Сайт о телевидении

Сайт о телевидении

» » Разбираемся, что такое процессор

Разбираемся, что такое процессор

  • C помощью своего арифметико-логического устройства, процессор выполняет математические действия: сложение, вычитание, умножение и деление. Современные микропроцессоры полностью поддерживают операции с плавающей точкой (с помощью специального арифметического процессора операций с плавающей точкой)
  • Микропроцессор способен перемещать данные из одного типа памяти в другой
  • Микропроцессор обладает способностью принимать решение и, на основании принятого им решения, «перепрыгивать», то есть переключаться на выполнение нового набора команд

Микропроцессор содержит:

  • Address bus (адресную шину). Ширина этой шины может составлять 8, 16 или 32 бита. Она занимается отправкой адреса в память
  • Data bus (шину данных): шириной 8, 16, 32 или 64 бита. Эта шина может отправлять данные в память или принимать их из памяти. Когда говорят о «битности» процессора, речь идет о ширине шины данных
  • Каналы RD (read, чтения) и WR (write, записи), обеспечивающие взаимодействие с памятью
  • Clock line (шина синхронизирующих импульсов), обеспечивающая такты процессора
  • Reset line (шина стирания, шина сброса), обнуляющая значение счетчика команд и перезапускающая выполнение инструкций

Поскольку информация достаточно сложна, будем исходить из того, что ширина обеих шин — и адресной и шины данных — составляет всего 8 бит. И кратко рассмотрим компоненты этого сравнительно простого микропроцессора:

  • Регистры A, B и C являются логическими микросхемами, используемыми для промежуточного хранения данных
  • Address latch (защелка адреса) подобна регистрам A, B и C
  • Счетчик команд является логической микросхемой (защелкой), способной приращивать значение на единицу за один шаг (если им получена соответствующая команда) и обнулять значение (при условии получения соответствующей команды)
  • ALU (арифметико-логическое устройство) может осуществлять между 8-битными числами действия сложения, вычитания, умножения и деления или выступать в роли обычного сумматора
  • Test register (тестовый регистр) является специальной защелкой, которая хранит результаты операций сравнения, производимых АЛУ. Обычно АЛУ сравнивает два числа и определяет, равны ли они или одно из них больше другого. Тестовый регистр способен также хранить бит переноса последнего действия сумматора. Он хранит эти значения в триггерной схеме. В дальнейшем эти значения могут использоваться дешифратором команд для принятия решений
  • Шесть блоков на диаграмме отмечены, как «3-State». Это буферы сортировки. Множество источников вывода могут быть соединены с проводом, но буфер сортировки позволяет только одному из них (в один момент времени) передавать значение: «0» или «1». Таким образом буфер сортировки умеет пропускать значения или перекрывать источнику вывода возможность передавать данные
  • Регистр команд (instruction register) и дешифратор команд (instruction decoder) держат все вышеперечисленные компоненты под контролем

На данной диаграмме не отображены линии управления дешифратора команд, которые можно выразить в виде следующих «приказов»:

  • «Регистру A принять значение, поступающее в настоящий момент от шины данных»
  • «Регистру B принять значение, поступающее в настоящий момент от шины данных»
  • «Регистру C принять значение, поступающее в настоящий момент от арифметико-логического устройства»
  • «Регистру счетчика команд принять значение, поступающее в настоящий момент от шины данных»
  • «Адресному регистру принять значение, поступающее в настоящий момент от шины данных»
  • «Регистру команд принять значение, поступающее в настоящий момент от шины данных»
  • «Счетчику команд увеличить значение [на единицу]»
  • «Счетчику команд обнулиться»
  • «Активировать один из из шести буферов сортировки» (шесть отдельных линий управления)
  • «Сообщить арифметико-логическому устройству, какую операцию ему выполнять»
  • «Тестовому регистру принять тестовые биты из АЛУ»
  • «Активировать RD (канал чтения)»
  • «Активировать WR (канал записи)»

В дешифратор команд поступают биты данных из тестового регистра, канала синхронизации, а также из регистра команд. Если максимально упростить описание задач дешифратора инструкций, то можно сказать, что именно этот модуль «подсказывает» процессору, что необходимо сделать в данный момент.

Память микропроцессора

Знакомство с , касающимися компьютерной памяти и ее иерархии помогут лучше понять содержание этого раздела.

Выше мы писали о шинах (адресной и данных), а также о каналах чтения (RD) и записи (WR). Эти шины и каналы соединены с памятью: оперативной (ОЗУ, RAM) и постоянным запоминающим устройством (ПЗУ, ROM). В нашем примере рассматривается микропроцессор, ширина каждой из шин которого составляет 8 бит. Это значит, что он способен выполнять адресацию 256 байт (два в восьмой степени). В один момент времени он может считывать из памяти или записывать в нее 8 бит данных. Предположим, что этот простой микропроцессор располагает 128 байтами ПЗУ (начиная с адреса 0) или 128 байтами оперативной памяти (начиная с адреса 128).

Модуль постоянной памяти содержит определенный предварительно установленный постоянный набор байт. Адресная шина запрашивает у ПЗУ определенный байт, который следует передать шине данных. Когда канал чтения (RD) меняет свое состояние, модуль ПЗУ предоставляет запрошенный байт шине данных. То есть в данном случае возможно только чтение данных.

Из оперативной памяти процессор может не только считывать информацию, он способен также записывать в нее данные. В зависимости от того, чтение или запись осуществляется, сигнал поступает либо через канал чтения (RD), либо через канал записи (WR). К сожалению, оперативная память энергозависима. При отключении питания она теряет все размещенные в ней данные. По этой причине компьютеру необходимо энергонезависимое постоянное запоминающее устройство.

Более того, теоретически компьютер может обойтись и вовсе без оперативной памяти. Многие микроконтроллеры позволяют размещать необходимые байты данных непосредственно в чип процессора. Но без ПЗУ обойтись невозможно. В персональных компьютерах ПЗУ называется базовой системой ввода и вывода (БСВВ, BIOS, Basic Input/Output System). Свою работу при запуске микропроцессор начинает с выполнения команд, найденных им в BIOS.

Команды BIOS выполняют тестирование аппаратного обеспечения компьютера, а затем они обращаются к жесткому диску и выбирают загрузочный сектор. Этот загрузочный сектор является отдельной небольшой программой, которую BIOS сначала считывает с диска, а затем размещает в оперативной памяти. После этого микропроцессор начинает выполнять команды расположенного в ОЗУ загрузочного сектора. Программа загрузочного сектора сообщает микропроцессору о том, какие данные (предназначенные для последующего выполнения процессором) следует дополнительно переместить с жесткого диска в оперативную память. Именно так происходит процесс загрузки процессором операционной системы.

Инструкции микропроцессора

Даже простейший микропроцессор способен обрабатывать достаточно большой набор инструкций. Набор инструкций является своего рода шаблоном. Каждая из этих загружаемых в регистр команд инструкций имеет свое значение. Людям непросто запомнить последовательность битов, поэтому каждая инструкция описывается в виде короткого слова, каждое из которых отражает определенную команду. Эти слова составляют язык ассемблера процессора. Ассемблер переводит эти слова на понятный процессору язык двоичных кодов.

