Сайт о телевидении

Сайт о телевидении

» » Процессоры. Intel — история успеха

Процессоры. Intel — история успеха

С момента выхода первого ПК в 1981 году процессорные технологии развивались в четырех основных направлениях:

  • увеличение количества транзисторов и плотности их размещения;
  • увеличение тактовой частоты;
  • увеличение размера внутренних регисторов (разрядности);
  • увеличение количества ядер в одной микросхеме.

Компания Intel представила процессор 286 в 1982 году. Насчитывая 134 тыс. транзисторов он обеспечивал более чем в три раза более высокую производительность, нежели другие 16-разрядные процессоры того времени. Обладая встроенными средствами управления памятью, процессор 286 обеспечивал совместимость с предшественниками. Этот революционный процессор впервые использовался в производительной системе IBM PC-AT, на базе которой были созданы все современные ПК.
В 1985 году был выпущен процессор Intel 386. Он был построен на 32-разрядной архитектуре и содержал 275 тыс. транзисторов, обладал производительностью свыше пяти миллионов инструкций в секунду (MIPS). Первой системой на базе нового процессора стал компьютер Compaq Deskpro 386.
Следующим в 1989 году был представлен процессор Intel486. Он содержал 1,2 млн. транзисторов и был первым процессором со встроенным математическим сопроцессором. Его производительность была практически в пятьдесят раз выше производительности первого процессора 4004, что позволило ему соперничать с некоторыми моделями мэйнфреймов.
Затем, в 1993 году, компания Intel представила первое семейство процессоров Р5 (586), получившее название Pentium, тем самым определив новые стандарты производительности, в несколько раз превышающие производительность процессора 486 предыдущего поколения.

Процессор Pentium содержал 3,1 млн. транзисторов и обладал производительностью 90 MIPS, что в 1500 раз превышало производительность процессора 4004.
Примечание
Переход Intel от использования чисел (386/486) к именам (Pentium/Pentium Pro) своих процессоров был обусловлен тем фактом, что числа не могли быть зарегистрированными торговыми марками, а значит, у компании не было возможности предотвратить выпуск конкурирующими компаниями процессоров-клонов.
Первый процессор семейства Р6 (686), получивший название Pentium Pro, был представлен в 1995 году. Это был первый процессор, насчитывающий 5,5 млн. транзисторов и оснащенный производительной кэш-памятью второго уровня.
Пересмотрев архитектуру Р6 (686/Pentium Pro), в мае 1997 года компания Intel выпустила процессор Pentium II, который содержал 7,5 млн. транзисторов, упакованных в картридже, а не в привычной микросхеме, что позволило разместить кэш-память L2 непосредственно на модуле. В апреле 1998 года семейство Pentium II было расширено; были представлены процессор Celeron для компьютеров начального уровня, а также процессор Pentium II Xeon, предназначенный для серверов и рабочих станций. Добавив к архитектуре Pentium II новый набор инструкций Streaming SIMD Extensions (SSE), в 1999 году компания Intel представила процессор Pentium III.
В то время как процессор Pentium начал занимать доминирующее положение, компания AMD приобрела компанию NexGen, которая работала над процессором Nx686. AMD объединила архитектуру этого процессора с интерфейсом Pentium, что привело к созданию процессора, получившего название AMD К6. Процессор К6 был аппаратно и программно совместим с Pentium, что означало возможность установки в то же гнездо Socket 7, а также запуск идентичного набора программ. Хотя компания Intel прекратила выпуск Pentium, предпочитая более дорогостоящие Pentium II и III, AMD продолжала разрабатывать более производительные версии К6, стимулируя развитие рынка ПК начального уровня.

