Сайт о телевидении

Сайт о телевидении

» » Простой регулируемый стабилизированный блок питания. Регулируемый мощный блок питания или зарядное устройство

Простой регулируемый стабилизированный блок питания. Регулируемый мощный блок питания или зарядное устройство

Здравствуйте дорогие друзья. Сейчас я вам расскажу о неплохом и дешевом источнике питания (по совместительству ЗУ для автомобиля), который можно собрать собственноручно. Для сборки данной схемы вам понадобится перечень деталей, сейчас я их вам перечислю: трансформатор силовой понижающий, диодный мост, конденсатор электролит большой емкости и конденсатор меньшей емкости, два резистора (один переменный, а второй постоянный), микросхема крен и три мощных транзистора. Самое главное, что все эти детали можно найти в старом ламповом телевизоре, в общем не нужно тратить деньги на покупку дефицитных радиодеталей – это большой плюс данной схемы. Второй существенный плюс – это то, что такая простенькая схемка способна выдавать ток до 22 Ампер при 13 вольтах. Сами видите какие большие преимущества: и легкая, и при не больших затратах денежных средств, а превратить моно такую схему и в лабораторный блок питания, блок питания для опытов (регулируемый), для питания мощных приборов и так далее. Смотрите схему блока питания – зарядного устройства ниже.

Теперь расскажу о каждой детали подробнее. Давайте начнем с силового трансформатора. Силовой трансформатор предназначен для преобразования напряжения одной частоты. Они бывают повышающие и понижающие. Повышающий трансформатор повышает напряжение, а понижающий понижает, значит, так как трансформатор у нас по схеме понижает напряжение – он понижающий. Состоит трансформатор из первичной, вторичной обмотки и магнитопровода. Магнитопровод состоит из отдельных спресованных листов электротехнической стали. Первичная обмотка состоит и множества витков меньшим сечением провода и характеризуется большим сопротивлением по отношению ко вторичной обмотке (когда бдите искать обмотку на 220 вольт – меряйте сопротивления, где большее – там и сетевая обмотка).

Вторичка состоит и наименьшего количества витков и сечение провода больше – это нужно для того, чтобы снять больший ток. Новички возможно спросят, почему выводы 15, 13 и 10,11 соединены вторички. Это нужно делать для боле высокого выходного напряжения трансформатора. Можно просто намотать больше провода на вточичке – напряжение поднимется. А если у вас на трансформаторе не достаточное напряжение – то можно подключить к сети два трансформатора, а вторички подключить последовательно, но тогда трансформаторы лучше брать одинаковые по мощности, так как трансформатор меньшей мощности будет сильнее греться. Трансформатор можно самостоятельно перемотать на нужное вам напряжение и ток – но об этом в другой статье. В общем вот так выглядит трансформатор, как описано выше. Достать можно с лампового телевизора, он там на ват 150 будет. 150/10=15 А, при 10 вольтах такой трансформатор выдаст вам 15 ампер, а при 150 вольтах – 150./150=1 всего один ампер. Считайте так что сами какой вам ток нужен.

Диодный мост собран по мостовой схеме. Диодный мост по мостовой схеме в два раза лучше убирает пульсации сети, чем одно полупериудный выпрямитель, потому в блоках питания устанавливают диодные мосты по мостовой схеме, чтобы аппаратура, которую питает сеть, через диодный мост не давала сбоев, ели УНЧ – то характерного звука. Конденсаторы любые, но на ток не менее 15-20 Ампер, либо купите диодный мост на рынке и ток так же не менее 20 Ампер. Конденсатор на 47000 мкф электролит убирает пульсации как и диодный мост, только конденсатор убирает эти пульсации лучше и соответственно, чем больше емкость конденсатора – тем больше пульсаций он сможет убрать. Можно электролитические конденсаторы изготовить самому: берете пол литровую банку и наливаете электролит, опускаете 2 пластины (одну медную, а вторую железную), получается анод и катод и можно подключать в сеть. Емкость конденсатора будет на прямую зависеть от количества электролита (а вернее заряженного электролита) и размера пластин (вернее, на сколько быстро сможем заряжать электролит и разряжать, ведь от большей площади пластин мы быстрее зарядим жидкость). Кстати, при очень большой емкости можно отказаться от стабилизатора, так как конденсатор собственно и буде являться стабилизатором напряжения и фильтром.