Приведем список слов-команд языка ассемблера для условного простого процессора, который мы рассматриваем в качестве примера к нашему повествованию:

  • LOADA mem — Загрузить (load) регистр A из некоторого адреса памяти
  • LOADB mem — Загрузить (load) регистр B из некоторого адреса памяти
  • CONB con — Загрузить постоянное значение (constant value) в регистр B
  • SAVEB mem — Сохранить (save) значение регистра B в памяти по определенному адресу
  • SAVEC mem — Сохранить (save) значение регистра C в памяти по определенному адресу
  • ADD — Сложить (add) значения регистров A и B. Результат действия сохранить в регистре C
  • SUB — Вычесть (subtract) значение регистра B из значения регистра A. Результат действия сохранить в регистре C
  • MUL — Перемножить (multiply) значения регистров A и B. Результат действия сохранить в регистре C
  • DIV — Разделить (divide) значение регистра A на значение регистра B. Результат действия сохранить в регистре C
  • COM — Сравнить (compare) значения регистров A и B. Результат передать в тестовый регистр
  • JUMP addr — Перепрыгнуть (jump) к указанному адресу
  • JEQ addr — Если выполняется условие равенства значений двух регистров, перепрыгнуть (jump) к указанному адресу
  • JNEQ addr — Если условие равенства значений двух регистров не выполняется, перепрыгнуть (jump) к указанному адресу
  • JG addr — Если значение больше, перепрыгнуть (jump) к указанному адресу
  • JGE addr — Если значение больше или равно, перепрыгнуть (jump) к указанному адресу
  • JL addr — Если значение меньше, перепрыгнуть (jump) к указанному адресу
  • JLE addr — Если значение меньше или равно, перепрыгнуть (jump) к указанному адресу
  • STOP — Остановить (stop) выполнение

Английские слова, обозначающие выполняемые действия, в скобках приведены неспроста. Так мы можем видеть, что язык ассемблера (как и многие другие языки программирования) основан на английском языке, то есть на привычном средстве общения тех людей, которые создавали цифровые технологии.

Работа микропроцессора на примере вычисления факториала

Рассмотрим работу микропроцессора на конкретном примере выполнения им простой программы, которая вычисляет факториал от числа «5». Сначала решим эту задачку «в тетради»:

факториал от 5 = 5! = 5 * 4 * 3 * 2 * 1 = 120

На языке программирования C этот фрагмент кода, выполняющего данное вычисление, будет выглядеть следующим образом:

A=1;f=1;while (a

Когда эта программа завершит свою работу, переменная f будет содержать значение факториала от пяти.

Компилятор C транслирует (то есть переводит) этот код в набор инструкций языка ассемблера. В рассматриваемом нами процессоре оперативная память начинается с адреса 128, а постоянная память (которая содержит язык ассемблера) начинается с адреса 0. Следовательно, на языке данного процессора эта программа будет выглядеть так:

// Предположим, что a по адресу 128// Предположим, что F по адресу 1290 CONB 1 // a=1;1 SAVEB 1282 CONB 1 // f=1;3 SAVEB 1294 LOADA 128 // if a > 5 the jump to 175 CONB 56 COM7 JG 178 LOADA 129 // f=f*a;9 LOADB 12810 MUL11 SAVEC 12912 LOADA 128 // a=a+1;13 CONB 114 ADD15 SAVEC 12816 JUMP 4 // loop back to if17 STOP

Теперь возникает следующий вопрос: а как же все эти команды выглядят в постоянной памяти? Каждая из этих инструкций должна быть представлена в виде двоичного числа. Чтобы упростить понимание материала, предположим, что каждая из команд языка ассемблера рассматриваемого нами процессора имеет уникальный номер:

  • LOADA — 1
  • LOADB — 2
  • CONB — 3
  • SAVEB — 4
  • SAVEC mem — 5
  • ADD — 6
  • SUB — 7
  • MUL — 8
  • DIV — 9
  • COM — 10
  • JUMP addr — 11
  • JEQ addr — 12
  • JNEQ addr — 13
  • JG addr — 14
  • JGE addr — 15
  • JL addr — 16
  • JLE addr — 17
  • STOP — 18

// Предположим, что a по адресу 128// Предположим, что F по адресу 129Addr машинная команда/значение0 3 // CONB 11 12 4 // SAVEB 1283 1284 3 // CONB 15 16 4 // SAVEB 1297 1298 1 // LOADA 1289 12810 3 // CONB 511 512 10 // COM13 14 // JG 1714 3115 1 // LOADA 12916 12917 2 // LOADB 12818 12819 8 // MUL20 5 // SAVEC 12921 12922 1 // LOADA 12823 12824 3 // CONB 125 126 6 // ADD27 5 // SAVEC 12828 12829 11 // JUMP 430 831 18 // STOP

Как вы заметили, семь строчек кода на языке C были преобразованы в 18 строчек на языке ассемблера. Они заняли в ПЗУ 32 байта.

Декодирование

Разговор о декодировании придется начать c рассмотрения филологических вопросов. Увы, далеко не все компьютерные термины имеют однозначные соответствия в русском языке. Перевод терминологии зачастую шел стихийно, а поэтому один и тот же английский термин может переводиться на русский несколькими вариантами. Так и случилось с важнейшей составляющей микропроцессорной логики «instruction decoder». Компьютерные специалисты называют его и дешифратором команд и декодером инструкций. Ни одно из этих вариантов названия невозможно назвать ни более, ни менее «правильным», чем другое.

Дешифратор команд нужен для того, чтобы перевести каждый машинный код в набор сигналов, приводящих в действие различные компоненты микропроцессора. Если упростить суть его действий, то можно сказать, что именно он согласует «софт» и «железо».

Рассмотрим работу дешифратора команд на примере инструкции ADD, выполняющей действие сложения:

  • В течение первого цикла тактовой частоты процессора происходит загрузка команды. На этом этапе дешифратору команд необходимо: активировать буфер сортировки для счетчика команд; активировать канал чтения (RD); активировать защелку буфера сортировки на пропуск входных данных в регистр команд
  • В течение второго цикла тактовой частоты процессора команда ADD декодируется. На этом этапе арифметико-логическое устройство выполняет сложение и передает значение в регистр C
  • В течение третьего цикла тактовой частоты процессора счетчик команд увеличивает свое значение на единицу (теоретически, это действие пересекается с происходившим во время второго цикла)

Каждая команда может быть представлена в виде набора последовательно выполняемых операций, которые в определенном порядке манипулируют компонентами микропроцессора. То есть программные инструкции ведут ко вполне физическим изменениям: например, изменению положения защелки. Некоторые инструкции могут потребовать на свое выполнение двух или трех тактовых циклов процессора. Другим может потребоваться даже пять или шесть циклов.

Микропроцессоры: производительность и тенденции

Количество транзисторов в процессоре является важным фактором, влияющим на его производительность. Как было показано ранее, в процессоре 8088 на выполнение одной инструкции требовалось 15 циклов тактовой частоты. А чтобы выполнить одну 16-битную операцию, уходило и вовсе порядка 80 циклов. Так был устроен умножитель АЛУ этого процессора. Чем больше транзисторов и чем мощнее умножитель АЛУ, тем больше всего успевает сделать процессор за один свой такт.

