Сайт о телевидении

Сайт о телевидении

» » Радиосхема регулятора напряжения 220в своими руками. Симисторные регуляторы мощности

Радиосхема регулятора напряжения 220в своими руками. Симисторные регуляторы мощности

Тиристорные регуляторы мощности применяются как в быту (в аналоговых паяльных станциях, электронагревательных приборах и т.д.), так и на производстве (например, для запуска мощных силовых установок). В бытовых приборах, как правило, устанавливаются однофазные регуляторы, в промышленных установках чаще применяются трехфазные.

Эти устройства представляют собой электронную схему, работающую по принципу фазового регулирования, для управления мощностью в нагрузке (подробнее об этом методе будет рассказано ниже).

Принцип работы фазового регулирования

Принцип регулирования данного типа заключается в том, что импульс, открывающий тиристор, имеет определенную фазу. То есть, чем дальше он располагается от конца полупериода, тем большей амплитуды будет напряжение, поступающее на нагрузку. На рисунке ниже мы видим обратный процесс, когда импульсы поступают практически под окончание полупериода.

На графике показано время, когда тиристор закрыт t1 (фаза управляющего сигнала), как видите он открывается практически под конец полупериода синусоиды, в результате амплитуда напряжения минимальна, а следовательно, мощность в подключенной к прибору нагрузке будет незначительной (близкой к минимальной). Рассмотрим случай, представленный на следующем графике.


Здесь мы видим, что импульс, открывающий тиристор, приходится на середину полупериода, то есть регулятор будет выдавать половинную мощность от максимально возможной. Работа на мощности, близкой к максимальной, отображена на следующем графике.


Как видно из графика, импульс приходится на начало синусоидального полупериода. Время, когда тиристор находится в закрытом состоянии (t3) – незначительное, поэтому в данном случае мощность в нагрузке приближается к максимальной.

Заметим, что трехфазные регуляторы мощности работают по такому же принципу, но они управляют амплитудой напряжения не в одной, а сразу в трех фазах.

Такой метод регулирования прост в реализации и позволяет точно изменять амплитуду напряжения в диапазоне от 2 до 98 процентов от номинала. Благодаря этому становится возможным плавное управление мощностью электроустановок. Основной недостаток устройств данного типа – создание высокого уровня помех в электросети.

В качестве альтернативы, позволяющей сократить помехи, можно переключать тиристоры, когда синусоида переменного напряжения проходит через ноль. Наглядно работу такого регулятора мощности можно посмотреть на следующем графике.


Обозначения:

  • A – график полуволн переменного напряжения;
  • B – работа тиристора при 50% от максимальной мощности;
  • C – график, отображающий работу тиристора при 66%;
  • D – 75% от максимума.

Как видно из графика, тиристор «отрезает» полуволны, а не их части, что минимизирует уровень помех. Недостаток такой реализации – невозможность плавного регулирования, но для нагрузки с большой инерционностью (например, различных нагревательных элементов) этот критерий не основной.

Видео: Испытания тиристорного регулятора мощности

Схема простого регулятора мощности

Регулировать мощность паяльника можно используя для этой цели аналоговые или цифровые паяльные станции. Последние стоят достаточно дорого, и собрать их, не имея опыта, не просто. В то время как аналоговые устройства (являющиеся по сути регуляторами мощности) не составит труда сделать своими руками.

Приведем несложную схему прибора на тиристорах, благодаря которому можно регулировать мощность паяльника.


Радиоэлементы, обозначенные на схеме:

  • VD – КД209 (или близкий ему по характеристикам)
  • VS- KУ203В или его аналог;
  • R 1 – сопротивление с номиналом 15кОм;
  • R 2 – резистор переменного типа 30кОм;
  • С –емкость электролитического типа ч номиналом 4,7мкФ и напряжением от 50В;
  • R n – нагрузка (в нашем случае в качестве нее выступает паяльник).

Данное устройство регулирует только положительный полупериод, поэтому минимальная мощность паяльника будет вполовину меньше номинальной. Управляется тиристор через цепь, включающую в себя два сопротивления и емкость. Время зарядки конденсатора (оно регулируется сопротивлением R 2) влияет на длительность «открытия» тиристора. Ниже показан график работы устройства.


Пояснение к рисунку:

  • график A – показывает синусоиду переменного напряжения, поступающего на нагрузку Rn (паяльник) при сопротивлении R2 близком к 0 кОм;
  • график B – отображает амплитуду синусоиды поступающего на паяльник напряжения при сопротивлении R2 равном 15 кОм;
  • график C, как видно из него, при максимальном сопротивлении R2 (30 кОм) время работы тиристора (t 2) становится минимальным, то есть паяльник работает с мощностью примерно около 50% от номинальной.