Микросхема КРЕН8б будет стабилизировать ток до 1 Ампера. Данную микросхему в этом блоке питания можно сравнить с предварительным усилителем в УНЧ, так как основное усиление происходит в транзисторах Т1, Т2, Т3. Все транзисторы обязательно ставим на радиаторы. Резистором R1 мы регулируем ток (до 1Ампера), который стабилизируется микросхемой, поступающий на базу транзистора. Соответственно мы регулируем и коэффициентом усиления сразу всех трех транзисторов (максимальный ток на базу одного транзистора равен 0,33 А, т.к. 1/3=0,333333 А). Положительный заряд получается усиливается и через микросхему (для управления коэффициентом усиления транзисторов), и через транзисторы (транзисторы питаем положительным зарядом, а с микросхемы управляем коэффициентом усиления).

Если подсоединить еще транзистора три так параллельно этим трем и параллельно микросхеме КРНЕ подключить еще одну такую, то ток мы сможем получить в два раза выше, чем при данной работающей стандартной схеме. Советую, если вам нужны большие токи, но при этом трансформатор должен быть достаточно мощным. Вот выходной ток должен быть при моем способе под 40 А при 13 вольтах, а значит 40*13=520 ват Трансформатор должен быть мощностью пол киловата. Резистор R2 нужен для ограничения по току, чтобы не допустить короткого замыкания. Тогда далее ставим конденсатор электролит для сглаживания пульсаций на конечном этапе и не мешало бы еще поставить конденсатор меньшей емкости для того чтобы сглаживать пульсации боле высоких частот. Так же если в сети у вас много помех, то рекомендую установить дросель, который уберет все высокочастотные ВЧ помехи. Дросель устанавливайте последовательно, в разрыв цепи перед микросхемой, на плюс естественно.

Изготовить лабораторный блок питания своими руками несложно, если имеются навыки обращения с паяльником и вы разбираетесь в электрических схемах. В зависимости от параметров источника вы можете с его помощью заряжать аккумуляторы, подключать практически любую бытовую аппаратуру, использовать для опытов и экспериментов при конструировании электронных средств. Главное при монтаже - использование проверенных схем и качество сборки. Чем надежнее корпус и соединения, тем удобнее работать с источником питания. Желательно наличие регулировок и приборов контроля выходного тока и напряжения.

Простейший самодельный блок питания

Если у вас нет навыков в изготовлении электрических приборов, то лучше начинать с самого простого, постепенно передвигаясь к сложным конструкциям. Состав простейшего источника постоянного напряжения:

  1. Трансформатор с двумя обмотками (первичной - для подключения к сети, вторичной - для подключения потребителей).
  2. Один или четыре диода для выпрямления переменного тока.
  3. Электролитический конденсатор для отсечки переменной составляющей выходного сигнала.
  4. Соединительные провода.

В случае если вы используете в схеме один полупроводниковый диод, то получите однополупериодный выпрямитель. Если применяете диодную сборку или мостовую схему включения, то блок питания называется двухполупериодным. Разница в выходном сигнале - во втором случае меньше пульсаций.

Такой самодельный блок питания хорош только в тех случаях, когда необходимо провести подключение приборов с одним рабочим напряжением. Так, если вы занимаетесь конструированием автомобильной электроники либо ее ремонтом, лучше выбирать трансформатор с выходным напряжением 12-14 вольт. От количества витков вторичной обмотки зависит выходное напряжение, а от сечения используемого провода - сила тока (чем больше толщина, тем больше ток).

Как сделать двухполярное питание?

Такой источник необходим для обеспечения работы некоторых микросхем (например, усилителей мощности и НЧ). Отличает двухполярный блок питания следующая особенность: на выходе у него отрицательный полюс, положительный и общий. Для реализации такой схемы требуется применять трансформатор, вторичная обмотка которого имеет средний вывод (причем значение переменного напряжения между средним и крайними должно быть одинаковое). Если нет трансформатора, удовлетворяющего этому условию, можно модернизировать любой, у которого сетевая обмотка рассчитана на 220 вольт.

