как правило, такие преобразования требуют громоздких выкладок.

К тому же процесс упрощения булевых выражений не является алгоритмическим. Поэтому более целесообразно использовать специальные алгоритмические методы минимизации, позволяющие проводить упрощение функции более просто, быстро и безошибочно. К таким методам относятся, например, метод Квайна, метод карт Карно, метод испытания импликант, метод импликантных матриц, метод Квайна-Мак-Класки и др. Эти методы наиболее пригодны для обычной практики, особенно минимизация логической функции с использованием карт Карно. Метод карт Карно сохраняет наглядность при числе переменных не более шести. В тех случаях, когда число аргументов больше шести, обычно используют метод Квайна-Мак-Класки.

В процессе минимизации той или иной логической функции, обычно учитывается, в каком базисе эффективнее будет реализовать ее минимальную форму при помощи электронных схем.

Минимизация логических функций при помощи карт Карно

Карта Карно - графический способ минимизации переключательных (булевых) функций, обеспечивающий относительную простоту работы с большими выражениями и устранение потенциальных гонок. Представляет собой операции попарного неполного склеивания и элементарного поглощения. Карты Карно рассматриваются как перестроенная соответствующим образом таблица истинности функции. Карты Карно можно рассматривать как определенную плоскую развертку n-мерного булева куба.

Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs», и были призваны помочь упростить цифровые электронные схемы.

В карту Карно булевы переменные передаются из таблицы истинности и упорядочиваются с помощью кода Грея, в котором каждое следующее число отличается от предыдущего только одним разрядом.

Основным методом минимизации логических функций, представленных в виде СДНФ или СКНФ является операция попарного неполного склеивания и элементарного поглощения. Операция попарного склеивания осуществляется между двумя термами (членами), содержащими одинаковые переменные, вхождения которых (прямые и инверсные) совпадают для всех переменных, кроме одной. В этом случае все переменные, кроме одной, можно вынести за скобки, а оставшиеся в скобках прямое и инверсное вхождение одной переменной подвергнуть склейке. Например:

Возможность поглощения следует из очевидных равенств

Таким образом, главной задачей при минимизации СДНФ и СКНФ является поиск термов, пригодных к склейке с последующим поглощением, что для больших форм может оказаться достаточно сложной задачей. Карты Карно предоставляют наглядный способ отыскания таких термов.

Как известно, булевы функции N переменных, представленные в виде СДНФ или СКНФ могут иметь в своём составе 2N различных термов. Все эти члены составляют некоторую структуру, топологически эквивалентную N–мерному кубу, причём любые два терма, соединённые ребром, пригодны для склейки и поглощения.

На рисунке изображена простая таблица истинности для функции из двух переменных, соответствующий этой таблице 2-мерный куб (квадрат), а также 2-мерный куб с обозначением членов СДНФ и эквивалентная таблица для группировки термов:

В случае функции трёх переменных приходится иметь дело с трёхмерным кубом. Это сложнее и менее наглядно, но технически возможно. На рисунке в качестве примера показана таблица истинности для булевой функции трёх переменных и соответствующий ей куб.

Как видно из рисунка, для трёхмерного случая возможны более сложные конфигурации термов. Например, четыре терма, принадлежащие одной грани куба, объединяются в один терм с поглощением двух переменных:

В общем случае можно сказать, что 2K термов, принадлежащие одной K–мерной грани гиперкуба, склеиваются в один терм, при этом поглощаются K переменных.

Для упрощения работы с булевыми функциями большого числа переменных был предложен следующий удобный приём. Куб, представляющий собой структуру термов, разворачивается на плоскость как показано на рисунке. Таким образом появляется возможность представлять булевы функции с числом переменных больше двух в виде плоской таблицы. При этом следует помнить, что порядок кодов термов в таблице (00 01 11 10) не соответствует порядку следования двоичных чисел, а клетки, находящиеся в крайних столбцах таблицы, соседствуют между собой.

Аналогичным образом можно работать с функциями четырёх, пяти и более переменных. Примеры таблиц для N=4 и N=5 приведены на рисунке. Для этих таблиц следует помнить, что соседними являются клетки, находящиеся в соответственных клетках крайних столбцов и соответственных клетках верхней и нижней строки. Для таблиц 5 и более переменных нужно учитывать также, что квадраты 4х4 виртуально находятся друг над другом в третьем измерении, поэтому соответственные клетки двух соседних квадратов 4х4 являются сосоедними, и соответствующие им термы можно склеивать.