Схема устройства довольно простая, поэтому собрать ее самостоятельно смогут даже те, кто не очень хорошо разбирается в схемотехнике. Необходимо предупредить, что при работе данного прибора в его цепи присутствует опасное для жизни человека напряжение, поэтому все его элементы должны быть надежно заизолированы.

Как уже описывалось выше, устройства, работающие по принципу фазового регулирования, являются источником сильных помех в электросети. Существует два варианта выхода из подобной ситуации:


Регулятор работающий без помех

Ниже представлена схема регулятора мощности, не создающего помехи, поскольку он не «обрезает» полуволны, а «отрезает» их определенное количество. Принцип работы такого устройства мы рассматривали в разделе «Принцип работы фазового регулирования», а именно, переключение тиристора через ноль.

Также как и в предыдущей схеме, регулировка мощности происходит в диапазоне от 50 процентов до величины близкой к максимальной.


Перечень используемых в приборе радиоэлементов, а также варианты их замены:

Тиристор VS – КУ103В;

Диоды:

VD 1 -VD 4 – КД209 (в принципе можно использовать любые аналоги, которые допускают величину обратного напряжения более 300В, а ток свыше 0,5А); VD 5 и VD 7 – КД521 (допускается ставить любой диод импульсного типа); VD 6 – KC191 (можно использовать аналог с напряжением стабилизации равным 9В)

Конденсаторы:

С 1 – электролитического типа с емкостью 100мкФ, рассчитанный на напряжение не менее 16В; С 2 – 33Н; С 3 – 1мкФ.

Резисторы:

R 1 и R 5 – 120кОм; R 2 -R 4 – 12кОм; R 6 – 1кОм.

Микросхемы:

DD1 – K176 ЛЕ5 (или ЛА7); DD2 –K176TM2. В качестве альтернативы можно использовать логику серии 561;

R n – паяльник, подключенный в качестве нагрузки.

Если при сборке тиристорного регулятора мощности не было допущено ошибок, то устройство начинает работать сразу после включения, настройка для него не требуется. Имея возможность измерить температуру жала паяльника, можно сделать градацию шкалы для резистора R 5 .

В том случае, когда устройство не заработало, рекомендуем проверить правильность распайки радиоэлементов (не забудьте перед этим отключить его от сети).

Авто самоделки Самоделки для дачи Рыбаку, охотнику, туристу Стройка, ремонт Самоделки из ненужных вещей Радиолюбителю Коммуникации для дома Самодельная мебель Самодельный свет Домашний мастер Самоделки для бизнеса Самоделки к праздникам Самоделки для женщин Оригами Оригами Модели из бумаги Самоделки для детей Компьютерные самоделки Самоделки для животных Домашний лекарь Еда и рецепты Опыты и эксперименты Полезные советы

Данную конструкцию я использую для самодельной электроплитки на которой готовим кашу для собак, а недавно применил к паяльнику.

Для изготовления данного регулятора нам понадобится:

Пару резисторов на 1 кОм можно даже 0,25w, один переменный резистор на 1 мОм, два конденсатора 0,01 мкФ и
47 нФ, один динистор который я взял с эконом лампочки, полярности динистор не имеет так-что припаивать его можно как угодно, также нам понадобится симистор с небольшим радиатором, симистор я использовал серии ТС в металлическом корпусе на 10 ампер, но можно использовать КУ208Г, еще нам понадобятся винтовые клемники.

Да, кстати немного о переменном резисторе если поставить на 500 кОм то будет регулировать довольно плавно, но только с 220 до 120 вольт, а если на 1 мОм то регулировать будет жестко с промежутком 5-10 вольт, но зато диапазон увеличится с 220 до 60 вольт.
Итак начнем сборку нашего регулятора мощности, для этого нам нужно сначала сделать печатную плату.

После того как печатная плата готова начинаем набор радиокомпонентов на печатную плату. Первым делом припаиваем винтовые клемники.

И в самую последнюю очередь устанавливаем радиатор и симистор.

Вот и все наш регулятор напряжения готов, помоем плату спиртом и проверяем.

Более подробный обзор симисторного регулятора в видео ролике. Удачной сборки.