Удалите вторичную обмотку, только сначала проведите замер напряжения на ней. Сосчитайте число витков и разделите на напряжение. Полученное число - это количество витков, необходимых для вырабатывания 1 вольта. Если вам нужно получить двухполярный блок питания с напряжением 12 вольт, то потребуется намотать две одинаковых обмотки. Начало одной соедините с концом второй и эту среднюю точку подключите к общему проводу. Два вывода трансформатора необходимо соединить с диодной сборкой. Отличие от однополярного источника - нужно применять 2 электролитических конденсатора, соединенных последовательно, средняя точка включается с корпусом устройства.

Регулировка напряжения в однополярном источнике питания

Задача может показаться не очень простой, но сделать регулируемый блок питания можно путем сборки схемы из одного или двух полупроводниковых транзисторов. Но потребуется на выходе установить хотя бы вольтметр для контроля напряжения. Для этой цели можно использовать стрелочный индикатор с приемлемым диапазоном измерений. Можно приобрести дешевый цифровой мультиметр и адаптировать его под ваши нужды. Для этого потребуется разобрать его, установить при помощи пайки нужное положение переключателя (при интервале изменения напряжения 1-15 вольт требуется, чтобы прибор мог проводить замер напряжения до 20 вольт).

Регулируемый блок питания можно подключать к любому электрическому прибору. Сначала только вам потребуется выставить необходимое значение напряжения, чтобы не вывести из строя приборы. Изменение напряжения производится при помощи переменного резистора. Его конструкцию вы вправе выбрать самостоятельно. Это может быть даже ползункового типа устройство, главное - соблюдение номинального сопротивления. Чтобы блок питания было удобно использовать, можно установить переменный резистор, спаренный с выключателем. Это позволит избавиться от лишнего тумблера и облегчить отключение аппаратуры.

Регулировка напряжения в двухполярном источнике

Такая конструкция окажется посложнее, но и ее можно реализовать достаточно быстро при наличии всех необходимых элементов. Смастерить простой лабораторный блок питания, да еще двухполярный и с регулировкой напряжения, сможет не каждый. Схема усложняется тем, что требуется установка не только полупроводникового транзистора, работающего в режиме ключа, но и операционного усилителя, стабилитронов. При пайке полупроводников будьте аккуратны: старайтесь не сильно их нагревать, ведь диапазон допустимых температур у них крайне мал. При чрезмерном нагреве кристаллы германия и кремния разрушаются, в результате устройство перестает функционировать.

Когда делаете лабораторный блок питания своими руками, помните одну важную деталь: транзисторы требуется монтировать на алюминиевом радиаторе. Чем мощнее источник питания, тем больше площадь радиатора должна быть. Особое внимание уделяйте качеству пайки и проводам. Для маломощных устройств допускается использовать тонкие провода. Но если выходной ток большой, то необходимо применять провода с толстой изоляцией и большой площадью сечения. От надежности коммутации зависит ваша безопасность и удобство пользования устройством. Даже короткое замыкание во вторичной цепи может стать причиной возгорания, поэтому при изготовлении блока питания следует позаботиться о защите.

Регулировка напряжения в стиле ретро

Да, именно так можно назвать осуществление регулировки подобным образом. Для реализации необходимо вторичную обмотку трансформатора перемотать и сделать несколько выводов в зависимости от того, какой шаг изменения напряжения и диапазон вам нужен. Например, лабораторный блок питания 30В 10А с шагом в 1 вольт должен иметь 30 выводов. Между выпрямителем и трансформатором необходимо установить переключатель. Вряд ли получится найти на 30 положений, а если и найдете, то его габариты окажутся очень большими. Для монтажа в небольшом корпусе он явно не подойдет, поэтому лучше использовать для изготовления стандартные напряжения - 5, 9, 12, 18, 24, 30 вольт. Этого вполне достаточно для удобного пользования устройством в домашней мастерской.