В 1998 году компания Intel впервые интегрировала кэш-память L2 непосредственно в кристалл процессора (при этом память работала на частоте ядра), что позволило кардинально увеличить производительность. Впервые это было реализовано во втором поколении процессоров Celeron (базирующихся на ядре Pentium II), а также в процессоре Pentium IIPE, который применялся в портативных системах. Первый производительный процессор с интегрированной кэш-памятью L2, работающей на частоте ядра, предназначенный для производительных ПК, был представлен в конце 1999 года. Это был процессор Pentium III второго поколения на ядре Coppermine. После этого уже все основные производители процессоров интегрировали кэш-память L2 (и даже L3) в кристалл процессора; данный подход применяется и в настоящее время.
В 1999 году компания AMD представила процессор Athlon, что позволило ей конкурировать с Intel на рынке производительных ПК. Процессор Athlon стал очень популярным создалось впечатление, что Intel впервые столкнулась с реальной конкуренцией на рынке производительных систем. Конечно, сейчас успех Athlon кажется безоговорочным, однако на момент анонса все казалось не так очевидно. В отличие от процессоров предыдущего поколения К6, которые были программно и аппаратно совместимы с процессорами Intel, процессор Athlon был совместим только программно; для него требовалась материнская плата со специальным гнездом, предназначенным для установки именно Athlon.
Очень важной вехой для обеих компаний оказался 2000 год. Intel и AMD представили процессоры с частотой 1 ГГц, которая еще недавно казалась недостижимой. В 2001 году компания Intel представила процессор Pentium 4 с тактовой частотой 2 ГГц — первый процессор с такой частотой. 15 ноября 2001 года индустрия отметила 30-летие микропроцессора; за эти годы производительность возросла более чем в 18500 (с 0,108 МГц до 2 ГГц) AMD также представила процессор Athlon ХР на обновленном ядре Palomino и процессор Athlon MP, предназначенный для многопроцессорных серверных систем.
В 2002 году Intel выпустила Pentium 4 с частотой 3,06 ГГц — первый процессор, преодолевший рубеж в 3 ГГц и поддерживающий технологию Intel Hyper-Threading (НТ), которая превращала процессор в виртуальную двухпроцессорную конфигурацию. Запуская два потока приложения одновременно, процессоры с поддержкой технологии НТ выполняли задания на 25-40% быстрее процессоров, которые не поддерживали данную технологию. Это явилось стимулом для программистов, которые начали создавать приложения с поддержкой многопоточности, что окажется кстати при выходе настоящих многоядерных процессоров, которые будут выпущены через некоторое время.
В 2003 году AMD выпустила первый 64-разрядный процессор для ПК — Athlon 64 (кодовое название ClawHammer или К8), который поддерживал разработанные компанией AMD 64-разрядные расширения х86-64 для архитектуры IA-32, на которой базировались Athlon, Pentium 4 и другие более ранние модели процессоров. В том же году Intel выпустила процессор Pentium 4 Extreme Edition, первый процессор для потребительского рынка с интегрированной кэш-памятью L3. Добавление кэш-памяти объемом 2 Мбайт привело к значительному увеличению количества транзисторов и, разумеется, производительности. В 2004 году компания Intel последовала за AMD и добавила разработанные AMD расширения х86-64 к процессору Pentium 4.
В 2005 году компании Intel и AMD выпустили свои первые двухъядерные процессоры фактически два процессора были интегрированы в одной микросхеме. Хотя системные платы с поддержкой двух или более процессоров широко использовались в серверах на протяжении многих лет, многоядерные конфигурации впервые стали доступны и в домашних компьютерах.
Вместо того чтобы пытаться и дальше наращивать тактовую частоту, как это делалось прежде, объединение двух или более процессоров в одной микросхеме позволило решать больше задач за меньшее время; при этом были снижены энергопотребление и тепловыделение.
В 2006 году компания Intel представила новое семейство процессоров — Core 2, базирующееся на модифицированной архитектуре мобильных процессоров Pentium M/Core Duo.

Первыми были представлены двухъядерные процессоры Core 2, а в конце года - и четырехъядерные (представляющие собой объединение двух двухядерных кристаллов в одной упаковке).
В 2007 году компания AMD выпустила Phenom - первый четырехъядерный процессор, у которого все четыре ядра содержатся в одном кристалле. В 2008 году Intel выпустила семейство процессоров Core i Series (ядро Nehalem) - четырехъядерные процессоры с поддержкой технологии Hyper-Threading (что позволит операционной системе видеть целых восемь ядер) с интегрированным контроллером памяти и даже с опциональным видеоконтроллером.

В данной статье будут подробно рассмотрены последние поколения процессоров Intel на основе архитектуры Core. Данная компания занимает ведущее положение на рынке компьютерных систем. Большинство современных компьютеров собираются на чипах именно этой компании.

Intel: стратегия развития

Предыдущие поколения процессоров от компании Intel были подчинены двухлетнему циклу. Такая стратегия выпуска новых процессоров данной компании получила название «Тик-Так». Первый этап под названием «тик» заключается в переводе процессора на новый технологический процесс. Так, например, поколения «Иви бридж» (2-е поколение) и «Санди бридж» (3-е поколение) в плане архитектуры были идентичными. Однако технология производства первых базировалась на норме 22 нм, а вторых – 32 нм. То же самое можно сказать и про «Броад Велл» (5-го поколения) и «Хас Велл» (4-ое поколение). Этап «так» в свою очередь предполагает кардинальное изменение архитектуры полупроводниковых кристаллов и значительный прирост производительности. Можно привести следующие переходы в качестве примера:

— 1-ое поколение West merre и 2-ое поколение «Санди Бридж». В данном случае технологический процесс был идентичным (32 нм), а вот архитектура претерпела существенные изменения. На центральный процессор были перенесены северный мост материнской платы и встроенный графический усилитель;

— 4-е поколение «Хас Велл» и 3-е поколение «Иви Бридж». Был оптимизирован уровень энергопотребления компьютерной системы, а также повышены тактовые частоты чипов.

— 6-ое поколение «Скай Лайк» и 5-ое поколение «Броад Велл»: также были повышены тактовые частоты и улучшен уровень энергопотребления. Было добавлено несколько новых инструкций, улучшающих быстродействие.

Процессоры на базе архитектуры Core: сегментация

ЦПУ от компании Intel позиционируются на рынке следующим образом:

— Celeron– наиболее доступные решения. Подходят для использования в офисных компьютерах, предназначенных для решения наиболее простых задач.

— Pentium – практически полностью идентичны процессорам Celeron в архитектурном плане. Однако более высокие частоты и увеличенный кэш третьего уровня дают данным процессорным решениям определенное преимущество с точки зрения производительности. Данный ЦПУ относится к сегменту игровых ПК начального уровня.

— Corei3 – занимают средний сегмент ЦПУ от компании Intel. Два предыдущих типа процессоров, как правило, имеют два вычислительных блока. То же можно сказать про Corei3. Однако для двух первых семейств чипов отсутствует поддержка технологии «ГиперТрейдинг». У процессоров Corei3 она имеется. Таким образом на программном уровне два физических модуля могут быть преобразованы в четыре потока обработки программы. Это позволяет обеспечить существенное увеличение уровня быстродействия. На основе таких продуктов можно собрать собственный игровой персональный компьютер среднего уровня, сервер начального уровня или даже графическую станцию.