Многие транзисторы поддерживают технологию конвейеризации. В рамках конвейерной архитектуры происходит частичное наложение выполняемых инструкций друг на друга. Инструкция может требовать на свое выполнение все тех же пяти циклов, но если процессором одновременно обрабатываются пять команд (на разных этапах завершенности), то в среднем на выполнение одной инструкции потребуется один цикл тактовой частоты процессора.

Во многих современных процессорах дешифратор команд не один. И каждый из них поддерживает конвейеризацию. Это позволяет выполнять более одной инструкции за один такт процессора. Для реализации этой технологии требуется невероятное множество транзисторов.

64-битные процессоры

Хотя массовое распространение 64-битные процессоры получили лишь несколько лет назад, они существуют уже сравнительно давно: с 1992 года. И Intel, и AMD предлагают в настоящее время такие процессоры. 64-битным можно считать такой процессор, который обладает 64-битным арифметико-логическим устройством (АЛУ), 64-битными регистрами и 64-битными шинами.

Основная причина, по которой процессорам нужна 64-битность, состоит в том, что данная архитектура расширяет адресное пространство. 32-битные процессоры могут получать доступ только к двум или четырем гигабайтам оперативной памяти. Когда-то эти цифры казались гигантскими, но миновали годы и сегодня такой памятью никого уже не удивишь. Несколько лет назад память обычного компьютера составляла 256 или 512 мегабайт. В те времена четырехгигабайтный лимит мешал только серверам и машинам, на которых работают большие базы данных.

Но очень быстро оказалось, что даже обычным пользователям порой не хватает ни двух, ни даже четырех гигабайт оперативной памяти. 64-битных процессоров это досадное ограничение не касается. Доступное им адресное пространство в наши дни кажется бесконечным: два в шестьдесят четвертой степени байт, то есть что-то около миллиарда гигабайт. В обозримом будущем столь гигантской оперативной памяти не предвидится.

64-битная адресная шина, а также широкие и высокоскоростные шины данных соответствующих материнских плат, позволяют 64-битным компьютерам увеличить скорость ввода и вывода данных в процессе взаимодействия с такими устройствами, как жесткий диск и видеокарта. Эти новые возможности значительно увеличивают производительность современных вычислительных машин.

Но далеко не все пользователи ощутят преимущества 64-битной архитектуры. Она необходима, прежде всего, тем, кто занимается редактированием видео и фотографий, а также работает с различными большими картинками. 64-битные компьютеры по достоинству оценены ценителями компьютерных игр. Но те пользователи, которые с помощью компьютера просто общаются в социальных сетях и бродят по веб-просторам да редактируют текстовые файлы никаких преимуществ этих процессоров, скорее всего, просто не почувствуют.

По материалам computer.howstuffworks.com

Центральный процессор является мозгом и сердцем компьютера

Само слово процессор происходит от английского глагола to process, что в переводе на русский будет звучать, как обрабатывать. В общем понимании, под данным термином подразумевается устройство или набор программ, которые используются для совершения вычислительных операций или обработки массива данных или процесса.

В персональном компьютере процессор выполняет функцию «мозга», являясь основной микросхемой, которая требуется для бесперебойной и правильной работы ПК. Под управлением CPU находятся все внутренние и периферийные устройства.

К СВЕДЕНИЮ:

очень часто процессор обозначается английской аббревиатурой CPU. Это расшифровывается как Central Processing Unit, или центральное обрабатывающее устройство.

Внешне процессор представляет собой небольшую квадратную плату, верхняя часть которой закрыта металлической крышкой, служащей для защиты микросхем, а нижняя поверхность усыпана большим количеством контактов. Именно этой стороной процессор устанавливается в специальный разъём или сокет, располагающийся на материнской плате. ЦП, или центральный процессор, является самой важной деталью современного компьютера. Без команды, которую отдаёт CPU, не происходит выполнение ни одной, даже самой простой, операции, например, сложение двух чисел или запись одного байта информации.

Как работает процессор

Принцип работы процессора – это последовательная обработка разных операций. Они происходят очень быстро, основные из них:

  1. При запуске любого процесса, заключающегося в исполнении программного кода, управляющий блок ЦП извлекает все необходимые данные и набор операндов, требуемых к исполнению. Далее это отгружается в буферную или кэш-память.
  2. На выходе из кэша весь поток информации делится на две категории – инструкции и значения. Они перенаправляются в соответствующие ячейки памяти, которые называются регистры. Первые помещаются в регистры команд, вторая категория − в регистры данных.
  3. Находящуюся в регистрах памяти информацию обрабатывает арифметически-логическое устройство. Это одна из частей ЦП, которая требуется для проведения арифметических и логических операций.
  4. Результаты вычислений разделяются на два потока – законченные и незаконченные, которые, в свою очередь, отправляются обратно в кэш-память.
  5. По завершению цикла вычислений конечный итог записывается в оперативную память. Это требуется для высвобождения места в буфере, которое необходимо для проведения новых вычислительных операций. При переполнении кэша все неактивные процессы перемещаются в ОЗУ или на нижний уровень.

К СВЕДЕНИЮ:

буферная память виртуально делится на две части – нижний и верхний уровень. Активные процессы находятся на верхнем «этаже», а неважные операции перемещаются на нижний уровень. При необходимости нижние слои информации используются системой, в остальное время данные не задействованы. Такой подход позволяет процессору использовать все ресурсы для текущей операции.

Упрощённая схема работы центрального процессора

Из чего состоит процессор

Чтобы представить, как работает ЦПУ, нужно понимать, из каких частей он состоит. Основными составляющими процессора являются:

  1. Верхняя крышка , которая представляет собой металлическую пластину, выполняющую функции защиты внутреннего содержимого и теплоотведения.
  2. Кристалл . Это самая важная часть CPU. Кристалл изготавливается из кремния и содержит на себе большое количество мельчайших микросхем.
  3. Подложка из текстолита , которая служит контактной площадкой. На ней крепятся все детали ЦП и располагаются контакты, через которые происходит взаимодействие со всей остальной системой.

При креплении верхней крышки применяется клей-герметик, способный выдерживать воздействие высоких температур, а для устранения зазора внутри собранного процессора используется термопаста. После застывания она образует своеобразный «мостик», который требуется для обеспечения оттока тепла от кристалла.

Основные детали ЦП − крышка, кристалл и контактная площадка

Что такое ядро процессора

Если сам центральный процессор можно назвать «мозгом» компьютера, то ядро считается основной деталью самого ЦП. Ядро – это набор микросхем, расположенных на площадке из кремния, размер которой не превышает квадратного сантиметра. Совокупность микроскопических логических элементов, посредством которых реализована принципиальная схема работы, носит название архитектуры.

Немного технических подробностей: в современных процессорах крепление ядра к платформе чипа осуществляется с помощью системы «флип-чип», такие стыки обеспечивают максимальную плотность соединения.

Каждое ядро состоит из определённого количества функциональных блоков:

  • блок работы с прерываниями , который необходим для быстрого переключения между задачами;
  • блок выработки инструкций , отвечающий за получение и направление команд для последующей обработки;
  • блок декодирования , который нужен для обработки поступающих команд и определения действия, необходимых для этого;
  • управляющий блок , который занимается передачей обработанных инструкций на прочие функциональные части и координацией нагрузки;
  • последними являются блоки выполнения и сохранения .