Для изготовления и расчета вторичной обмотки трансформатора вам нужно сделать следующее:

  1. Определить, какое напряжение собирается одним витком обмотки. Для удобства намотайте 10 витков, включите трансформатор в сеть и проведите замер напряжения. Полученное значение разделите на 10.
  2. Проведите намотку вторичной обмотки, предварительно отключив трансформатор от сети. Если у вас получилось, что один виток собирает 0,5 В, то для получения 5 В вам требуется сделать отвод от 10-го витка. И по подобной схеме делаете отводы для остальных стандартных значений напряжений.

Сделать подобный лабораторный блок питания своими руками под силу каждому, а самое главное - не требуется паять схему на транзисторах. Выводы вторичной обмотки соединяете с переключателем, чтобы значения напряжений изменялись от меньшего к большему. Центральный вывод переключателя соединяется с выпрямителем, нижний по схеме вывод трансформатора подается на корпус устройства.

Особенности импульсных источников питания

Такие схемы используются практически во всех современных приборах - в зарядных устройствах телефонов, в блоках питания компьютеров и телевизоров и др. Изготовить лабораторный блок питания, импульсный особенно, оказывается проблематично: слишком много нюансов требуется учитывать. Во-первых, относительно сложная схема и непростой принцип действия. Во-вторых, большая часть устройства работает под высоким напряжением, которое равно тому, которое протекает в сети. Посмотрите на основные узлы такого блока питания (на примере компьютерного):

  1. Сетевой блок выпрямления, предназначенный для преобразования переменного тока напряжением 220 вольт в постоянный.
  2. Инвертор, преобразующий постоянное напряжение в сигналы прямоугольной формы с высокой частотой. Сюда же входит и специальный трансформатор импульсного типа, который уменьшает величину напряжения, чтобы запитать компоненты ПК.
  3. Управление, отвечающее за правильную работу всех элементов блока питания.
  4. Усилительный каскад, предназначенный для усиления сигналов ШИМ-контроллера.
  5. Блок стабилизации и выпрямления выходного импульсного напряжения.

Подобные узлы и элементы присутствуют во всех импульсных источниках питания.

Блок питания от компьютера

Стоимость даже нового блока питания, который устанавливается в компьютерах, довольно низкая. Зато вы получаете готовую конструкцию, можно даже не делать шасси. Один недостаток - на выходе имеются только стандартные значения напряжения (12 и 5 вольт). Но для домашней лаборатории этого вполне достаточно. Пользуется популярностью лабораторный блок питания из ATX по той причине, что не нужно совершать большие переделки. А чем проще конструкция, тем лучше. Но есть и «болезни» у таких устройств, но излечить их можно достаточно просто.

Зачастую выходят из строя электролитические конденсаторы. Из них вытекает электролит, это можно увидеть даже невооруженным глазом: на печатной плате появляется слой этого раствора. Он гелеобразный или жидкий, со временем застывает и становится твердым. Чтобы отремонтировать лабораторный блок питания из БП компьютера, нужно установить новые электролитические конденсаторы. Вторая поломка, которая встречается намного реже, заключается в пробое одного или нескольких полупроводниковых диодов. Симптом - это выход из строя плавкого предохранителя, смонтированного на печатной плате. Для ремонта нужно прозвонить все диоды, установленные в мостовой схеме.

Способы защиты блоков питания

Простейший способ обезопасить себя - это установка плавких предохранителей. Использовать такой лабораторный блок питания с защитой можно, не боясь, что из-за короткого замыкания произойдет возгорание. Для реализации этого решения вам потребуется установить два плавких предохранителя в цепи питания сетевой обмотки. Их нужно брать на напряжение 220 вольт и ток порядка 5 ампер для маломощных приборов. На выходе источника питания следует установить плавкие предохранители с подходящими параметрами. Например, при защите выходной цепи с напряжением 12 вольт можно применить предохранители, используемые в автомобилях. Значение тока подбирается исходя из максимальной мощности потребителя.

Но на дворе - век высоких технологий, а делать защиту при помощи предохранителей с экономической точки зрения не очень выгодно. Приходится проводить замену элементов после каждого случайного задевания проводов питания. Как вариант - вместо обычных плавких вставок установить самовосстанавливающиеся предохранители. Но ресурс у них небольшой: могут верой и правдой прослужить несколько лет, а могут и через 30-50 отключений выйти из строя. Но блок питания лабораторный 5А, если он собран грамотно, функционирует правильно и не требует дополнительных устройств защиты. Элементы нельзя назвать надежными, зачастую бытовая техника приходит в негодность по причине поломки таких предохранителей. Намного эффективнее оказывается применение релейной схемы либо тиристорной. В качестве устройства аварийного отключения могут также использоваться симисторы.