Мощный регулятор сетевого напряжения 220В

В последнее время в нашем быту все чаще применяются электронные устройства для плавной регулировки сетевого напряжения. С помощью таких приборов управляют яркостью свечения ламп, температурой электронагревательных приборов, частотой вращения электродвигателей.

Подавляющее большинство регуляторов напряжения, собранных на тиристорах, обладают существенными недостатками, ограничивающими их возможности. Во-первых, они вносят достаточно заметные помехи в электрическую сеть, что нередко отрицательно сказывается на работе телевизоров, радиоприемников, магнитофонов. Во-вторых, их можно применять только для управления нагрузкой с активным сопротивлением — электролампой или нагревательным элементом, и нельзя использовать совместно с нагрузкой индуктивного характера — электродвигателем, трансформатором.

Между тем все эти проблемы легко решить, собрав электронное устройство, в котором роль регулирующего элемента выполнял бы не тиристор, а мощный транзистор.

Принципиальная схема

Транзисторный регулятор напряжения (рис. 9.6) содержит минимум радиоэлементов, не вносит помех в электрическую сеть и работает на нагрузку как с активным, так и индуктивным сопротивлением. Его можно использовать для регулировки яркости свечения люстры или настольной лампы, температуры нагрева паяльника или электроплитки, скорости вращения электродвигателя вентилятора или дрели, напряжения на обмотке трансформатора. Устройство имеет следующие параметры: диапазон регулировки напряжения — от 0 до 218 В; максимальная мощность нагрузки при использовании в регулирующей цепи одного транзистора — не более 100 Вт.

Регулирующий элемент прибора — транзистор VT1. Диодный мост VD1. VD4 выпрямляет сетевое напряжение так, что к коллектору VT1 всегда приложено положительное напряжение. Трансформатор Т1 понижает напряжение 220 В до 5. 8 В, которое выпрямляется диодным блоком VD6 и сглаживается конденсатором С1.

Рис. Принципиальная схема мощного регулятора сетевого напряжения 220В.

Переменный резистор R1 служит для регулировки величины управляющего напряжения, а резистор R2 ограничивает ток базы транзистора. Диод VD5 защищает VT1 от попадания на его базу напряжения отрицательной полярности. Устройство подсоединяется к сети вилкой ХР1. Розетка XS1 служит для подключения нагрузки.

Регулятор действует следующим образом. После включения питания тумблером S1 сетевое напряжение поступает одновременно на диоды VD1, VD2 и первичную обмотку трансформатора Т1.

При этом выпрямитель, состоящий из диодного моста VD6, конденсатора С1 и переменного резистора R1, формирует управляющее напряжение, которое поступает на базу транзистора и открывает его. Если в момент включения регулятора в сети оказалось напряжение отрицательной полярности, ток нагрузки протекает по цепи VD2 — эмиттер-коллектор VT1, VD3. Если полярность сетевого напряжения положительная, ток протекает по цепи VD1 — коллектор-эмиттер VT1, VD4.

Значение тока нагрузки зависит от величины управляющего напряжения на базе VT1. Вращая движок R1 и изменяя значение управляющего напряжения, управляют величиной тока коллектора VT1. Этот ток, а следовательно, и ток, протекающий в нагрузке, будет тем больше, чем выше уровень управляющего напряжения, и наоборот.

При крайнем правом по схеме положении движка переменного резистора транзистор окажется полностью открыт и «доза9raquo; электроэнергии, потребляемая нагрузкой, будет соответствовать номинальной величине. Если движок R1 переместить в крайнее левое положение, VT1 окажется запертым и ток через нагрузку не потечет.

Управляя транзистором, мы фактически регулируем амплитуду переменного напряжения и тока, действующих в нагрузке. Транзистор при этом работает в непрерывном режиме, благодаря чему такой регулятор лишен недостатков, свойственных тирис-торным устройствам.

Конструкция и детали

Теперь перейдем к конструкции прибора. Диодные мостики, конденсатор, резистор R2 и диод VD6 устанавливаются на монтажной плате размером 55×35 мм, выполненной из фольгированного ге-тинакса или текстолита толщиной 1. 2 мм (рис. 9.7).

В устройстве можно использовать следующие детали. Транзистор — КТ812А(Б), КТ824А(Б), КТ828А(Б), КТ834А(Б,В), КТ840А(Б), КТ847А или КТ856А. Диодные мосты: VD1. VD4 — КЦ410В или КЦ412В, VD6 — КЦ405 или КЦ407 с любым буквенным индексом; диод VD5 — серии Д7, Д226 или Д237.