Ядро процессора представляет собой мельчайшую плату, на которой расположены рабочие элементы

Что такое сокет процессора

Термин socket переводится с английского языка как «гнездо» или «разъём». Для персонального компьютера данный термин одновременно относится непосредственно к материнской плате и процессору. Сокет – это место крепления ЦП. Они различаются между собой такими характеристиками, как размер, количество и тип контактов, особенностями монтажа охлаждения.

Два крупнейших производителя процессоров – Intel и AMD − ведут давнюю маркетинговую войну, предлагая каждый свой собственный сокет, подходящий только под CPU своего производства. Цифра в маркировке конкретного сокета, например, LGA 775, обозначает количество контактов или контактных ножек. Также в технологическом плане сокеты могут различаться между собой:

  • присутствием дополнительных контроллеров;
  • возможностью технологии поддержи графического ядра процессора;
  • производительностью.

Сокет также может оказывать влияние на следующие параметры работы компьютера:

  • вид поддерживаемой ОЗУ;
  • частоту работы шины FSB;
  • косвенно, на версию PCI-e и разъём SATA.

Создание специального гнезда для крепления центрального процессора требуется, чтобы пользователь мог совершать апргрейд системы и менять ЦПУ в случае его выхода из строя.

Сокет процессор – это гнездо для его установки на материнской плате

Графическое ядро в процессоре: что это такое

Одной из деталей ЦП, кроме непосредственно основного ядра, может быть графический процессор. Что это такое, и для чего требуется применение подобного компонента? Сразу следует отметить, что встраивание графического ядра не является обязательным и присутствует не в каждом процессоре. Это устройство требуется для исполнения основных функций CPU в виде решения вычислительных задач, а также поддержку графики.

К СВЕДЕНИЮ:

иногда можно встретить аббревиатуру IGP, которая расшифровывается как Integrated Graphics Processor или интегрированный графический процессор. Это означает, что в данном конкретном ПК применяется подобное решение, а дискретная видеокарта может вообще отсутствовать.

Причинами, по которым производители используют технологии объединения двух функций в одном ядре, являются:

  • сокращение энергопотребления, поскольку меньшие по размеру устройства требуют меньше питания и затрат на охлаждение;
  • компактность;
  • снижение стоимости.

Применение интегрированной или встроенной графики чаще всего наблюдается в ноутбуках или недорогих ПК, предназначенных для офисной работы, где нет завышенных требований к графике.

Графическое ядро – это вынесенный на ЦП графический сопроцессор

Основные понятия процессора в информатике

Что такое потоки в процессоре

Поток выполнения в ЦП – это наименьшая единица обработки, которая назначается ядром, необходимая для разделения кода и контекста исполняемого процесса. Одномоментно может существовать несколько процессов, которые одновременно используют ресурсы ЦП. Существует оригинальная разработка компании Intel, которая стала применяться в моделях, начиная с процессора Intel Core i3, которая именуется HyperThreading. Это технология деления физического ядра на два логических. Таким образом, операционная система создаёт дополнительные вычислительные мощности и увеличивает поточность. Получается, что только показатель количества ядер не будет решающим, поскольку в некоторых случаях компьютеры, имеющие 4 ядра, проигрывают по быстродействию тем, которые имеют всего 2.

Количество потоков можно посмотреть через диспетчер задач

Что такое техпроцесс в процессоре

Под техпроцессом в информатике понимается размер транзисторов, применяемых в ядре компьютера. Процесс изготовления ЦП происходит по методу фотолитографии, когда из покрытого диэлектрической плёнкой кристалла под действие света вытравливаются транзисторы. Используемое оптическое оборудование имеет такой показатель, как разрешающая способность. Это и будет технологическим процессом. Чем она выше, тем большее количество транзисторов можно уместить на одном кристалле.

Снижению размеров кристалла способствует:

  • снижение тепловыделения и энергопотребления;
  • производительность, поскольку при сохранении физического размера кристалла удаётся поместить на нём большее количество рабочих элементов.

Единицей измерения техпроцесса является нанометр (10-9). Большинство современных процессоров изготавливается по 22 нм технологическому процессу.

К СВЕДЕНИЮ:

в качестве примера можно привести процессор Intel Core i7, который при размере кристалла в 160 мм содержит 1,4 млрд рабочих элементов.

Техпроцесс – это увеличение количества рабочих элементов процессора при сохранении его размеров

Что такое виртуализация процессора

Основа метода заключается в разделении ЦП на гостевую и мониторную часть. Если требуется переключение с основной на гостевую ОС, тогда процессор автоматически осуществляет эту операцию, сохраняя видимыми только те значения регистра, которые требуются для стабильной работы. Поскольку гостевая операционная система взаимодействует напрямую с процессором, то работа виртуальной машины будет значительно быстрее.

Включение виртуализации возможно в настройках BIOS. Большая часть материнских плат и процессоров от AMD не поддерживает технологию создания виртуальной машины аппаратными методами. Тут на помощь пользователю приходят программные способы.

Виртуализация активируется в БИОС

Что такое регистры процессора

Регистр процессора – это специальный набор цифровых электрических схем, которые относятся к сверхбыстрой памяти, необходимой ЦП для хранения результатов промежуточных операций. Каждый процессор содержит великое множество регистров, большая часть которых недоступна программисту и зарезервирована для исполнения основных функций ядра. Существуют регистры общего и специального назначения. Первая группа доступна для обращения, вторая используется самим процессором. Поскольку скорость взаимодействия с регистрами ЦП выше, чем обращение в оперативной памяти, они активно применяются программистами для написания программных продуктов.

Регистры процессора

Основные технические характеристики процессора

Что такое тактовая частота процессора

Многие пользователи слышали такое понятие, как тактовая частота, но не все до конца представляют себе, что это такое. Говоря простым языком, это количество операций, которое может выполнять ЦП за 1 секунду. Здесь действует правило – чем выше показатель такта, тем более производительный компьютер.

Единицей измерения тактовой частоты является Герц, который по физическому смыслу является отображением количества колебаний за установленный отрезок времени. Образование тактовых колебаний происходит за счёт действия кристалла кварца, который располагается в тактовом резонаторе. После подачи напряжения происходит возникновение колебаний электрического тока. Они передаются на генератор, преобразующий их в импульсы, которые посылаются на шины данных. Тактовая частота процессора не единственная характеристика оценки скорости работы ПК. Также требуется учитывать количество ядер и объём буферной памяти.

Посмотреть тактовую частоту можно в БИОС или при помощи специального софта

Что такое разрядность процессора

Каждый пользователь ОС от Windows при установке новых программ сталкивался с выбором версии под разрядность системы. Что же такое разрядность ЦПУ? Выражаясь простым языком, это показатель, называемый иначе машинным словом, показывающий, сколько бит информации ЦП обрабатывает за один такт. В современных процессорах этот показатель может быть кратным 32 или 64.

К СВЕДЕНИЮ:

для обычного пользователя показатель разрядности будет определять максимальный объём ОЗУ, который поддерживается процессором. Для 32 бит это 4 Гб, а для 64 бит верхний предел составляет уже 16 Тб.