Как сделать лицевую панель?

Большая часть работ - это проектирование корпуса, а не сборка электрической схемы. Придется вооружиться дрелью, напильниками, а при необходимости окрашивания еще и освоить малярное дело. Можно изготовить самодельный блок питания на основе корпуса от какого-нибудь устройства. Но если есть возможность приобрести листовой алюминий, то при желании вы сделаете красивое шасси, которое прослужит вам долгие годы. Для начала нарисуйте эскиз, в котором расположите все элементы конструкции. Особое внимание уделите проектированию лицевой панели. Ее можно сделать из тонкого алюминия, только изнутри провести усиление - прикрутить к алюминиевым уголкам, которые применяются для придания большей жесткости конструкции.

В лицевой панели обязательно следует предусмотреть отверстия для установки измерительных приборов, светодиодов (или ламп накаливания), клемм, соединенных с выходом блока питания, гнезда для установки плавких предохранителей (при выборе такого варианта защиты). Если вид лицевой панели не очень привлекательный, то ее нужно покрасить. Для этого обезжириваете и зачищаете до блеска всю поверхность. Перед началом окрашивания сделайте все необходимые отверстия. Нанесите 2-3 слоя грунтовки на прогретую поверхность, дайте высохнуть. Далее нанесите столько же слоев краски. В качестве финишного покрытия нужно применять лак. В итоге мощный лабораторный блок питания благодаря краске и получившемуся блеску будет выглядеть красиво и привлекательно, впишется в интерьер любой мастерской.

Как изготовить шасси для блока питания?

Красиво будет выглядеть только та конструкция, которая полностью изготавливается самостоятельно. Но в качестве материала можно использовать что угодно: начиная с листового алюминия и заканчивая корпусами от персональных компьютеров. Нужно только тщательно продумать всю конструкцию, чтобы не возникло непредвиденных ситуаций. Если выходным каскадам требуется дополнительное охлаждение, то установите кулер для этой цели. Он может работать как постоянно при включенном устройстве, так и в автоматическом режиме. Для реализации последнего лучше всего применить простой микроконтроллер и датчик температуры. Датчик отслеживает значение температуры радиатора, а в микроконтроллере заложено то значение, при котором необходимо включить обдув воздухом. Даже лабораторный блок питания 10А, мощность которого немаленькая, будет стабильно работать с такой системой охлаждения.

Для обдува нужен воздух извне, поэтому вам потребуется устанавливать кулер и радиатор на задней стенке блока питания. Для обеспечения жесткости шасси применяйте алюминиевые уголки, из которых сначала сформируйте «скелет», а после установите на него обшивку - пластины из того же алюминия. Если есть возможность, то уголки соедините при помощи сварки, это увеличит прочность. Нижняя часть шасси должна быть крепкой, так как на ней монтируется силовой трансформатор. Чем выше мощность, тем большие габариты трансформатора, тем больше его вес. В качестве примера можно сравнить лабораторный блок питания 30В 5А и подобную конструкцию, но на 5 вольт и током порядка 1 А. У последнего габариты окажутся намного меньшими, да и вес незначительный.

Между электронными компонентами и корпусом должен находиться слой изоляции. Делать это нужно исключительно для себя, чтобы в случае случайного обрыва провода внутри блока он не закоротил на корпус. Перед установкой обшивки на «скелет» проведите ее изоляцию. Можно наклеить плотный картон или толстую липкую ленту. Главное, чтобы материал не проводил электричество. При помощи такой доработки улучшается безопасность. Но трансформатор может издавать неприятный гул, от которого избавиться можно путем фиксации и проклейки пластин сердечника, а также установки между корпусом и шасси резиновых подушек. Но максимальный эффект вы получите только при комбинировании этих решений.