Переменный резистор — типа СП, СПО, ППБ мощностью не менее 2 Вт, постоянный — ВС, MJIT, ОМЛТ, С2-23. Оксидный конденсатор — К50-6, К50-16. Сетевой трансформатор — ТВЗ-1-6 от ламповых телевизоров, ТС-25, ТС-27 — от телевизора «Юность9raquo; или любой другой маломощный с напряжением вторичной обмотки 5. 8 В.

Предохранитель рассчитан на максимальный ток 1 А. Тумблер — ТЗ-С или любой другой сетевой. ХР1 — стандартная сетевая вилка, XS1 — розетка.

Все элементы регулятора размещаются в пластмассовом корпусе с габаритами 150x100x80 мм. На верхней панели корпуса устанавливаются тумблер и переменный резистор, снабженный декоративной ручкой. Розетка для подключения нагрузки и гнездо предохранителя крепятся на одной из боковых стенок корпуса.

С той же стороны сделано отверстие для сетевого шнура. На дне корпуса установлены транзистор, трансформатор и монтажная плата. Транзистор необходимо снабдить радиатором с площадью рассеяния не менее 200 см2 и толщиной 3. 5 мм.

Рис. Печаная плата мощного регулятора сетевого напряжения 220В.

Регулятор не нуждается в налаживании. При правильном монтаже и исправных деталях он начинает работать сразу после включения в сеть.

Теперь несколько рекомендаций тем, кто захочет усовершенствовать устройство. Изменения в основном касаются увеличения выходной мощности регулятора. Так, например, при использовании транзистора КТ856 мощность, потребляемая нагрузкой от сети, может составлять 150 Вт, для КТ834 — 200 Вт, а для КТ847 — 250 Вт.

Если необходимо еще больше увеличить выходную мощность прибора, в качестве регулирующего элемента можно применить несколько параллельно включенных транзисторов, соединив их соответствующие выводы.

Вероятно, в этом случае регулятор придется снабдить небольшим вентилятором для более интенсивного воздушного охлаждения полупроводниковых приборов. Кроме того, диодный мост VD1. VD4 потребуется заменить на четыре более мощных диода, рассчитанных на рабочее напряжение не менее 600 В и величину тока в соответствии с потребляемой нагрузкой.

Для этой цели подойдут приборы серий Д231. Д234, Д242, Д243, Д245. Д248. Необходимо будет также заменить VD5 на более мощный диод, рассчитанный на ток до I А. Также больший ток должен выдерживать предохранитель.

Регулятор мощности своими руками

Современная сеть электропитания устроена так, что в ней часто происходят скачки напряжения. Изменения тока допустимо, но оно не должно превышать 10% от принятых 220 вольт. Скачки плохо сказываются на работоспособности различных электроприборов, и очень часто они начинают выходить их строя. Чтобы этого не случилось, мы стали использовать стабильные регуляторы мощности для выравнивания поступающего тока. При наличии определенной фантазии и навыков можно сделать различные виды стабилизационных приборов, и самым эффективным остается стабилизатор симисторный.

На рынке такие приборы или стоят дорого, или зачастую они некачественные. Понятно, что мало кому захочется переплатить и получить неэффективный прибор. Вот в этом случае можно своими руками собрать его с нуля. Так возникла идея создания регулятора мощности на базе диммера. Диммер, слава Богу, у меня имелся, однако он был немного неработоспособным.

Починка симисторного регулятора – Dimmer-а

На данном изображении дана заводская электрическая схема диммера от фирмы Leviton, которая работает от сети с напряжением 120 Вольт. Если осмотр неработающих диммеров показал, что сгорел только симистор, то можно заняться процедурой его замены. Но здесь вас могут подстерегать неожиданности. Дело в том, что встречаются такие диммеры, в которых установлены какие-то странные симисторы с различными номерами. Вполне возможно, что не удастся найти информацию на них даже на даташите. Помимо этого, у таких симисторов, контактная площадка изолирована от электродов симистора (триака). Хотя, как видно, контактная площадка сделана из меди и даже не покрыта пластиком, как у корпусов транзисторов. Такие симисторы весьма удобны в ремонте.

Также обратите внимание на способ спайки симисторов к радиатору, он выполнен с помощью заклёпок, они пустотелые. При применении изолирующих прокладок, использовать такой способ крепления не рекомендуется. Да такое крепление не очень — то и надежное. В общем, ремонт такого симистра займет много времени и вы потратите нервы именно по причине установки данного типа триаков, диммер просто не рассчитан на такие размеры симистора (Triac-а) .