Разрядность может иметь значение 32 и 64 бита

Что такое троттлинг процессора

Троттлинг, или дросселирование, – это защитный механизм, который применяется для предотвращения перегрева центрального процессора или возникновения аппаратных сбоев при работе. Функция активна по умолчанию и срабатывает при повышении температуры до критической отметки, которая установлена для каждой конкретной модели ЦП производителем. Защита осуществляется путём снижения производительности ядра. При возвращении температуры к нормальным показателям функция автоматически отключается. Существует возможность принудительно поменять параметры троттлинга через БИОС. Она активно используется любителями разгона ЦП или оверклокерами, но для простого пользователя подобные изменения чреваты поломкой ПК.

При превышении допустимых температур ЦП автоматически включается система защиты, или троттлинг

Температура процессора и видеокарты

При работе ядра и прочих элементов ЦП выделяется большое количество тепла, именно поэтому в современных компьютерах используются мощные системы охлаждения, как центрального процессора, так и основных узлов материнской платы. Требовательные программы, которые активно используют мощности ЦП и видеокарты (обычно это игры), нагружают процессор, что приводит к быстрому повышению температуры. В этом случае включается троттлинг. Многие производители видеокарт утверждают, что их продукция способна нормально функционировать даже при 100°C. В реальности предельной температурой будет та, которая указана в технической документации.

К СВЕДЕНИЮ:

мощные видеокарты и процессоры работают на повышенных тактовых частотах, что приводит к большему тепловыделению. Поэтому они требуют улучшенного охлаждения.

Самостоятельно контролировать температурный режим можно посредством специального софта для мониторинга (AIDA64, GPU Temp, Speccy). Если при работе или игре наблюдается подтормаживание, значит, вполне вероятно, температура возросла до критической отметки, и автоматически сработала защита.

Самостоятельно отслеживать температуру ЦП и видеокарты можно посредством специального софта

Что такое турбо буст в процессоре

Turbo Boost – это запатентованная технология компании Intel, которая применяется в процессорах Intel Core i5 и i7 первых трёх генераций. Она применяется для аппаратного ускорения работы ЦП на определённое время. С использованием технологии процедура разгона осуществляется с учётом всех важных параметров – силы тока, температуры, напряжения, состояния ОС, поэтому она полностью безопасна для компьютера. Прирост в скорости работы процессора носит временный характер и будет зависеть от типа нагрузки, количества ядер и конфигурации платформы. Дополнительно следует отметить, что технология поддерживается только операционными системами Windows 7 и 8.

Фирменная технология от компании Intel позволяет добиться временного улучшения производительности компьютера

Виды процессоров

Всего принято выделять 5 основных видов процессоров в компьютере:

  1. Буферный . Это сопроцессор, который требуется для предварительной обработки информации между периферией и ЦП.
  2. Препроцессор . По своей сути, это аналогичный предыдущему процессор, назначением которого является промежуточная обработка данных.
  3. CISC . ЦП, выпускаемый компанией Intel, который отличается от обычного увеличенным набором команд.
  4. RISC . Альтернативная версия CISC, имеющая сокращённое количество команд. Большинство крупных производителей процессоров работает на сочетании двух разновидностей (CISC и RISC), что позволит увеличить мощность и скорость работы ядра.
  5. Клоны . Это процессоры, которые выпускаются некрупными производителями по лицензии или полностью пиратским способом.

Самые популярные модели и производители

Рынок микропроцессоров делят два крупных производителя – Intel и AMD, которые ведут непримиримую борьбу на протяжении всего времени своего существования. Каждая компания предлагает свои готовые решения. Выбор конкретной модели является субъективным решением конечного пользователя, поскольку каждый производитель предлагает широкую линейку моделей, имеющую как бюджетные варианты, так и топовые игровые ЦП.

Наибольшую популярность в линейке процессоров от Intel приобрели модели Intel Core i3, i5 и i7. В зависимости от модификации они могут использоваться как в игровых ПК, так и в офисных машинах. У AMD одними из лучших считаются процессоры серии Ryzen, демонстрирующие хорошие показатели производительности. Серия Athlon до сих пор встречается, но относится уже к архивным. Для нетребовательного пользователя подойдут процессоры AMD A серии.

AMD и Intel являются двумя самыми крупными компаниями по производству процессоров

Что такое скальпирование процессора

Скальпирование процессора – это процедура снятия крышки для замены термопасты. Проведение данной процедуры является одной из составных частей разгона или может потребоваться для снижения нагрузки на аппаратную часть ЦП.

Сама процедура заключается в:

  • снятии крышки;
  • удалении старой термопасты;
  • очистке кристалла;
  • нанесении нового слоя термопасты;
  • закрытии крышки.

При проведении процедуры следует учитывать тот факт, что одно неверное движение может привести к выходу процессора из строя. Поэтому лучше доверить это мероприятие профессионалам. Если решение провести скальпирование в домашних условиях принято окончательно, то можно посоветовать приобрести специальный прибор в виде зажима для ЦП, что облегчит снятие крышки без повреждения кристалла.

Скальпирование процессора – это процедура вскрытия крышки для замены термопасты

Как разогнать процессор

Проведение оверклокинга, или разгона центрального процессора, может быть целесообразно при наличии устаревшего оборудования и отсутствии средств для покупки нового камня. Обычно проведение процедуры позволяет получить прирост производительности от 10 до 20%. Существует два метода, как провести разгон, – путём увеличения частоты шины FSB или повышения множителя процессора. Современные компьютеры, по общему правилу, поставляются с заблокированным множителем, поэтому самым доступным будет способ изменения частоты системной шины.

Разгон процессора осуществляется путём повышения частоты шины или множителя процессора

Основные советы по разгону:

  1. Трогать питание ядра при отсутствии опыта не рекомендуется.
  2. Повышение показателя частоты следует проводить поэтапно, увеличивая за один раз не более чем на 100 МГц.
  3. Отслеживать температуру, поскольку при повышении частоты увеличивается тепловыделение.
  4. При решении увеличить питание ядра шаг составляет 0,05В, при этом максимальный предел не должен превышать 0,3В, иначе велика вероятность выхода ЦП из строя.
  5. После каждого повышения требуется тестировать стабильность работы. При первых сбоях разгон необходимо прекратить.

К СВЕДЕНИЮ:

если при достижении максимальной частоты наблюдается стабильная работа, но чрезмерное нагревание, в этом случае необходимо полностью изучить работу системы охлаждения ПК.

Упростить процесс разгона можно посредством применения специальных программ, которые самостоятельно контролируют основные параметры, затрагиваемые при оверклокинге.

Процессор – это сердце вашего ПК. Именно здесь идёт администрирование всех процессов машины. От того, насколько эффективно будет работать этот блок, зависит качество работы всего компьютера. А значит, и ваша уверенность и спокойствие полностью зависят от выбора качественной начинки аппаратно-вычислительной машины.

Если у вас есть вопросы к нашим экспертам, можно оставить их ниже.

Процессор компьютера – это основной компонент компьютера, его «мозг», скажем так. Он выполняет все логические и арифметические операции, которые задает программа. Кроме этого он выполняет управление всеми устройствами компьютера.