Карта Карно может быть составлена для любого количества переменных, однако удобно работать при количестве переменных не более пяти. По сути Карта Карно - это таблица истинности составленная в 2-х мерном виде. Благодаря использованию кода Грея в ней верхняя строка является соседней с нижней, а правый столбец соседний с левым, т.о. вся Карта Карно сворачивается в фигуру тор (бублик). На пересечении строки и столбца проставляется соответствующее значение из таблицы истинности. После того как Карта заполнена, можно приступать к минимизации.

Если необходимо получить минимальную ДНФ, то в Карте рассматриваем только те клетки которые содержат единицы, если нужна КНФ, то рассматриваем те клетки которые содержат нули. Сама минимизация производится по следующим правилам (на примере ДНФ):

Далее берём первую область и смотрим какие переменные не меняются в пределах этой области, выписываем конъюнкцию этих переменных, если неменяющаяся переменная нулевая, проставляем над ней инверсию. Берём следующую область, выполняем то же самое что и для первой, и т. д. для всех областей. Конъюнкции областей объединяем дизъюнкцией.
Например(для Карт на 2-ве переменные):


Для КНФ всё то же самое, только рассматриваем клетки с нулями, не меняющиеся переменные в пределах одной области объединяем в дизъюнкции (инверсии проставляем над единичными переменными), а дизъюнкции областей объединяем в конъюнкцию. На этом минимизация считается законченной. Так для Карты Карно на рис.1 выражение в формате ДНФ будет иметь вид:

В формате КНФ:

для первого – X 3 X 4 ;

для второго – X 1 X 3 ;

для третьего – X 2 X 3 ;

для четвертого – X 1 X 2 X 4 ;

для пятого – X 1 X 2 X 4 ;


Минимальная ДНФ будет выглядеть так:

Сравнивая метод карт Карно с другими методами минимизации функции можно сделать вывод, что первый больше всего подходит для ручного исполнения. Время ручной работы значительно сокращается (за счет наглядного представления склеивающихся импликант). Программная реализация данного метода имеет свои сложности. Так, очень сложно будет реализовать оптимальный выбор правильных прямоугольников, особенно для большого числа аргументов.

1.3.5 Метод неопределенных коэффициентов

Этот метод может быть использован для любого числа аргументов. Но так как этот метод достаточно громоздок, то применяется только в тех случаях, когда число аргументов не более 5-6.

В методе неопределенных коэффициентов используются законы универсального и нулевого множеств и законы повторения. В начале все коэффициенты неопределенны (отсюда и название метода).

Построим матрицу неопределенных коэффициентов для четырех аргументов. В этом случае мы будем иметь систему из 16-ти уравнений.

Система приведена на следующей странице.

Приравняем все коэффициенты 0 в тех строках, которым соответствует 0 в векторе столбце. Затем приравняем 0 соответствующие коэффициенты в других строках. После этих преобразований система примет следующий вид:

V = 1 VVVVVV = 1 VVV V VV = 1 V = 1 VVV = 1 VVVVVV = 1 VVV = 1 VVVVV = 1 VVV = 1

Теперь в каждой строке необходимо выбрать коэффициент минимального ранга и приравнять его единице, а остальные коэффициенты – 0. После этого вычеркиваем одинаковые строки, оставляя при этом одну из них (те строки, у которых все коэффициенты равны 0, также вычеркиваются).

= 1 = 1 = 1 = 1 = 1

Запишем теперь конъюнкции, соответствующие коэффициентам, равным единицам. Мы получим минимальную ДНФ.

F(X 1 X 2 X 3 X 4) = X 1 X 3 V X 2 X 3 V X 3 X 4 V X 1 X 2 X 4 V X 1 X 2 X 4 .

Итак, мы получили несколькими способами минимальную ДНФ, Во всех случаях она получилась одинаковой, то есть любой из описанных методов может быть использован для минимизации функции. Однако эти методы существенно отличаются друг от друга как по принципу нахождения МДНФ, так и по времени исполнения. Для ручных расчетов очень удобен метод карт Карно. Он нагляден, не требует рутинных операций, а выбрать оптимальное расположение правильных прямоугольников не составляет большого труда. В то время как машинная реализация данного метода осложняется необходимостью нахождения оптимального расположения прямоугольников. Естественно применение других методов (метод Квайна, метод Квайна-Маккласки, метод неопределенных коэффициентов) для ручных расчетов нецелесообразно. Они больше подойдут для машинной реализации, так как содержат большое число повторяющихся простых операций.