— Corei5 – занимают нишу решений выше среднего уровня, но ниже премиального сегмента. Данные полупроводниковые кристаллы могут похвастаться наличием сразу четырех физических ядер. Данная архитектурная особенность обеспечивает им преимущество в плане производительности. Более свежее поколение процессоров Corei5 обладает высокими тактовыми частотами, что позволяет постоянно получать прирост производительности.

— Corei7 – занимают нишу премиум-сегмента. В них количество вычислительных блоков такое же, как и в Corei5. Однако у них, так же, как и у Corei3 имеется поддержка технологии «Гипертрейдинг». По этой причине четыре ядра на программном уровне преобразуются в восемь обрабатываемых потоков. Именно эта особенность позволяет обеспечить феноменальный уровень производительности, которым может похвастаться любой персональный компьютер, собранный на основе Intel Corei7. Данные чипы имеют соответствующую стоимость.

Процессорные разъемы

Поколения процессоров Intel Coreмогут устанавливаться в различные типы сокетов. По этой причине не получится установить первые чипы на основе данной архитектуры в материнскую плату ЦПУ 6-го поколения. А чип с кодовым названием «СкайЛайк» не получится установить в системную плату для второго и первого поколения процессоров. Первый процессорный разъем носит название Сокет Н или LGA 1156. Цифра 1156 здесь указывает на количество контактов. Данный разъем был выпущен в 2009 году для первых центральных процессоров, изготовленных по нормам технологического процесса 45 нм и 32 нм. На сегодняшний день данный сокет считается уже морально и физически устаревшим. На смену LGA 1156 в 2010 году пришел LGA 1155 или Сокет Н1. Материнские платы данной серии поддерживают чипы Coreвторого и третьего поколений. Их кодовые названия соответственно «Санди Бридж» и «Иви Бридж». 2013 год был ознаменован выходом третьего сокета для чипов, созданный на основе архитектуры Core – LGA 1150 или Сокет Н2. В данный процессорный разъем можно было установить процессор четвертого и пятого поколений. В 2015 году на смену сокету LGA 1150 пришел актуальный сокет LGA 1151.

Чипы первого поколения

Наиболее доступными процессорами являлись чипы Celeron G1101 (работает с частотой 2.27 ГГц), Pentium G6950 (2,8 ГГц), Pentium G6990 (2.9 ГГц). У всех этих решений было по два ядра.Сегмент решений среднего уровня был занят процессорами Corei 3 с обозначением 5XX (два ядра/четыре потока для обработки информации). Выше на одну ступень находились процессоры с обозначением 6XX. Они имели идентичные параметры с Corei3, однако частота была выше. На той же ступени располагался процессор 7XX с четырьмя реальными ядрами. Самые производительные компьютерные системы были собраны на базе процессора Corei7. Данные модели обозначались как 8XX. В этом случае наиболее скоростной чип имел маркировку 875 К. Такой процессор за счет разблокированного множителя можно было разогнать. Однако и цена у него была соответствующая. Для данных процессоров можно получить значительный прирост быстродействия. Наличие приставки К в обозначении центрального процессорного устройства означает, что множитель процессора разблокирован и данная модель поддается разгону. Приставка S добавлялась в обозначение энергоэффективных чипов.

«Санди Бридж» и плановое обновление архитектуры

На смену первому поколению чипов на базе архитектуры Coreв 2010 году пришло новое решение с кодовым названием Sandy Bridge. Ключевой особенностью данного устройства являлся перенос встроенного графического ускорителя и северного моста на кремниевый кристалл процессора.

В нише более бюджетных процессорных решений был процессоры Celeron серий G5XX иG4XX. В первом случае использовалось сразу два вычислительных блока, а во втором кэш третьего уровня был урезан и присутствовало только одно ядро. На одну ступень выше расположились процессоры Pentiumмоделей G6XX иG8XX. В данном случае разница в производительности была обеспечена более высокими частотами. G8XX именно из за этой важной характеристики выглядели намного предпочтительнее в глазах пользователя. Линейка процессоров Corei3 была представлена моделями 21XX. У некоторых обозначений на конце появлялся индекс Т. Он обозначал наиболее энерго эффектиные решения, имеющие уменьшенную производительность. Решения Corei5 имели обозначения 25XX, 24XX, 23XX. Чем более высокую маркировку имеет модель, тем больший уровень производительности имеет ЦПУ. Если в конце наименования добавлена буква «S», то это означает промежуточный вариант по уровню энергопотребления между «Т»-версией и штатным кристаллом. Индекс «P»обозначает, что в устройстве отключен графический ускоритель. Чипы с индексом «К» обладали разблокированным множителем. Подобная маркировка остается актуальной и для третьего поколения данной архитектуры.

Новый прогрессивный технологический процесс

В 2013 году вышло третье поколение процессоров на основе данной архитектуры. Ключевым нововведением стал новый технологический процесс. В остальном никаких существенных нововведений не было. Все они физически совместимы с предыдущим поколением процессором. Их можно было устанавливать в те же самые материнские платы. Структура обозначений осталась прежней. Celeron имели обозначение G12XX, а Pentium–G22XX. В начале вместо «2» была «3». Это указывало на принадлежность к третьему поколению. Линейка Corei3 имела индексы 32XX. Более продвинутые процессоры Corei5 имели обозначения 33XX, 34XXи 35XX. Флагманские аппараты Core i7 имели маркировку 37XX.