Что собою представляет современный процессор

Сегодня процессоры изготавливаются в виде микропроцессоров. Визуально микропроцессор – это тонкая пластинка кристаллического кремния в форме прямоугольника. Площадь пластины несколько квадратных миллиметров, на ней расположены схемы, которые обеспечивают функциональность процессора ПК. Как правило, пластинка защищена керамическим или пластмассовым плоским корпусом, к которому подсоединена посредством золотых проводков с металлическими наконечниками. Такая конструкция позволяет подсоединить процессор к системной плате компьютера.

  • шины адресов и шины данных;
  • арифметико-логическое устройство;
  • регистры;
  • кэш (быстрая память небольшого объема 8-512 Кбайт);
  • счетчики команд;
  • математический сопроцессор.

Что такое архитектура процессора?

Архитектура процессора – это способность процессора выполнять набор машинных кодов. Это с точки зрения программистов. Но разработчики компьютерных составляющих придерживаются другой трактовки понятия «архитектура процессора». По их мнению, архитектура процессора – это отражение основных принципов внутренней организации определенных типов процессоров. Допустим, архитектура Intel Pentium обозначается Р5, Pentium II и Pentium III — Р6, а не так давно популярных Pentium 4 – NetBurst. Когда компания Intel закрыла Р5 для конкурирующих производителей, компания AMD разработала свою архитектуру К7 для Athlon и Athlon XP, а для Athlon 64 – К8.

Даже процессоры с одинаковой архитектурой могут существенно отличаться друг от друга. Эти различия обусловлены разнообразием процессорных ядер, которые обладают определенным набором характеристик. Наиболее частым отличием является различные частоты системной шины, а также размеры кэша второго уровня и технологическим характеристикам, по которым изготовлены процессоры. Очень часто смена ядра в процессорах из одного и того же семейства, требует также замены процессорного разъема. А это влечет за собой проблемы с совместимостью материнских плат. Но производители постоянно совершенствуют ядра и вносят постоянные, но не значительные изменения в ядре. Такие нововведения называют ревизией ядер и, как правило, обозначаются цифробуквенными комбинациями.

Системная шина или процессорная шина (FSB – Front Side Bus) – это совокупность сигнальных линий, которые объединены по назначению (адреса, данные и т.д.). Каждая линия имеет определенный протокол передачи информации и электрическую характеристику. То есть системная шина – это связующее звено, которое соединяет сам процессор и все остальные устройства ПК (жесткий диск, видеокарта, память и многое другое). К самой системной шине подключается только CPU, все остальные устройства подключаются через контроллеры, которые находятся в северном мосте набора системной логики (чипсет) материнской платы. Хотя в некоторых процессорах контролер памяти подключен непосредственно в процессор, что обеспечивает более эффективный интерфейс памяти CPU.

Кеш или быстрая память – это обязательная составляющая всех современных процессоров. Кеш является буфером между процессором и контроллером достаточно медленной системной памяти. В буфере хранятся блоки данных, отрабатываемых в данный момент, и процессору не нужно постоянно обращаться к медленной системной памяти. Естественно, это значительно увеличивает общую производительность самого процессора.

В процессорах, используемых сегодня, кэш поделен на несколько уровней. Самый быстрый – первый уровень L1, который производит работу с ядром процессора. Он обычно разделен на две части – это кэш данных и кэш инструкций. С L1 взаимодействует L2 – кэш второго уровня. Он намного больше по объему и не разделен на кэш инструкций и кэш данных. У некоторых процессоров существует L3 – третий уровень, он еще больше второго уровня, но на порядок медленнее, так как шина между вторым и третьим уровнем уже, чем между первым и вторым. Тем не менее, скорость третьего уровня все равно гораздо выше, нежели скорость системной памяти.

Различают кэш по двум видам – эксклюзивный и не эксклюзивный.

Эксклюзивный тип кэша тот, в котором информация на всех уровнях строго разграничена на оригинальную.

Не эксклюзивный кэш – это кэш, в котором информация повторяется на всех уровнях кэша. Трудно сказать, какой тип кэша лучше, и у первого и у второго есть свои достоинства и недостатки. Эксклюзивный тип кэша используется в процессорах AMD, а не эксклюзивный — Intel.

Разъем процессора может быть щелевой и гнездовой. В любом случае его предназначение – это установка центрального процессора. Применение разъема облегчает замену процессора при модернизации и снятие на время ремонта ПК. Разъемы могут предназначаться для установки CPU-карты и самого процессора. Разъемы различают по предназначению для определенных типов процессоров или CPU-карт.

Первое место занимает процессор Intel Core i5. Отличный вариант для мощной игровой машины.

Второе место — Intel Celeron E3200, не смотря на достаточно приличную стоимость. Оптимальный вариант для офисной машины.

Третье место занимает снова intel - на этот раз 4-х ядерный Core 2 Quad.

Четвертое место — процессор AMD Athlon II X2 215 2.7 GHz 1Mb Socket-AM3 OEM. Хороший выбор для дома и офиса, для тех кто хочет сэкономить и не нуждается в супер мощной машине. К тому у этой модели процессора есть много места для разгона.

Пятое место — AMD Phenom II X4 945. Хорошая цена, отличная производительность, большой кэш и 4 ядра на борту.

Если вы готовы заплатить за процессор порядка 1000$, то можете приобрести Intel Сore 2 Extreme. Но такой процессор вряд ли подойдет для широких масс потребителей. Поэтому рассмотрим более доступные варианты.

Если вы простой пользователь ПК, который работает с текстами, смотрит фильмы, прослушивает музыку и работает в Интернете, вам вполне подойдет или Celeron E1200 или младшие Athlon 64 X2. Последний имеет определенные преимущества перед первым и вам его хватит на долгие годы.

Если вы используете свой компьютер для развлечения, периодически играете в игры, то вам нужно посмотреть на процессоры Core 2 Duo. Это самый оптимальный вариант процессора для ваших потребностей.

Если вы относитесь к пользователям, которые используют все возможности компьютера, работаете с аудио, Интернет, видео, большими программами и тяжеловесными играми, вам больше всего подойдет Core 2 Duo E8200. Этот процессор обладает высокой производительностью, невысоким тепловыделением, достаточной возможностью разгона, при этом доступен по цене.

И, наконец, вы бескомпромиссный игрок и ваш ПК должен быть мощным игровым плацдармом? Вам просто необходим или двухядерный или четырехядерный процессор, не меньше.

Практически все знают, что в компьютере главным элементом среди всех «железных» компонентов является центральный процессор. Но круг людей, которые представляют себе, как работает процессор, является весьма ограниченным. Большинство пользователей об этом и понятия не имеют. И даже когда система вдруг начинает «тормозить», многие считают, что это процессор плохо работает, и не придают значения другим факторам. Для полного понимания ситуации рассмотрим некоторые аспекты работы ЦП.

Что такое центральный процессор?

Из чего состоит процессор?

Если говорить о том, как работает процессор Intel или его конкурент AMD, нужно посмотреть, как устроены эти чипы. Первый микропроцессор (кстати, именно от Intel, модель 4040) появился еще в далеком 1971 году. Он мог выполнять только простейшие операции сложения и вычитания с обработкой всего лишь 4 бит информации, т. е. имел 4-битную архитектуру.