Задание 2.

2.1 Схема алгоритма для метода Квайна

1. Начало.

2. Ввести матрицу ДСНФ исходной функции.

3. Проверить на склеиваемость i-ю (i=1,m-1: где m – количество строк в ДСНФ) и j-ую (j=i+1, m) строки. Если строки склеиваются, то перейти к пункту 6, в противном случае перейти к пункту 5.

4. Формировать массив простых импликант, предварительно пометив символом ‘*’ ту переменную, по которой данные строки склеиваются.

5. Перейти к пункту 2.

6. Строку, которая не склеилась ни с одной другой строкой записать в конечный массив.

7. Перейти к пункту 2.

8. Вывод полученной матрицы.

Логическая схема алгоритма в нотации Ляпунова

V H V 1 Z 1 ­ V 2 ¯ V 3 V 4 V K

V H – начало.

V 1 – ввести матрицу ДСНФ исходной функции.

V 2 – формировать массив простых импликант, предварительно пометив символом ‘*’ ту переменную, по которой данные строки склеиваются.

V 3 – строку, которая не склеилась ни с одной другой строкой записать в конечный массив.

V 4 – вывод полученной матрицы.

Z 1 – если строки склеиваются, то перейти к пункту 3, в противном случае перейти к пункту 5.

V K – конец.

Граф-схема алгоритма.


Описание машинных процедур

Procedure Stuck(S1, S2: Diz; IndexS1, IndexS2: byte);

Данная процедура склеивает два, передаваемых ей дизъюнкта. Дизъюнкты задаются в параметрах S1, S2. Индексы IndexS1, IndexS2 определяют индексы этих дизъюнктов в главном рабочем массиве. Алгоритм работы процедуры следующий: сначала ищется количество склеивающихся символов. Если их 0, то они одинаковые, и в конечный массив записывается только один из них. Если 1, то определяется местоположение символа, по которому данные две дизъюнкции склеиваются, и заменяем этот символ на ‘*’. Все полученные результаты заносятся в массив REZ.

Все остальные функции и процедуры программы связаны с действиями над массивами, то есть не имеют непосредственного отношения к данному методу нахождения МДНФ. Поэтому нет смысла их описывать.

2.2 Схема алгоритма для метода Петрика

1. Начало.

2. Ввести матрицу ДСНФ исходной функции и простые импликанты, полученные в методе Квайна.

3. Составить таблицу меток.

4. По таблице меток построить конъюнкцию дизъюнкций, каждая из которых есть совокупность тех импликант, которые в данном столбце имеют метки.

Метод применим для функций от любого числа переменных, но мы рассмотрим его для функций от 3-х переменных.

Представим в виде ДНФ с неопределенными коэффициентамиk:

(**)

В этой ДНФ представлены все возможные элементарные коньюнкции, которые могут входить в функцию, а коэффициенты kмогут принимать значения 0 или 1. Значения коэффициентов нужно выбрать так, чтобы данная ДНФ была минимальной.

Будем рассматривать данную нам функцию на всех наборах и приравнивать выражение (**) на каждом из наборов (отбрасывая нулевые конъюнкции) соответствующему значению функции. Получим систему изуравнений вида:

Если в каком-то из этих уравнений правая часть равна 0, то все слагаемые левой части тоже равны 0. Эти коэффициенты можно исключить из всех уравнений, правые части которых равны 1. В этих уравнениях значение 1 следует присвоить тому коэффициенту, который соответствует коньюнкции наименьшего ранга. Эти коэффициенты и определят МДНФ.

Пример

Составляем систему, используя выражение (**).

После исключения нулевых слагаемых получаем

Полагаем остальные коэффициенты считаем нулевыми. Получаем МДНФ:

2.2. Метод Квайна - Мак - Класки

Рассмотренный метод неопределенных коэффициентов эффективен, если число аргументов функции не больше, чем 5 – 6. Это связано с тем, что число уравнений равно 2 n . Более эффективным является выписывание не всех возможных конъюнкций для функции, а только тех, которые могут присутствовать в ДНФ данной функции. На этом основан метод Квайна. При этом предполагается, что функция задана в виде СДНФ. В данном методе элементарные конъюнкции рангаn, входящие в ДНф, называются минитермами рангаn. Метод Квайна состоит из последовательного выполнения следующих этапов.