Четвертое поколение архитектуры Core

Четвертое поколение процессоров Intel стало следующим этапом. В данном случае использовалась следующая маркировка. Центральные процессорные устройства эконом-класса обозначались как G18XX. Те же индексы имели и процессоры Pentium – 41XX и 43XX. Процессоры Corei5 можно было бы узнать по аббревиатурам 46XX, 45XXи 44XX. Для обозначения процессоров Corei7 использовалось обозначение 47XX. Пятое поколение процессоров Intel на базе этой архитектуры ориентировалось в основном на использование в мобильных устройствах. Для стационарных персональных компьютеров были выпущены только чипы, относящиеся к линейкам i7 иi5, причем только ограниченное число моделей. Первые из них обозначались как 57XX, а вторые – 56XX.

Перспективные решения

В начале осени 2015 года дебютировало шестое поколение процессоров Intel. На данный момент это наиболее актуальная процессорная архитектура. В этом случае чипы начального уровня обозначаются как G39XX для Celeron, G44XX и G45XX для Pentium. Процессоры Corei3 имеют обозначение 61XX и 63XX. Corei5 в свою очередь обозначаются как 64XX, 65XXи 66XX. На обозначение флагманских моделей выделено всего одно решение 67XX. Новое поколение процессорных решений от компании Intelпребывает только в начале разработки, так что такие решения будут оставаться актуальными еще долгое время.

Особенности разгона

Все чипы на основе данной архитектуры обладают заблокированным множителем. По этой причине разгон устройства может быть выполнен только за счет увеличения частоты системной шины. В последнем шестом поколении данную возможность увеличения быстродействия системы производители материнских плат должны будут отключить в BIOS. В данном плане процессоры серий Corei7 иCorei5 с индексом К являются исключением. У данных устройств множитель разблокирован. Это позволяет существенно увеличить производительность компьютерных систем, построенных на базе таких полупроводниковых продуктов.

Мнение пользователей

Все поколения процессоров Intel, перечисленные в данном материале, обладают высокой степенью энергоэффективности и феноменальным уровнем быстродействия. Их единственным недостатком является слишком высокая стоимость. Причина здесь заключается только в том, что прямой конкурент компании Intel компания AMD не может противопоставить стоящие решения. По этой причине компания Intel устанавливает ценник на свою продукцию исходя из собственных соображений.

Заключение

В данной статье были подробно рассмотрены поколения процессоров Intelдля настольных персональных компьютеров. Такого перечня будет вполне достаточно, чтобы разобраться в обозначениях и наименования процессоров. Также существуют варианты для компьютерных энтузиастов и различные мобильные сокеты. Это все сделано для того, чтобы конечный пользователь смог получить наиболее оптимальное процессорное решение. На сегодняшний день наиболее актуальными являются чипы шестого поколения. При сборке нового ПК стоит обращать внимание именно на эти модели.

В 1995 году Intel выпустила на рынок микропроцессор Pentium Pro. Несмотря на название, он имел мало общего с обычным Pentium. Одним из главных нововведений в Pentium Pro стало то, что в нём инструкции x86 не исполнялись напрямую, а декодировались в последовательности простых внутренних микроопераций. Иными словами, Pentium Pro «внутри» был больше похож на современные ему RISC-процессоры, чем на предыдущие чипы семейства x86.

Подобная архитектура позволила Intel реализовать множество мер, которые привели к росту производительности. В частности, Pentium Pro стал первым x86-процессором, который получил внеочередное исполнение. При внеочередном исполнении микрооперации сначала поступают в буфер операций, где сортируются и отправляются в вычислительные блоки не в порядке поступления, а в порядке готовности к исполнению. Подобный подход позволил практически исключить простой вычислительных блоков процессора. Разрядность шины адреса была увеличена до 36 бит, что в сочетании с технологией PAE позволило увеличить максимальный объём оперативной памяти до 64 ГБ. (Впрочем, эта функциональность была реализована только в серверных наборах системной логики, к тому же максимальный объём памяти, доступной одному процессу, по-прежнему был равен 4 ГБ.) Также Pentium Pro получил встроенную кеш-память второго уровня объёмом от 256 кБ до 1 МБ, которая работала на полной тактовой частоте процессора. В результате, на момент выхода на рынок Pentium Pro стал самым быстрым в мире 32-битным микропроцессором, опередив разработанные альянсом AIM (Apple-IBM-Motorola) чипы PowerPC.

Изначально планировалось, что Pentium Pro полностью заменит Pentium, но этого не произошло как раз из-за уже упомянутой кеш-памяти. Оказалось, что выход годных микросхем быстрой памяти SRAM, способной работать на полной частоте процессора, невысок, поэтому Pentium Pro имел очень высокую себестоимость. В результате, наследником Pentium стал вышедший в 1997 году Pentium II, получивший набор инструкций MMX и кеш-память, работающую на половинной частоте процессора. Кроме того, в Pentium II была улучшена производительность при работе с 16-битным кодом (на тот момент это было важно, поскольку Windows 95 и Windows 98, по-прежнему, содержали большое количество 16-битного кода).


Pentium III Tualatin: самый быстрый Pentium III

В 1999 году на смену Pentium II пришёл Pentium III, который был практически идентичен ему архитектурно, но получил новый набор дополнительных инструкций, известный как SSE. Pentium III пережил несколько итераций, поздние чипы этого семейства имели тактовую частоту выше 1 ГГц и 512 кБ кеш-памяти, работавшей на полной частоте процессора.