Современные процессоры, как и первенец, основаны на транзисторах и обладают куда большим быстродействием. Изготавливаются они методом фотолитографии из определенного числа отдельных кремниевых пластинок, составляющих единый кристалл, в который как бы впечатаны транзисторы. Схема создается на специальном ускорителе разогнанными ионами бора. Во внутренней структуре процессоров основными компонентами являются ядра, шины и функциональные частицы, называемые ревизиями.

Основные характеристики

Как и любое другое устройство, процессор характеризуется определенными параметрами, которые, отвечая на вопрос, как работает процессор, обойти стороной нельзя. Прежде всего это:

  • количество ядер;
  • число потоков;
  • размер кэша (внутренней памяти);
  • тактовая частота;
  • быстрота шины.

Пока остановимся на тактовой частоте. Не зря процессор называют сердцем компьютера. Как и сердце, он работает в режиме пульсации с определенным количеством тактов в секунду. Тактовая частота измеряется в МГц или в ГГц. Чем она выше, тем больше операций может выполнить устройство.

На какой частоте работает процессор, можно узнать из его заявленных характеристик или посмотреть информацию в Но в процессе обработки команд частота может меняться, а при разгоне (оверлокинге) увеличиваться до экстремальных пределов. Таким образом, заявленная является всего лишь усредненным показателем.

Количество ядер - показатель, определяющий число вычислительных центров процессора (не путать с потоками - количество ядер и потоков могут не совпадать). За счет такого распределения появляется возможность перенаправления операций на другие ядра, за счет чего повышается общая производительность.

Как работает процессор: обработка команд

Теперь немного о структуре исполняемых команд. Если посмотреть, как работает процессор, нужно четко представлять себе, что любая команда имеет две составляющие - операционную и операндную.

Операционная часть указывает, что должна выполнить в данный момент компьютерная система, операнда определяет то, над чем должен работать именно процессор. Кроме того, ядро процессора может содержать два вычислительных центра (контейнера, потока), которые разделяют выполнение команды на несколько этапов:

  • выработка;
  • дешифрование;
  • выполнение команды;
  • обращение к памяти самого процессора
  • сохранение результата.

Сегодня применяется раздельное кэширование в виде использования двух уровней кэш-памяти, что позволяет избежать перехвата двумя и более командами обращения к одному из блоков памяти.

Процессоры по типу обработки команд разделяют на линейные (выполнение команд в порядке очереди их записи), циклические и разветвляющиеся (выполнение инструкций после обработки условий ветвления).

Выполняемые операции

Среди основных функций, возложенных на процессор, в смысле выполняемых команд или инструкций различают три основные задачи:

  • математические действия на основе арифметико-логического устройства;
  • перемещение данных (информации) из одного типа памяти в другой;
  • принятие решения по исполнению команды, и на его основе - выбор переключения на выполнения других наборов команд.

Взаимодействие с памятью (ПЗУ и ОЗУ)

В этом процессе следует отметить такие компоненты, как шина и канал чтения и записи, которые соединены с запоминающими устройствами. ПЗУ содержит постоянный набор байт. Сначала адресная шина запрашивает у ПЗУ определенный байт, затем передает его на шину данных, после чего канал чтения меняет свое состояние и ПЗУ предоставляет запрошенный байт.

Но процессоры могут не только считывать данные из оперативной памяти, но и записывать их. В этом случае используется канал записи. Но, если разобраться, по большому счету современные компьютеры чисто теоретически могли бы и вовсе обойтись без ОЗУ, поскольку современные микроконтроллеры способны размещать нужные байты данных непосредственно в памяти самого процессорного чипа. Но вот без ПЗУ обойтись никак нельзя.

Кроме всего прочего, старт системы запускается с режима тестирования оборудования (команды BIOS), а только потом управление передается загружаемой операционной системе.

Как проверить, работает ли процессор?

Теперь посмотрим на некоторые аспекты проверки работоспособности процессора. Нужно четко понимать, что, если бы процессор не работал, компьютер бы не смог начать загрузку вообще.

Другое дело, когда требуется посмотреть на показатель использования возможностей процессора в определенный момент. Сделать это можно из стандартного «Диспетчера задач» (напротив любого процесса указано, сколько процентов загрузки процессора он дает). Для визуального определения этого параметра можно воспользоваться вкладкой производительности, где отслеживание изменений происходит в режиме реального времени. Расширенные параметры можно увидеть при помощи специальных программ, например, CPU-Z.

Кроме того, можно задействовать несколько ядер процессора, используя для этого (msconfig) и дополнительные параметры загрузки.

Возможные проблемы

Наконец, несколько слов о проблемах. Вот многие пользователи часто спрашивают, мол, почему процессор работает, а монитор не включается? К центральному процессору эта ситуация не имеет никакого отношения. Дело в том, что при включении любого компьютера сначала тестируется графический адаптер, а только потом все остальное. Возможно, проблема состоит как раз в процессоре графического чипа (все современные видеоускорители имеют собственные графически процессоры).

Но на примере функционирования человеческого организма нужно понимать, что в случае остановки сердца умирает весь организм. Так и с компьютерами. Не работает процессор - «умирает» вся компьютерная система.

Вероятно, выбирая компьютер и изучая его характеристики вы заметили, что такому пункту как процессор придают большое значение. Почему именно ему, а не модели , блока питания, или ? Да, это тоже важные компоненты системы и от их правильного подбора также многое зависит, однако характеристики ЦП напрямую и в большей степени влияют на скорость и производительность ПК. Давайте разберем значение этого устройства в компьютере.

А начнем с того, что уберем процессор из системного блока. В итоге компьютер не будет работать. Теперь понимаете, какую роль он играет? Но давайте более детально изучим вопрос и узнаем что такое процессор компьютера.

Что такое процессор компьютера

Вся суть в том, что центральный процессор (его полное название) – как говорят, самое настоящее сердце и одновременно мозг компьютера. Пока он работает, работают и все остальные составляющие системного блока и подключенная к нему периферия. Он отвечает за обработку потоков различных данных, а также регулирует работу частей системы.

Более техническое определение можно найти в Википеди:

Центральный процессор - электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера.

В жизни ЦПУ имеет вид небольшой квадратной платы размером со спичечный коробок толщиной в несколько миллиметров, верхняя часть которого как, как правило, прикрыта металлической крышкой (в настольных версиях), а на нижней расположено множество контактов. Собственно, дабы не распинаться, посмотрите следующие фотографии:

Без команды, отданной процессором, не может быть произведена даже такая простая операция, как сложение двух чисел, или запись одного мегабайта информации. Все это требует немедленного обращения к ЦП. Что уж до более сложных задач, таких как запуск игры, или обработка видео.

К словам выше стоит добавить, что процессоры могут выполнять и функции видеокарты. Дело в том, что в современных чипах отведено место для видеоконтроллера, который выполняет все необходимые от нее функции, а как видеопамять использует . Не стоит думать, что встроенные графические ядра способны конкурировать с видеокартами хотя бы среднего класса, это больше вариант для офисных машин, где мощная графика не нужна, но все же потянуть что-то слабое им по зубам. Главным же достоинством интегрированной графики является цена — все же отдельную видеокарту покупать не нужно, а это существенная экономия.

Как работает процессор

В предыдущем пункте было разобрано, что такое процессор и для чего он нужен. Самое время посмотреть на то, как это работает.