Заклепки пустотелые следует удалить при помощи сверла, который заточен под определенным углом. а конкретнее под углом 90°, можно также для этой работы использовать кусачки–бокорезки.

При неаккуратной работе есть вероятность повреждения радиатора. чтобы этого избежать, правильнее делать это только с той стороны. где расположен триак.

Радиаторы, выполненные из очень мягкого алюминия, при заклёпке немного могут быть деформированы. Поэтому, необходимо ошкурить контактные поверхности с помощью наждачной бумаги.

Если вы используете триак, который не имеет гальванической развязки, которая разделяет электроды и контактную площадку, то надо применить эффективный метод изоляции.

На изображении показано. как это делается. Чтобы случайно не продавить стенки радиатора, в том месте. где идет крепление симистора, необходимо сточить у винта большую часть шляпки, для того, чтобы избежать ее зацепку за поручень потенциометра или стабилизатора мощности, а затем под головку винта надо подложить шайбу.

Так должен выглядеть симистор, после изоляции от радиатора. Для наилучшего теплоотвода, необходимо приобрести специальную пасту термопроводящую КПТ-8.

На рисунке изображено то, что находиться под кожухом радиатора

Теперь все должно работать

Схема заводского регулятора мощности

На основе схемы заводского регулятора мощности можно собрать макет регулятора для напряжения вашей сети.

Здесь дана схема регулятора, который адаптирован к работе в сети со статичным напряжением в 220 Вольт. Эта схема отличается от оригинальной только несколькими деталями, а именно, при ремонте была в несколько раза увеличена мощность резистора R1, в 2 уменьшены номиналы R4 и R5, а динистор 60-ти. в вольтовый заменили на два. которые включёны последовательно, 30-ти Вольтовыми динисторами VD1, VD2. Как видно, своими руками можно не только отремонтировать неисправные диммера, но и легко подстроить под свои потребности.

Это исправный макет регулятора мощности. Теперь вы точно знаете, какая схема у вас получится при правильном ремонте. Данная схема не требует подбора дополнительных деталей и сразу готова к работе. Возможно, надо будет отрегулировать положения движка подстрочного резистора R4. Для этих целей движки потенциометров R4 и R5 устанавливаются в крайнее верхнее положение, а потом меняют положение движка R4, после чего лампа загорится с самой малой яркостью, а потом следует слегка подвинуть движок в противоположном направлении. На этом процесс настройки закончен! Но стоит отметить, что данный регулятор мощности работают только с нагревательными приборами и лампами накаливания, а с двигателями или мощными аппаратами результаты могут быть не непредсказуемы. Для начинающих мастеров- любителей с малым опытом такие работы самое то.

РЕГУЛЯТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ

Всем привет! В прошлой статье я расказывал, как сделать регулятор напряжения для постоянного тока. Сегодня мы сделаем регулятор напряжения для переменного тока 220в. Конструкция довольно-таки проста для повторения даже начинающими. Но при этом регулятор может брать на себя нагрузку даже в 1 киловатт! Для изготовления данного регулятора нам понадобится несколько компонентов:

1. Резистор 4.7кОм млт-0.5 (пойдет даже 0.25 ватт).
2. Перменный резистор 500кОм-1мОм, с 500ком будет регулировать довольно плавно, но только в диапазоне 220в-120в. С 1 мОм — будет регулировать более жестко, тоесть будет регулировать промежутком в 5-10вольт, но зато диапазон возрастет, возможно регулировать от 220 до 60 вольт! Резистор желательно ставить со встроеным выключателем (хотя можно обойтись и без него, просто поставив перемычку).
3. Динистор DB3. Взять такой можно из ЛСД экономичных ламп. (Можно заменить на отечественный KH102).
4. Диод FR104 или 1N4007, такие диоды встречаются практически в любой импортной радиотехнике.
5. Экономичные по току светодиоды.
6. Симистор BT136-600B или BT138-600.
7. Винтовые клемники. (обйтись можно и без них, просто припаяв провода к плате).
8. Небольшой радиатор (до 0,5кВт он не нужен).
9. Пленочный конденсатор на 400вольт, от 0.1 микрофарадп, до 0.47 микрофарад.

Схема регулятора переменного напряжения:

Приступим к сборке устройства. Для начало вытравим и пролудим плату. Печатная плата — её рисунок в LAY, находится в архиве. Более компактный вариант, представленный товарищем sergei — тут.

Затем паяем конденастор. На фото конднесатор со стороны лужения, т.к у моего экземпляра конденсатора были слишком коротки ножки.