«Сетевой взрыв»

Несмотря на успешность микроархитектуры P6 (лежавшей в основе Pentium Pro, Pentium II и Pentium III), Pentium 4 был построен по совсем другому принципу. Вместо сложного ядра с высоким IPC (Instructions Per Clock - количеством исполняемых инструкций на такт) и относительно невысокой тактовой частотой было решено перейти к более простому ядру с длинным конвеером и более низким IPC, но более высокой тактовой частотой. Если поздние процессоры Pentium III имели конвеер длиной 10 ступеней, то в Pentium 4 длина конвеера составляла от 20 до 31 ступени (в зависимости от версии чипа). Чтобы компенсировать низкую производительность процессорного ядра, целочисленные вычислительные блоки (ALU) внутри процессора работали на удвоенной тактовой частоте. Например, в процессоре Pentium 4 с частотой 3 ГГц блоки ALU работали на частоте 6 ГГц. Изначально планировалось, что процессоры с микроархитектурой NetBurst достигнут тактовой частоты 4 ГГц, но на деле частота 3.8 ГГц оказалась предельной.

Микроархитектуру NetBurst можно считать относительно неудачной, но на счету процессоров на её базе сразу несколько достижений: Pentium 4 стал первым x86-процессором, достигшим тактовой частоты 3 ГГц, и первым 64-битным x86-процессором Intel. Кроме того, на базе Pentium 4 был создан процессор Pentium D, который стал первым двухъядерным процессором Intel.

Pentium M и его потомки

Практически сразу после появления мобильных Pentium 4 стало понятно, что архитектура NetBurst, в силу высокого тепловыделения и энергопотребления, не подходит для ноутбуков. Поэтому в 2003 году появился процессор Pentium M, который, по сути, был усовершенствованной и осовремененной версией ядра P6. Этот процессор стал основой крайне успешной мобильной платформы Intel Centrino, которая включала в себя процессор, чипсет и беспроводный адаптер Intel. Именно платформа Centrino сделала возможным создание первых тонких и лёгких ноутбуков. На это же время пришлись усилия Intel по продвижению беспроводных сетей, в частности, в Украине под эгидой компании в середине 2000-х годов были реализованы проекты по построению сетей Wi-Fi в Киевском национальном университете им. Т. Г. Шевченко и международном аэропорту «Киев-Борисполь».


Samsung X10: один из первых тонких и легких ноутбуков на базе Centrino

В 2004-2005 годах стало понятно, что процессоры Pentium M обеспечивают более высокую производительность, чем настольные процессоры на базе микроархитектуры NetBurst. Именно поэтому использованные в них архитектурные решения легли в основу микроархитектуры Core, которая использовалась как в настольных, так и в мобильных процессорах. В 2006 году был выпущен первый настольный 4-ядерный процессор Intel - им стал Core 2 Extreme QX6700 с тактовой частотой 2.67 ГГц и 8 МБ кеш-памяти второго уровня.

От Core"ки до Core"ки

В 2008 году Intel представила бренд Core i7, под которым продавались топовые процессоры на базе новой микроархитектуры Nehalem. Эти процессоры получили новую системную шину, интегрированную графику, а также встроенные контроллеры памяти и шины PCIe. В 2009-2010 годах были также представлены бренды Core i5 и Core i3, а процессоры Core 2 и их производные вытеснены из всех ценовых сегментов.

В 2011 году на рынок вышли процессоры на базе архитектуры Sandy Bridge, в 2012 году была представлена усовершенствованная версия Sandy Bridge под названием Ivy Bridge, которая стала первым процессором Intel, использующим техпроцесс 22 нм и 3D-процессоры. В 2013 году были представлены процессоры Haswell, а в 2014 и 2015 годах - Broadwell. Процессоры Broadwell производятся по техпроцессу 14 нм. К ним относится, в том числе, процессор Core M, который имеет расчётное тепловыделение всего 4.5 Вт, что позволяет использовать его в устройствах с пассивным охлаждением.

Можно отметить, что темпы роста чистой производительности процессоров в последнее время несколько снизились: в принципе, даже процессоров Core 2 (не говоря уже о Core i7/i5 первого поколения) достаточно практически для любых задач. Это связано с тем, что производители уделяют больше внимания повышению энергоэффективности процессоров и такому параметру, как «производительность на ватт». В результате, современные ноутбуки, построенные на энергоэффективных процессорах Intel, работают от аккумулятора по 9-12 часов и при этом обеспечивают производительность, достаточную практически для любых задач. Ещё 3-4 года назад такое было невозможно.

Atom: нетбуки, планшеты, смартфоны...

Параллельно с высокопроизводительными процессорами Core компания Intel развивает и линейку энергоэффективных процессоров Atom. Они впервые появились в 2008 году в качестве процессоров для нетбуков (то есть, низкопроизводительных и дешёвых ноутбуков), но с тех пор нашли применение в качестве чипов для смартфонов и планшетов на базе операционных систем Android и Windows. По сути Atom, на сегодняшний день, является единственным конкурентом различных чипов на базе архитектуры ARM. В 2014 году было выпущено 46 миллионов планшетов на базе процессоров Atom.