1. Нахождение первичных импликант

Просматриваем последовательно каждый минитерм функции и производим склеивание его со всеми минитермами, с которыми это возможно. В результате склеивания минитермов n-го ранга, мы получим минитермы (n-1)-га ранга. Минитермыn-го ранга, которые участвовали в операции склеивания, помечаем. Затем рассматриваем минитермы (n-1)-го ранга и операцию склеивания применяем к ним. Помечаем склеивающиеся минитермы (n-1)-го ранга и записываем получившиеся в результате склеивания минитермы (n-2)-го ранга и т. д. Этап заканчивается, если вновь полученные минитермыl -го ранга уже не склеиваются между собой. Все неотмеченные минитермы называются первичными импликантами. Их дизъюнкция представляет собой Сокр. ДНФ функции.

Склеиваем минитермы 4-го ранга и помечаем склеивающиеся минитермы звездочками

Образуем минитермы 2-го ранга:

Первичными (простыми) импликантами являются:

2. Расстановка меток

Для данной функции Сокр. ДНФ имеет вид:

Для построения тупиковых ДНФ и Сокр. ДНФ нужно выбросить лишние интервалы. Строим таблицу, строки которой соответствуют первичным импликантам, а столбцы – минитермам СДНФ. Если в некоторый из минитерм входит какой-то из импликант, то на пересечении соответствующей строки и столбца ставится метка, например, 1.

Продолжение примера

3. Нахождение существенных импликант

Если в каком-либо столбце содержится только одна единица, то первичная импликанта, определяющая эту строку, называется существенной. Например, существенной импликантой является . Существенная импликанта не может быть удалена из Сокр. ДНФ, т. к. только она способна покрыть некоторые минитермы СДНФ. Поэтому из таблицы исключаем строки, соответствующие этим импликантам, и столбцы, имеющие единицы в этих строках.

В рассматриваемом примере исключаем строку и столбцы.

В результате получаем таблицу

4. Вычеркивание лишних столбцов и строк

Если в полученной таблице есть одинаковые столбцы, то вычеркиваем все, кроме одного. Если после этого в таблице появятся пустые строки, то их вычеркиваем.

5. Выбор минимального покрытия максимальными интервалами

В полученной таблице выбираем такую совокупность строк, которая содержит единицы во всех столбцах. При нескольких возможных вариантах такого выбора, предпочтение отдается варианту с минимальным числом букв в строках, образующих покрытие.

Продолжение примера

Минимальное покрытие таблицы образуют строки, соответствующие импликантам . Тогда МДНФ имеет вид:

В методе Квайна есть одно существенное неудобство, связанное с необходимостью полного по парного сравнивания минитермов на этапе построения Сокр. ДНФ. В 1956 г. Мак - Класки предположил модернизацию первого этапа метода Квайна, дающую существенное уменьшение количества сравнений минитермов.

Идея метода Мак - Класки заключается в следующем. Все минитермы записываются в виде двоичных номеров, например, как 1010. Эти номера разбиваются на группы по числу единиц в номере, т. е. вi-ю группу попадают номера, имеющие в своей записиiединиц. По парное сравнение производится только между соседними по номеру группами, т. к. минитермы, пригодные для склеивания, отличаются друг от друга только в одном разряде. При образовании минитермов с ранга выше нулевого, в разряды, соответствующие исключенным переменным, ставится тире.

Пример

Найдем МДНФ для функции:

Минитермы 4-го ранга по группам

Минитермы 3-го ранга

Минитермы 2-го ранга

Непомеченные минитермы или простые импликанты

Строим таблицу меток

Обе первичные импликанты существенны и определяют минимальное покрытие, т. е. МДНФ имеет вид.

Методы поиска минимумов функций. Поиск максимумов сводится к поиску минимумов путем изменения знака ф-ции. М. ф. м.- раздел вычислительной математики, играющий большую роль в таких приложениях, как выбор оптим. вариантов в задачах планирования, проектирования и операций исследования, управления технологическими процессами, управления движением сложных объектов и т. п. М. ф. м. применяются также для решения систем ур-ний и неравенств при отыскании спектра операторов, при решении краевых задач и т. п.