Подведение итогов

В завершение стоит упомянуть, что все монтажные и испытательные работы проводятся при наличии напряжения, опасного для жизни. Поэтому нужно думать о себе, в комнате обязательно установите автоматические выключатели, спаренные с устройствами защитного отключения электроэнергии. Даже если вы коснетесь фазы, удар током не получите, так как сработает защита.

При проведении работ с импульсными блоками питания компьютеров соблюдайте технику безопасности. Электролитические конденсаторы, находящиеся в их конструкции, долгое время после отключения находятся под напряжением. По этой причине перед началом ремонта разрядите конденсаторы, соединив их выводы. Не пугайтесь только искры, она не причинит вреда ни вам, ни приборам.

Когда делаете лабораторный блок питания своими руками, обращайте внимание на все мелочи. Ведь для вас главное - это обеспечить стабильную, безопасную и удобную его работу. А достичь этого можно только в том случае, когда тщательно продуманы все мелочи, причем не только в электрической схеме, но и в корпусе устройства. Лишними приборы контроля в конструкции не будут, поэтому установите их, чтобы иметь представление о том, например, какой ток потребляет устройство, собранное вами в домашней лаборатории.

Попалась в интернете недавно любопытная схемка простого, но довольно неплохого блока питания начального уровня, способного выдавать 0-24 В при ток до 5 ампер. В блоке питания предусмотрена защита, то есть ограничение максимального тока при перегрузке. В приложенном архиве есть печатная плата и документ, где приведено описание настройки данного блока, и ссылка на сайт автора. Прежде чем собирать, прочитайте внимательно описание.

Вот фото моего варианта БП, вид готовой платы, и можно посмотреть как примерно применить корпус от старого компьютерного ATX. Регулировка сделана 0-20 В 1,5 А. Конденсатор С4 под такой ток поставлен на 100 мкФ 35 В.

При коротком замыкании максимум ограниченного тока выдается и загорается светодиод, вывел резистор ограничителя на переднюю панель.

Индикатор для блока питания

Провёл у себя ревизию, нашёл пару простеньких стрелочных головок М68501 для этого БП. Просидел пол дня над созданием экрана для него, но таки нарисовал его и точно настроил под требуемые выходные напряжения.

Сопротивление используемой головки индикатора и применённый резистор указаны в прилагаемом файле на индикаторе. Выкладываю переднюю панель блока, если кому понадобится для переделки корпус от блока питания АТХ, проще будет переставить надписи и что-то добавить, чем создавать с нуля. Если потребуются другие напряжения, шкалу можно просто подкалибровать, это уже проще будет. Вот готовый вид регулируемого источника питания:

Плёнка - самоклейка типа "бамбук". Индикатор имеет подсветку зелёного цвета. Красный светодиод Attention указывает на включившуюся защиту от перегрузки.

Дополнения от BFG5000

Максимальный ток ограничения можно сделать более 10 А. На кулер - кренка 12 вольт плюс температурный регулятор оборотов - с 40 градусов начинает увеличивать обороты. Ошибка схемы особо не влияет на работу, но судя по замерам при КЗ - появляется прирост проходящей мощности.

Силовой транзистор установил 2n3055, все остальное тоже зарубежные аналоги, кроме BC548 - поставил КТ3102. Получился действительно неубиваемый БП. Для новичков-радиолюбителей самое-то.

Выходной конденсатор поставлен на 100 мкФ, напряжение не скачет, регулировка плавная и без видимых задержек. Ставил из расчёта как указано автором: 100 мкф ёмкости на 1 А тока. Авторы: Igoran и BFG5000 .

Обсудить статью БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

Универсальный блок питания, с помощью которого можно получить все напряжения, которые могут понадобиться в радиолюбительской и просто бытовой деятельности, должен быть в каждом доме. И конечно БП должен иметь хорошую мощность - обеспечивать ток выхода не 0,5 А, как у дешёвых китайских адаптеров, а несколько ампер, чтобы подключить даже свинцовые аккумуляторы от автомобиля для заряда, или электромоторы. Конечно при этом хочется чтоб диапазон напряжений так же имеет значение. Большинство схем ограничены 12 вольт, в лучшем случае 20. Но бывает нужно и 24, и 36 В. Сложно ли создать такой БП самому? Нет, ведь для схемы понадобится всего лишь десяток деталей. Вот очень простой, универсальный источник питания с регулируемым напряжением питания. Максимальное выходное напряжение 36 В - оно настраивается в диапазоне от 1,2 до (vcc - 3) вольт.