Quark: меньше, чем Atom


Intel Galileo: плата для разработки с процессором Quark

Новейшим семейством процессоров Intel является линейка Quark. Это совсем простые процессоры, архитектурно близкие к оригинальному Pentium. Каждый процессор также включает все контроллеры, необходимые для построения законченного устройства. Эти процессоры предназначены, в первую очередь, для создания встроенных решений, объединённых в «интернет вещей». Для энтузиастов и разработчиков Intel выпускает платы Intel Galileo с процессорами Quark, эти платы совместимы с Arduino и могут использоваться для создания собственных проектов и выполнения различных задач по автоматизации.

Сегодня мы настолько привыкли к современным реалиям, что воспринимаем их как данность. Смартфон в нашем кармане или ноутбук в сумке кажется нам не чудом технологий, а чем-то обыденным. Но всё начиналось с крошечного чипа, содержащего 2300 транзисторов и работавшего на тактовой частоте 740 кГц. Иногда стоит оглянуться назад, чтобы оценить масштабы проделанного пути.

Компания Intel прошла очень длинный путь развития, от небольшого производителя микросхем до мирового лидера по производству процессоров. За это время было разработано множество технологий производства процессоров, очень сильно оптимизирован технологический процесс и характеристики устройств.

Множество показателей работы процессоров зависит от расположения транзисторов на кристалле кремния. Технологию расположения транзисторов называют микроархитектурой или просто архитектурой. В этой статье мы рассмотрим какие архитектуры процессора Intel использовались на протяжении развития компании и чем они отличаются друг от друга. Начнем с самых древних микроархитектур и рассмотрим весь путь до новых процессоров и планов на будущее.

Как я уже сказал, в этой статье мы не будем рассматривать разрядность процессоров. Под словом архитектура мы будем понимать микроархитектуру микросхемы, расположение транзисторов на печатной плате, их размер, расстояние, технологический процесс, все это охватывается этим понятием. Наборы инструкций RISC и CISC тоже трогать не будем.

Второе, на что нужно обратить внимание, это поколения процессора Intel. Наверное, вы уже много раз слышали - этот процессор пятого поколения, тот четвертого, а это седьмого. Многие думают что это обозначается i3, i5, i7. Но на самом деле нет i3, и так далее - это марки процессора. А поколение зависит от используемой архитектуры.

С каждым новым поколением улучшалась архитектура, процессоры становились быстрее, экономнее и меньше, они выделяли меньше тепла, но вместе с тем стоили дороже. В интернете мало статей, которые бы описывали все это полностью. А теперь рассмотрим с чего все начиналось.

Архитектуры процессора Intel

Сразу говорю, что вам не стоит ждать от статьи технических подробностей, мы рассмотрим только базовые отличия, которые будут интересны обычным пользователям.

Первые процессоры

Сначала кратко окунемся в историю чтобы понять с чего все началось. Не будем углубятся далеко и начнем с 32-битных процессоров. Первым был Intel 80386, он появился в 1986 году и мог работать на частоте до 40 МГц. Старые процессоры имели тоже отсчет поколений. Этот процессор относиться к третьему поколению, и тут использовался техпроцесс 1500 нм.

Следующим, четвертым поколением был 80486. Используемая в нем архитектура так и называлась 486. Процессор работал на частоте 50 МГц и мог выполнять 40 миллионов команд в секунду. Процессор имел 8 кб кэша первого уровня, а для изготовления использовался техпроцесс 1000 нм.

Следующей архитектурой была P5 или Pentium. Эти процессоры появились в 1993 году, здесь был увеличен кэш до 32 кб, частота до 60 МГц, а техпроцесс уменьшен до 800 нм. В шестом поколении P6 размер кэша составлял 32 кб, а частота достигла 450 МГц. Тех процесс был уменьшен до 180 нм.

Дальше компания начала выпускать процессоры на архитектуре NetBurst. Здесь использовалось 16 кб кэша первого уровня на каждое ядро, и до 2 Мб кэша второго уровня. Частота выросла до 3 ГГц, а техпроцесс остался на том же уровне - 180 нм. Уже здесь появились 64 битные процессоры, которые поддерживали адресацию большего количества памяти. Также было внесено множество расширений команд, а также добавлена технология Hyper-Threading, которая позволяла создавать два потока из одного ядра, что повышало производительность.

Естественно, каждая архитектура улучшалась со временем, увеличивалась частота и уменьшался техпроцесс. Также существовали и промежуточные архитектуры, но здесь все было немного упрощено, поскольку это не является нашей основной темой.

Intel Core

На смену NetBurst в 2006 году пришла архитектура Intel Core. Одной из причин разработки этой архитектуры была невозможность увеличения частоты в NetBrust, а также ее очень большое тепловыделение. Эта архитектура была рассчитана на разработку многоядерных процессоров, размер кэша первого уровня был увеличен до 64 Кб. Частота осталась на уровне 3 ГГц, но зато была сильно снижена потребляемая мощность, а также техпроцесс, до 60 нм.

Процессоры на архитектуре Core поддерживали аппаратную виртуализацию Intel-VT, а также некоторые расширения команд, но не поддерживали Hyper-Threading, поскольку были разработаны на основе архитектуры P6, где такой возможности еще не было.

Первое поколение - Nehalem

Дальше нумерация поколений была начата сначала, потому что все следующие архитектуры - это улучшенные версии Intel Core. Архитектура Nehalem пришла на смену Core, у которой были некоторые ограничения, такие как невозможность увеличить тактовую частоту. Она появилась в 2007 году. Здесь используется 45 нм тех процесс и была добавлена поддержка технологии Hyper-Therading.