Деятельность ЦП можно представить последовательностью следующих событий:

  • Из ОЗУ, куда загрузилась определенная программа (допустим текстовый редактор), управляющий блок процессора извлекает необходимые сведения, а также набор команд, которые обязательно нужно выполнить. Все это отправляется в буферную память (кэш) ЦП;
  • Выходящая из кэш-памяти информация разделяется на два вида: инструкции и значения , которые отправляются в регистры (это такие ячейки памяти в процессоре). Первые идут в регистры команд, а вторые в регистры данных;
  • Информацию из регистров обрабатывает арифметико-логическое устройство (часть ЦПУ, которая выполняет арифметические и логические преобразования поступающих данных), которое из них считывает информацию, а за тем исполняет необходимые команды над получившимися в итоге числами;
  • Получившиеся результаты, разделяющиеся на законченные и незаконченные , идут в регистры, откуда первая группа отправляется в кэш-память ЦП;
  • Этот пункт начнем с того, что есть два основных уровня кэша: верхний и нижний . Последние полученные команды и данные, нужные для выполнения расчетов, поступают в кэш верхнего уровня, а неиспользуемые отправляются в кэш нижнего уровня. Этот процесс идёт следующим образом — вся информация идёт с третьего уровня кэша на второй, а потом попадает на первый, с не нужными на текущий момент данными и их отправкой на нижний уровень все обстоит наоборот;
  • По окончанию вычислительного цикла, конечный итог будет записан в оперативной памяти системы, для освобождения места кэш-памяти ЦП для новых операций. Но может произойти так, что буферная память будет переполнена, тогда неэксплуатируемые данные пойдут в оперативную память, или на нижний уровень кэша.

Поэтапные шаги вышеприведенных действий являются операционным потоком процессора и ответом на вопрос – как работает процессор.

Виды процессоров и основные их производители

Существует множество видов процессоров от слабых одноядерных, до мощных многоядерных. От игровых и рабочих до средних по всем параметрам. Но, есть два основных лагеря ЦП – AMD и знаменитые Intel. Это две компании, производящие самые востребованные и популярные микропроцессоры на рынке. Основное различие между продукцией AMD и Intel – не количество ядер, а архитектура – внутреннее строение. Каждый из конкурентов предлагает свое строение «внутренностей», свой вид процессора, кардинально отличающуюся от конкурента.

У продуктов каждой из сторон есть свои плюсы и минусы, предлагаю кратко ознакомиться с ними поближе.

Плюсы процессоров Intel :

  • Обладает более низким потреблением энергии;
  • Разработчики больше ориентируются на Интел, чем на АМД;
  • Лучше производительность в играх;
  • Связь процессоров Интел с ОЗУ реализована лучше, нежели у АМД;
  • Операции, осуществляемые в рамках только одной программы (на пример разархивирование) идут лучше, АМД в этом плане поигрывает.

Минусы процессоров Intel :

  • Самый большой минус – цена. ЦП от данного производителя зачастую на порядок выше чем у их главного конкурента;
  • Производительность снижается при использовании двух и более «тяжелых» программ;
  • Интегрированные графические ядра уступают АМД;

Плюсы процессоров AMD :

  • Самый большой плюс — самый большой минус Intel – цена. Вы можете купить хороший середнячок от AMD, который будет на твердую 4, а может даже и 5 тянуть современные игры, при этом стоить он будет намного ниже чем аналогичный по производительности процессор от конкурента;
  • Адекватное соотношение качества и цены;
  • Обеспечивают качественную работу системы;
  • Возможность разгона процессора, повышая тем самым его мощность на 10-20%;
  • Интегрированные графические ядра превосходят Интел.

Минусы процессоров AMD :

  • Процессоры от АМД хуже взаимодействуют с ОЗУ;
  • Энергопотребление больше, чем у Интел;
  • Работа буферной памяти на втором и третьем уровне идёт на более низкой частоте;
  • Производительность в играх отстает от показателей конкурента;

Но, несмотря на приведенные достоинства и недостатки, каждая из компаний продолжает развиваться, их процессоры с каждым поколением становятся мощнее, а ошибки предыдущей линейки учитываются и исправляются.

Основные характеристики процессоров

Мы рассмотрели, что такое процессор компьютера, как он работает. Ознакомились с тем, что из себя представляют два основных их вида, время обратить внимание на их характеристики.

Итак, для начала их перечислим: бренд, серия, архитектура, поддержка определенного сокета, тактовая частота процессора, кэш, количество ядер, энергопотребление и тепловыделение, интегрированная графика. Теперь разберем с пояснениями:

  • Бренд – кто производит процессор: AMD, или Intel. От данного выбора зависит не только цена приобретения, и производительность, как можно было бы предположить из предыдущего раздела, но также и выбор остальных комплектующих ПК, в частности, материнской платы. Поскольку процессоры от АМД и Интел имеют различную конструкцию и архитектуру, то в сокет (гнездо для установки процессора на материнской плате) предназначенный под один тип процессора, нельзя будет установить второй;
  • Серия – оба конкурента делят свою продукцию на множество видов и подвидов. (AMD — Ryzen, FX,. Intel- i5, i7);
  • Архитектура процессора – фактически внутренние органы ЦП, каждый вид процессоров имеет индивидуальную архитектуру. В свою очередь один вид можно разделить на несколько подвидов;
  • Поддержка определенного сокета - очень важная характеристика процессора, поскольку сам сокет является «гнездом» на материнской плате для подсоединения процессора, а каждый вид процессоров требует соответствующий ему разъем. Собственно об этом было сказано выше. Вам либо нужно точно знать какой сокет расположен на вашей материнской плате и под нее подбирать процессор, либо наоборот (что более правильно);
  • Тактовая частота – один из значимых показателей производительности ЦП. Давайте ответим на вопрос что такое тактовая частота процессора. Ответ будет простым для этого грозного термина — объем операций выполняющихся в единицу времени, измеряющийся в мегагерцах (МГц);
  • Кэш - установленная прямо в процессор память, её ещё называют буферной памятью, имеет два уровня — верхний и нижний. Первый получает активную информацию, второй – неиспользуемую на данный момент. Процесс получения информации идет с третьего уровня во второй, а потом в первый, ненужная информация проделывает обратный путь;
  • Количество ядер - в ЦП их может быть от одного до нескольких. В зависимости от количества процессор будет называться двухъядерных, четырех ядерным и т.д. Соответственно от их числа будет зависеть мощность;
  • Энергопотребление и тепловыделение. Тут все просто – чем выше процессор «съедает» энергии, тем больше тепла он выделит, обращайте внимание на этот пункт, чтобы выбрать соответствующий кулер охлаждения и блок питания.
  • Интегрированная графика – у AMD первые такие разработки появились в 2006, у Intel с 2010. Первые показывают больший результат, чем конкуренты. Но все равно, до флагманских видеокарт пока ни один из них не смог дотянуть.

Выводы

Как вы уже поняли центральный процессор компьютера играет важнейшую роль в системе. В сегодняшней статье мы с вами разобрали, что такое процессор компьютера, что такое частота процессора, какие они бывают и для чего нужны. Как сильно одни ЦП отличаются от других, какие виды процессоров бывают. Поговорили о плюсах и минусах продукции двух конкурирующих между собой кампаний. Но с какой характеристикой процессор будет стоять в вашем системном блоке решать только вам.