Паяем динистор. У динистора полярности нет, так-что вставляем его как вам угодно. Припаиваем диод, резистор, светодиод, перемычку и винтовой клемник. Выглядит оно примерно так:

И в конце концов последний этап — это ставим на симистор радиатор.

А вот фото готового устройства уже в корпусе.

Регулятор какой-нибуть дополнительно настройки не требует. Видео работы данного устройства:

Хочу заметить, что ставить его можно не только в сеть 220В на обычные приборы и электроинструменты. но и на любой другой источник переменного тока с напряжением от 20 до 500В (ограничивается предельными параметрами радиоэлементов схемы). С вами был Boil-:D

Принцип работы симисторных регуляторов мощности

Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором. Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.

Там их с успехом заменяют схемы на тиристорах и IGBT-транзисторах. Но компактные размеры прибора и его долговечность в сочетании с невысокой стоимостью и простотой схемы управления позволили найти им применение в сферах, где указанные выше недостатки не имеют существенного значения.

Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.

Принцип работы

Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.

Делаем своими руками

На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

Схема прибора

Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.

  • симистор VD4, 10 А, 400 В;
  • динистор VD3, порог открывания 32 В;
  • потенциометр R2.

Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

Отличительной особенностью схемы является то, что динистор открывается на одинаковый угол в каждой полуволне сетевого напряжения. Вследствие этого не происходит выпрямление тока, и становится возможным подключение индуктивной нагрузки, например, трансформатора.

Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
  • Диоды VD1, VD2 типа 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.

Схема симисторного регулятора мощности

Сборку регулятора мощности необходимо производить в следующей последовательности:

  1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
  2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
  3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
  4. Закупить необходимые электронные компоненты . радиатор и печатную плату.
  5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
  6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
  7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
  8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
  9. Поместить собранную схему в пластиковый корпус.
  10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
  11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
  12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.

Симисторный радиатор мощности

Регулировка мощности

За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.

  • продлить срок службы лампы, регулировать освещение или температуру паяльника поможет простой и недорогой регулятор на симисторах.
  • выбирайте тип схемы и параметры компонентов по планируемой нагрузке.
  • тщательно проработайте схемные решения.
  • будьте внимательны при сборке схемы . соблюдайте полярность полупроводниковых компонентов.
  • не забывайте, что электрический ток есть во всех элементах схемы и он смертельно опасен для человека.

Проверка конденсатора мультиметром

  • Как выбрать светодиодные лампы для дома

  • Выбор фотореле для уличного освещения

  • В статье рассказывается о том, как работает тиристорный регулятор мощности, схема которого будет представлена ниже

    В повседневной жизни очень часто возникает необходимость регулирования мощности бытовых приборов, например электроплиты, паяльника, кипятильников и ТЭНов, на транспорте - оборотов двигателя и т.д. На помощь приходит простейшая радиолюбительская конструкция - регулятор мощности на тиристоре. Собрать такое устройство не составит труда, оно может стать тем самым первым самодельным прибором, который будет выполнять функцию регулировки температуры жала паяльника начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и прочими приятными функциями стоят на порядок дороже простого паяльника. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности навесным монтажом.

    К сведению, навесной монтаж — это способ сборки радиоэлектронных компонентов без применения печатной платы, а при хорошем навыке он позволяет быстро собрать электронные устройства средней сложности.

    Вы также можете заказать тиристорного регулятора, а для тех, кто хочет разобраться во всём самостоятельно, ниже будет представлена схема и объяснён принцип работы.

    Между прочим, это однофазный тиристорный регулятор мощности. Такой прибор может быть использован для управления мощностью или количеством оборотов. Однако для начала следует разобраться в принципе работы тиристора, ведь это позволит нам понять, на какую нагрузку лучше использовать такой регулятор.

    Как работает тиристор?

    Тиристор - это управляемый полупроводниковый прибор, способный проводить ток в одном направлении. Слово «управляемый» употреблено неспроста, поскольку с его помощью, в отличие от диода, который тоже проводит ток только к одному полюсу, можно выбирать момент, когда тиристор начнет проводить ток. Тиристор имеет три вывода:

    • Анод.
    • Катод.
    • Управляющий электрод.