Наиболее изучены М. ф. м- применительно к ф-циям, определенным во всем -мерном евклидовом простр. Рассмотрим их, не касаясь дискретных и дискретно-непрерывных задач минимизации, а также задач минимизации при наличии ограничений. Последние во многих случаях можно свести к задаче безусловной минимизации (напр., с использованием штрафных ф-ций). Не будем рассматривать методы нахождения минимума, основанные на непосредственном использовании необходимых условий экстремума, т. к. решение получаемых при этом систем нелинейных ур-ний можно рассматривать как задачу минимизации суммы квадратов невязок (или максимума модуля невязок). Возможность применения и сравнительная эффективность различных М. ф. м. во многом определяется классом ф-ций, к которому они применяются. Большинство М. ф. м. дают возможность находить локальный минимум, и лишь априорная информация о свойствах ф-ции (выпуклость, унимодальность) позволяет считать этот минимум глобальным. Методы, гарантирующие поиск глобального минимума с заданной точностью для достаточно общих классов ф-ций, являются весьма трудоемкими. На

практике для нахождения глобального минимума в основном используется сочетание Монте-Карло метода и одного из методов локальной минимизации.

Широкий класс М. ф. м. описывают следующей вычислительной схемой. Пусть минимизируемая ф-ция, определенная в произвольно выбранная начальная точка. Допустим, что имеет непрерывные частные производные до порядка включительно будем рассматривать как производную нулевого порядка). Для получения последовательных приближений к локальному минимуму строится последовательность точек по ф-лам следующего вида:

где обозначает вектор частных производных порядка вычислимые ф-ции своих аргументов. Порядок высших частных производных, вычисляемых для реализации ф-лы (1), наз. порядком метода. Осн. группа применяемых на практике методов имеет ту особенность, что информация, необходимая для вычисления очередного значения выражается через ограниченное к-во параметров, вычисляемых на данном шаге и предыдущих шагах процесса. Метод называют -ступенчатым, если схема алгоритма имеет, начиная с некоторого следующую структуру: на шаге вычисляем параметры где - некоторое натуральное число, и вектор по ф-лам следующего вида:

(начальные параметры вычисляются с помощью спец. процедур). В широко распространенных методах спуска оператор конкретизируется в следующей форме:

где вещественное число, которое наз. шаговым множителем, вектор определяет направление спуска. Среди методов спуска выделяются методы монотонного спуска или релаксационные методы. Метод релаксационным, если при к Бели непрерывно дифференцируема, то релаксационность метода (3) обеспечивается, когда направление спуска образует острый угол с направлением градиента и достаточно мал. Обшая теория релаксационных процессов развита наиболее полно для случая выпуклых ф-ций. В качестве осн. параметров, характеризующих процесс, рассматриваются углы релаксации между и направлением градиента), а также множители релаксации определяемые равенством

где градиент ф-ции (для квадратичного функционала при наискорейшем спуске). Обозначим через приведенный коэфф. релаксации. Необходимое и достаточное условие сходимости релаксационного процесса для сильно выпуклой ф-ции :

Среди релаксационных методов наиболее известны градиентные методы. Рассмотрим более подробно одноступенчатые методы градиентного типа. Общая схема их следующая:

В рамках этой схемы можно выделить такие модификации:

а) градиентный спуск с постоянным шагом: единичная матрица;

б) наискорейший градиентный спуск: , где определяется из условия минимума

в) метод Ньютона-Рафсона: , где - гессиан в точке

г) промежуточные схемы: . К числу наиболее распространенных двухступенчатых градиентных методов можно отнести методы сопряженных градиентов; примером двухступенчатой схемы является метод сопряженных градиентов Флетчера - Ривза:

Методы a) и б) при достаточно общих условиях (первый - при достаточно малом а) сходятся к локальному минимуму со скоростью геом. прогрессии. Метод в) при достаточно общих условиях сходится из достаточно малой окрестности минимума с квадратичной скоростью. Промежуточная схема г) более гибкая и позволяет при определенной регулировке последовательностей также получить квадратическую скорость сходимости при более слабых требованиях на начальное приближение.

Недостатком методов в), г) является необходимость вычисления гессиана. От этого недостатка избавлены методы сопряженных градиентов и так называемые алгоритмы с изменяемой метрикой, обладающие свойствами ускоренной сходимости для достаточно гладких ф-ций в окрестности минимума. Схемы алгоритмов с изменяемой метрикой по своему характеру являются комбинацией схемы сопряженных градиентов и метода Ньютона - Рафсона. Одновременно с движением по схеме типа сопряженных градиентов происходит итеративная аппроксимация матрицы, обратной гессиану в точке минимума. После каждых п шагов процесса происходит шаг по методу Ньютона-Рафсона, где вместо выступает ее аппроксимация.