Схема регулируемого блока питания

Транзистор Q1 - это мощный PNP Дарлингтон, используется для увеличения тока микросхемы LM317. Сама LM317L без радиатора может дать 100 мА, чего достаточно для управления транзистором. Элементы D1 и D2 являются защитными диодами, потому что при включении схемы заряд конденсаторов может повредить транзистор или стабилизатор.

Параллельно электролитическим конденсаторам для устранения высокочастотных шумов ставим 100 нФ конденсаторы, потому что электролитические имеют большие значения ESR и ESL и не могут чётко устранить высокочастотные помехи. Вот примерный дизайн печатной платы для этой схемы.

Примечания

  • Транзистору Q1 нужен радиатор и лучше небольшой вентилятор.
  • Максимальная выходная мощность схемы - 125 ватт.
  • R1 - 2 Вт, другие резисторы - 0.25 ватт.
  • Все конденсаторы 50 В.
  • RV1 - 5 кОм регулятор.
  • Трансформатор требуется на 36 В 5 А. С мощностью от 150 ватт и выше.
  • Клеммы подключения выходных проводов - как для АС в усилителях, винтовые.

Можно довольно легко сделать источник питания, который имеет стабильное напряжение на выходе и регулировку от 0 до 28В. Основа - дешёвая , усиленная с помощью двух транзисторов 2N3055. В таком схемном включении она становится более чем в 2 раза мощнее. Вы можете при необходимости использовать эту конструкцию для получения и 20 ампер (почти без переделок, но с соответствующим трансформатором и огромным радиатором с вентилятором), просто в своём проекте не нуждался в таком большом токе. Ещё раз напоминаю: убедитесь, что вы установили транзисторы на большой радиатор, 2N3055 могут очень сильно нагреваться при полной нагрузке.

Список использованных в схеме деталей:

Трансформатор 2 x 15 вольт 10 ампер

D1...D4 = четыре MR750 (MR7510) диода или 2 x 4 1N5401 (1N5408).

F1 = 1 ампер

F2 = 10 ампер

R1 2k2 2,5 ватт

R3,R4 0.1 Ом 10 ватт

R9 47 0.5 ватт

C2 two times 4700uF/50v

C3,C5 10uF/50v

D5 1N4148, 1N4448, 1N4151

D11 светодиод

D7, D8, D9 1N4001

Два транзистора 2N3055

P2 47 или 220 Ом 1 ватт

P3 10k подстроечник

Хотя LM317 и имеет защиту от короткого замыкания, перегрузки и перегрева, предохранители в цепи сети трансформатора и предохранитель F2 на выходе не помешают. Выпрямленное напряжение: 30 х 1.41 = 42.30 вольт, измеренное на С1. Так что все конденсаторы должны быть рассчитаны на 50 вольт. Внимание: 42 вольт-это напряжение, что может быть на выходе, если один из транзисторов будет пробит!

Регулятор P1 позволяет изменять выходное напряжение на любое значение между 0 и 28 вольт. Так как в LM317 минимальное напряжение 1,2 вольта, то чтобы получить нулевое напряжение на выходе БП - поставим 3 диода, D7,D8 и D9 на выходе LM317 к базе 2N3055 транзисторов. У микросхемы LM317 максимальное выходное напряжение - 30 вольт, но с использованием диодов D7, D8 и D9 произойдёт наоборот падение выходного напряжения, и оно составит около 30 - (3х0,6В) = 28.2 вольта. Калибровать встроенный вольтметр нужно с помощью подстроечника P3 и, конечно, хорошего цифрового вольтметра.


Примечание . Помните, что нужно изолировать транзисторы от шасси! Это делается изоляционными и теплопроводными прокладками или, по крайней мере, тонкой слюдой. Можно применить термоклей и термопасту. При сборке мощного регулируемого блока питания не забывайте использовать толстые соединительные провода, которые подходят для передачи большого тока. Тонкие проводки нагреются и поплавятся!