    Для того чтобы ток начал течь через тиристор, необходимо выполнить следующие условия: деталь должна стоять в цепи, находящейся под напряжением, на управляющий электрод должен быть подан кратковременный импульс. В отличие от транзистора, управление тиристором не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно закрыть, лишь прервав ток в цепи, или сформировав обратное напряжение анод - катод. Это значит, что использование тиристора в цепях постоянного тока весьма специфично и часто неблагоразумно, а вот цепях переменного, например в таком приборе как тиристорный регулятор мощности, схема построена таким образом, что обеспечено условие для закрытия. Каждая из полуволн будет закрывать соответствующий тиристор.

    Вам, скорее всего, не всё понятно? Не стоит отчаиваться - ниже будет подробно описан процесс работы готового устройства.

    Область применения тиристорных регуляторов

    В каких цепях эффективно использовать тиристорный регулятор мощности? Схема позволяет отлично регулировать мощность нагревательных приборов, то есть воздействовать на активную нагрузку. При работе с высокоиндуктивной нагрузкой тиристоры могут просто не закрыться, что может привести к выходу регулятора из строя.

    Можно ли двигателя?

    Я думаю, многие из читателей видели или пользовались дрелями, углошлифовальными машинами, которые в народе именуют "болгарками", и прочим электроинструментом. Вы могли заметить, что количество оборотов зависит от глубины нажатия на кнопку-курок прибора. Вот в этот элемент как раз и встроен такой тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого осуществляется изменение количества оборотов.

    Обратите внимание! Тиристорный регулятор не может изменять обороты асинхронных двигателей. Таким образом, напряжение регулируется на коллекторных двигателях, оборудованных щёточным узлом.

    Схема одном и двух тиристорах

    Типовая схема для того, чтобы собрать тиристорный регулятор мощности своими руками изображена на рисунке ниже.

    Выходное напряжение у данной схемы от 15 до 215 вольт, в случае применения указанных тиристоров, установленных на теплоотводах, мощность составляет порядка 1 кВт. Кстати выключатель с регулятором яркости света сделан по подобной схеме.

    Если у вас нет необходимости полной регулировки напряжения и достаточно получать на выходе от 110 до 220 вольт, воспользуйтесь этой схемой, которая показывает однополупериодный регулятор мощности на тиристоре.

    Как это работает?

    Описанная ниже информация справедлива для большинства схем. Буквенные обозначения будут браться в соответствии первой схемы тиристорного регулятора

    Тиристорный регулятор мощности, принцип работы которого основан на фазовом управлении величиной напряжения, изменяет и мощность. Данный принцип заключается в том, что в нормальных условиях на нагрузку действует переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше, при описании было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной от синусоиды. Что это значит?

    Если с помощью тиристора периодически подключать нагрузку в строго определенный момент, величина действующего напряжения будет ниже, поскольку часть напряжения (действующая величина, которая «попадёт» на нагрузку) будет меньше, чем сетевое. Данное явление проиллюстрировано на графике.

    Заштрихованная область - это и есть область напряжения, которое оказалось под нагрузкой. Буквой «а» на горизонтальной оси обозначен момент открытия тиристора. Когда положительная полуволна закончится и начнется период с отрицательной полуволной, один из тиристоров закрывается, и в тот же момент открывается второй тиристор.

    Разберемся, как работает конкретно наш тиристорный регулятор мощности

    Схема первая

    Оговорим заранее, что вместо слов "положительная" и "отрицательная" будут использованы «первая» и «вторая» (полуволна).

    Итак, когда на нашу схему начинает действовать первая полуволна, начинают заряжаться ёмкости C1 и C2. Скорость их заряда ограничена потенциометром R5. данный элемент является переменным, и с его помощью задаётся выходное напряжение. Когда на конденсаторе C1 появляется необходимое для открытия динистора VS3 напряжение, динистор открывается, через него поступает ток, с помощью которого будет открыт тиристор VS1. Момент пробоя динистора и есть точка «а» на графике, представленном в предыдущем разделе статьи. Когда значение напряжения переходит через ноль и схема оказывается под второй полуволной, тиристор VS1 закрывается, и процесс повторяется заново, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 служат для управления, а R1 и R2 - для термостабилизации схемы.

    Принцип работы второй схемы аналогичен, но в ней идёт управление только одной из полуволн переменного напряжения. Теперь, зная принцип работы и схему, вы можете собрать или починить тиристорный регулятор мощности своими руками.