Процессоры Nehalem имеют размер L1 кэша 64 Кб, 4 Мб L2 кэша и 12 Мб кєша L3. Кэш доступен для всех ядер процессора. Также появилась возможность встраивать графический ускоритель в процессор. Частота не изменилась, зато выросла производительность и размер печатной платы.

Второе поколение - Sandy Bridge

Sandy Bridge появилась в 2011 году для замены Nehalem. Здесь уже используется техпроцесс 32 нм, здесь используется столько же кэша первого уровня, 256 Мб кэша второго уровня и 8 Мб кэша третьего уровня. В экспериментальных моделях использовалось до 15 Мб общего кэша.

Также теперь все устройства выпускаются со встроенным графическим ускорителем. Была увеличена максимальная частота, а также общая производительность.

Третье поколение - Ivy Bridge

Процессоры Ivy Bridge работают быстрее чем Sandy Bridge, а для их изготовления используется техпроцесс 22 нм. Они потребляют на 50% меньше энергии чем предыдущие модели, а также дают на 25-60% высшую производительность. Также процессоры поддерживают технологию Intel Quick Sync, которая позволяет кодировать видео в несколько раз быстрее.

Четвертое поколение - Haswell

Поколение процессора Intel Haswell было разработано в 2012 году. Здесь использовался тот же техпроцесс - 22 нм, изменен дизайн кэша, улучшены механизмы энергопотребления и немного производительность. Но зато процессор поддерживает множество новых разъемов: LGA 1150, BGA 1364, LGA 2011-3, технологии DDR4 и так далее. Основное преимущество Haswell в том, что она может использоваться в портативных устройствах из-за очень низкого энергопотребления.

Пятое поколение - Broadwell

Это улучшенная версия архитектуры Haswell, которая использует техпроцесс 14 нм. Кроме того, в архитектуру было внесено несколько улучшений, которые позволили повысить производительность в среднем на 5%.

Шестое поколение - Skylake

Следующая архитектура процессоров intel core - шестое поколение Skylake вышла в 2015 году. Это одно из самых значительных обновлений архитектуры Core. Для установки процессора на материнскую плату используется сокет LGA 1151, теперь поддерживается память DDR4, но сохранилась поддержка DDR3. Поддерживается Thunderbolt 3.0, а также шина DMI 3.0, которая дает в два раза большую скорость. И уже по традиции была увеличенная производительность, а также снижено энергопотребление.

Седьмое поколение - Kaby Lake

Новое, седьмое поколение Core - Kaby Lake вышло в этом году, первые процессоры появились в середине января. Здесь было не так много изменений. Сохранен техпроцесс 14 нм, а также тот же сокет LGA 1151. Поддерживаются планки памяти DDR3L SDRAM и DDR4 SDRAM, шины PCI Express 3.0, USB 3.1. Кроме того, была немного увеличена частота, а также уменьшена плотность расположения транзисторов. Максимальная частота 4,2 ГГц.

Выводы

В этой статье мы рассмотрели архитектуры процессора Intel, которые использовались раньше, а также те, которые применяются сейчас. Дальше компания планирует переход на техпроцесс 10 нм и это поколение процессоров intel будет называться CanonLake. Но пока что Intel к этому не готова.

Поэтому в 2017 планируется еще выпустить улучшенную версию SkyLake под кодовым именем Coffe Lake. Также, возможно, будут и другие микроархитектуры процессора Intel пока компания полностью освоит новый техпроцесс. Но обо всем этом мы узнаем со временем. Надеюсь, эта информация была вам полезной.

Об авторе

Основатель и администратор сайта сайт, увлекаюсь открытым программным обеспечением и операционной системой Linux. В качестве основной ОС сейчас использую Ubuntu. Кроме Linux интересуюсь всем, что связано с информационными технологиями и современной наукой.

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Липецкий государственный технический университет»

Кафедра электропривода

КУРСОВАЯ РАБОТА

по дисциплине:”Микропроцессорные средства.”

на тему:”История развития процессоров INTEL .Процессоры INTEL ATOM .Ноутбуки на базе технологии INTEL ATOM .”

Выполнила Верзилина О.Н.

Студентка группа ОЗЭП-04-1

Проверил

Преподаватель Пличко Н.П.

Липецк 2008


1.История развития фирмы INTEL………………………………………3

1.1.Развитие и выпуск процессоров INTEL……………………………..9

2.Обзор технологии ATOM………………………………………………20

3.Обзор процессоров INTELATOM……………………………………..22

4.Процессоры INTELATOM 230,Z520…………………………………..24

4.1.Материнская плата GigabyteGC230D………………………………..24

4.2.Материнская плата IXT………………………………………………..32

5.Процессор INTELATOM 330…………………………………………...42

6.Ноутбуки на базе процессоров INTELATOM…………………………43

6.1.Ноутбук MSI Wind U100-024RU………………………………………43

6.2.Ноутбук ASUS Eee 1000H……………………………………………...48

6.3.Ноутбук Acer One AOA 150-Bb………………………………………..51

6.4.Ноутбук Gigabyte M912V………………………………………………53

6.5.Ноутбук Asus N10………………………………………………………54

6.6.Ноутбук SatelliteNB 105……………………………………………….55


1. История создания фирмы INTEL .

12 декабря 2002 года исполнилось 75 лет со дня рождения Роберта Нойса, изобретателя микросхемы и одного из основателей фирмы Intel.