Если градиент разрывен, перечисленные выше методы не применимы. Поэтому большое значение имеют методы минимизации выпуклых (не обязательно дифференцируемых) ф-ций; эти методы можно условно разбить на 2 группы: 1) методы градиентного типа и 2) методы «секущих плоскостей». К 1-й группе относятся различные модификации обобщенных градиентов метода, а также схемы с ускоренной сходимостью, основанные на растяжении простр. в направлении градиента или разности двух последовательных градиентов. К методам 2-й группы относится, напр., метод Келли. Пусть ЗП - выпуклое (ограниченное) мн-во, на котором определена последовательность точек, в которых вычисляется обобщенный градиент . Тогда находится как решение задачи: найти

Метод Келли сходится по функционалу при любом начальном . Из распространенных методов минимизации следует отметить, в частности, метод оврагов для минимизации ф-ций с сильно вытянутыми гиперповерхностями уровня; методы покоординатного поискас изменяемой системой координат; методы случайного поиска; комбинированные методы быстрого спуска и случайного поиска, когда направление убывания ф-ции находится методом Монте-Карло; методы дифференциального спуска, стохастической аппроксимации методы и др. В задачах оптим. регулирования большое значение имеют методы поиска нулевого порядка. В основе алгоритмов минимизации для этого случая обычно лежит идея линейной или квадратичной аппроксимации минимизируемой ф-ции или разностной аппроксимации соответствующих частных производных. Для поиска экстремума глобального предложен ряд методов. Осн. из них: метод Монте-Карло, комбинация метода Монте-Карло определения начальной точки с одним из алгоритмов локального поиска, методы, основанные на построении нижней огибающей данной ф-ции, методы последовательного отсечения подмн-в, методы построения траекторий, всюду плотно покрывающих область определения ф-ции, и минимизации вдоль этих траекторий.

Для решения спец. классов многоэкстремальных задач используются методы программирования динамического.

В наст, время создаются оптим. алгоритмы минимизации ф-ций разных классов. Пусть класс ф-ций, определенных в кубе , и имеющих в частные производные до s-го порядка, удовлетворяющие условию Липшица с константой L. Любой алгоритм минимизации из , использующий информацию о значениях f и ее производных до порядка включительно не более чем в N точках эквивалентен (в смысле результата) некоторому алгоритму А получения последовательности итераций (1) для и аппроксимации искомого значения при помощи итоговой операции

где - некоторая вычислимая ф-ция. Введем следующие обозначения:

Алгоритм, для которого достигается оптимальным. Условия означают соответственно асимптотическую оптимальность и оптимальность по порядку алгоритма Можно показать, что

причем выбор , влияет лишь на константу в указанной оценке. В частном случае и имеем:

где миним. сеть в .

Другой подход к построению оптим. алгоритмов минимизации связан с обобщением идей последовательных статистических решений. Алгоритм минимизации рассматривается как управляемая последовательность опытов, каждый из которых дает тот или иной исход. На совокупности исходов определяется априорная вероятностная мера. После получения конкретного исхода очередного опыта происходит перераспределение вероятностей по ф-ле Байеса и выбирается следующий опыт или принимается окончательное решение. Алгоритмы отличаются друг от друга правилом, по которому выбирается следующий опыт, правилами остановки и выбора окончательного решения. Качество решения определяется ф-цией потерь, которая усредняется в соответствии с полученным на данном этапе вероятностным распределением. В этих терминах ставится задача выбора оптим. алгоритма как построения последовательного байесовского правила поиска решений. Такая постановка интересна тем, что в ее рамках можно учитывать статистические свойства класса решаемых задач, сопоставлять «средние» потери, связанныз с погрешностью решения, с затратами, связанными с уточнением решения. Лит.: Любич Ю. И., Майстровский Г. Д. Общая теория релаксационных процессов для выпуклых функционалов. «Успехи математических наук», 1970, т. 25, в. 1; Михалевич В. С. Последовательные алгоритмы оптимизации и их применение. «Кибернетика», 1965, N5 1-2; Иванов В. В. Об оптимальных алгоритмах минимизации функций некоторых классов. «Кибернетика», 1972, № 4; Уайлд Д. Дк. Методы поиска экстремума. Пер. с англ. М., 1967.

В. В. Иванов, В. С. Михалевич, Н. 3. Шор.