    Применение регулятора в быту и техника безопасности

    Нельзя не сказать о том, что данная схема не обеспечивает гальванической развязки от сети, поэтому существует опасность поражения электрическим током. Это значит, что не стоит касаться руками элементов регулятора. Необходимо использовать изолированный корпус. Следует проектировать конструкцию вашего прибора так, чтобы по возможности вы могли спрятать её в регулируемом устройстве, найти свободное место в корпусе. Если регулируемый прибор располагается стационарно, то вообще имеет смысл подключить его через выключатель с регулятором яркости света. Такое решение частично обезопасит от поражения током, избавит от необходимости поиска подходящего корпуса, имеет привлекательный внешний вид и изготовлено промышленным методом.


    Еще один регулятор мощности

    Когда у меня в очередной раз не получилось припаять контакт микросхемы перегретым паяльником с первого раза, я понял, что счастья в жизни не будет без регулятора мощности. И решил я закошачить себе такую штуку, но чтобы попроще и универсальным был (для разного рода нагрузки). Приглянулась мне популярная в интернете схемка на симисторе.

    Данный регулятор мощности предназначен для регулировки мощности нагрузки до 500 Вт в цепях переменного тока с напряжением 220 В. Такой нагрузкой могут служить электронагревательные, осветительные прибороы, асинхронные электродвигатели переменного тока (вентилятор, электронаждак, электродрель и т.д.). Благодаря широкому диапазону регулировки и большой мощности регулятор найдет широкое применение в быту.

    Симисторный регулятор мощности использует принцип фазового управления. Принцип работы такого регулятора основан на изменении момента включения симистора относительно перехода сетевого напряжения через ноль.

    В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения, конденсатор С1 заряжается через делитель R1, R2. Увеличение напряжения на конденсаторе С1 отстает (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления делителя R1+R2 и емкости С1. Заряд конденсатора продолжается до тех пор, пока напряжение на нем не достигнет порога «пробоя» динистора (около 32 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечет ток, определяемый суммарным сопротивлением открытого симистора и нагрузки. Симистор остается открытым до конца полупериода. Резистором R1 устанавливается напряжение открывания динистора и симистора. Т.е. этим резистором производится регулировка мощности. При действии отрицательной полуволны принцип работы аналогичен. Светодиод LED индицирует рабочий режим регулятора мощности. Симистор установлен на алюминиевый радиатор размером 40х25х3 мм.

    Настройки схема не требует. Если все смонтировано правильно, то сразу же начинает работать. При экспериментах с лампой накаливания мощностью 100 Вт был выявлен легкий нагрев тиристора (без радиатора). А наглядные результаты экспериментов, как и готового устройства, можно увидеть на фотографиях ниже.

    Всем привет! В прошлой статье я расказывал, как сделать . Сегодня мы сделаем регулятор напряжения для переменного тока 220в. Конструкция довольно-таки проста для повторения даже начинающими. Но при этом регулятор может брать на себя нагрузку даже в 1 киловатт! Для изготовления данного регулятора нам понадобится несколько компонентов:

    1. Резистор 4.7кОм млт-0.5 (пойдет даже 0.25 ватт).
    2. Перменный резистор 500кОм-1мОм, с 500ком будет регулировать довольно плавно, но только в диапазоне 220в-120в. С 1 мОм - будет регулировать более жестко, тоесть будет регулировать промежутком в 5-10вольт, но зато диапазон возрастет, возможно регулировать от 220 до 60 вольт! Резистор желательно ставить со встроеным выключателем (хотя можно обойтись и без него, просто поставив перемычку).
    3. Динистор DB3. Взять такой можно из ЛСД экономичных ламп. (Можно заменить на отечественный KH102).
    4. Диод FR104 или 1N4007, такие диоды встречаются практически в любой импортной радиотехнике.
    5. Экономичные по току светодиоды.
    6. Симистор BT136-600B или BT138-600.
    7. Винтовые клемники. (обйтись можно и без них, просто припаяв провода к плате).
    8. Небольшой радиатор (до 0,5кВт он не нужен).
    9. Пленочный конденсатор на 400вольт, от 0.1 микрофарадп, до 0.47 микрофарад.

    Схема регулятора переменного напряжения:

    Приступим к сборке устройства. Для начало вытравим и пролудим плату. Печатная плата - её рисунок в LAY, находится в архиве. Более компактный вариант, представленный товарищем sergei - .



    Затем паяем конденастор. На фото конднесатор со стороны лужения, т.к у моего экземпляра конденсатора были слишком коротки ножки.


    Паяем динистор. У динистора полярности нет, так-что вставляем его как вам угодно. Припаиваем диод, резистор, светодиод, перемычку и винтовой клемник. Выглядит оно примерно так:


    И в конце концов последний этап - это ставим на симистор радиатор.


    А вот фото готового устройства уже в корпусе.