Началось все с того, что в 1955 году изобретатель транзистора Уильям Шокли открыл собственную фирму Shockley Semiconductor Labs в Пало-Альто (что, кроме всего прочего, послужило началом создания Кремниевой долины), куда набрал довольно много молодых исследователей. В 1959 году по ряду причин от него ушла группа в восемь инженеров, которых не устраивала работа “на дядю” и они хотели попробовать реализовать собственные идеи. “Восьмерка предателей”, как их называл Шокли, среди которых были в том числе Мур с Нойсом, основала фирму Fairchild Semiconductor.

Боб Нойс занял в новой компании должность директора по исследованиям и разработкам. Позднее он утверждал, что придумал микросхему из лени – довольно бессмысленно выглядело, когда в процессе изготовления микромодулей пластины кремния сначала разрезались на отдельные транзисторы, а затем опять соединялись друг с другом в общую схему. Процесс был крайне трудоемким – все соединения паялись вручную под микроскопом! – и дорогим. К тому моменту сотрудником Fairchild, тоже одним из сооснователей – Джином Герни (Jean Hoerni) уже была разработана т.н. планарная технология производства транзисторов, в которой все рабочие области находятся в одной плоскости. Нойс предложил изолировать отдельные транзисторы в кристалле друг от друга обратносмещенными p-n переходами, а поверхность покрывать изолирующим окислом, и выполнять межсоединения с помощью напыления полосок из алюминия. Контакт с отдельными элементами осуществлялся через окна в этом окисле, которые вытравливались по специальному шаблону плавиковой кислотой.

Причем, как он выяснил, алюминий отлично приставал как к кремнию, так и к его окислу (именно проблема адсорбции материала проводника к кремнию до последнего времени не позволяла использовать медь вместо алюминия, несмотря на ее более высокую электропроводность). Такая планарная технология в несколько модернизированном виде сохранилась до наших дней. Для тестирования первых микросхем использовался единственный прибор – осциллограф.

Между тем выяснилось, что Нойса в благородном деле создания первой микросхемы опередили. Еще летом 1958-го сотрудник Texas Instruments Джек Килби продемонстрировал возможности изготовления всех дискретных элементов, включая резисторы и даже конденсаторы, на кремнии.

Планарной технологии в его распоряжении не было, поэтому он использовал так называемые меза-транзисторы. В августе он собрал работающий макет триггера, в котором отдельные изготовленные им собственноручно элементы соединялись золотыми проволочками, а 12 сентября 1958 г. предъявил работающую микросхему – мультивибратор с рабочей частотой 1,3 МГц. В 1960 году эти достижения демонстрировались на публике – на выставке американского Института радиоинженеров. Пресса очень холодно встретила открытие. В числе прочих отрицательных особенностей “integrated circuit” называлась неремонтопригодность. Хотя Килби подал заявку на патент еще в феврале 1959, а Fairchild сделала это только в июле того же года, последней патент выдали раньше – в апреле 1961 г., а Килби – только в июне 1964 г. Потом была десятилетняя война о приоритетах, в результате которой, как говорится победила дружба. В конечном счете, Апелляционный Суд подтвердил претензии Нойса на первенство в технологии, но постановил считать Килби создателем первой работающей микросхемы. В 2000 Килби получил за это изобретение Нобелевскую премию (среди двух других лауреатов был академик Алферов).

Роберт Нойс и Гордон Мур ушли из компании FairchildSemiconductor и основали свою фирму, а вскоре к ним присоединилсяЭнди Гроув. Тот же финансист, который ранее помог создать Fairchild, предоставил $2.5 млн, хотя бизнес-план на одной страничке, собственноручно отпечатанный на пишущей машинке Робертом Нойсом, выглядел не слишком впечатляюще: куча опечаток, плюс заявления весьма общего характера.

Выбор имени оказался нелегким делом. Предлагались десятки вариантов, но все они были отброшены. Кстати, вам ничего не говорят названия CalCompили CompTek? А ведь они могли бы принадлежать не тем популярным фирмам, которые носят их сейчас, а крупнейшему производителю процессоров - в свое время их отвергли среди прочих вариантов. В итоге было решено назвать компанию Intel, от слов «интегрированная электроника». Правда, сначала пришлось выкупить это название у группы мотелей, зарегистрировавшей его ранее.

Итак, в 1969 году Intel начинала работу с микросхем памяти и добилась некоторого успеха, но явно недостаточного для славы. В первый год существования доход составил всего $2672.

Сегодня Intel производит чипы в расчете на рыночные продажи, но в первые годы своего становления компания нередко делала микросхемы на заказ. В апреле 1969 года в Intel обратились представители японской фирмы Busicom, занимающейся выпуском калькуляторов. Японцы прослышали, что у Intel самая передовая технология производства микросхем. Для своего нового настольного калькулятора Busicom хотела заказать 12 микросхем различного назначения. Проблема, однако, заключалась в том, что ресурсы Intel в тот момент не позволяли выполнить такой заказ. Методика разработки микросхем сегодня не сильно отличается от той, что была в конце 60-х годов XX века, правда, инструментарий отличается весьма заметно.

В те давние-давние годы такие весьма трудоемкие операции, как проектирование и тестирование, выполнялись вручную. Проектировщики вычерчивали черновые варианты на миллиметровке, а чертежники переносили их на специальную вощеную бумагу (восковку). Прототип маски изготовляли путем ручного нанесения линий на огромные листы лавсановой пленки. Никаких компьютерных систем обсчета схемы и ее узлов еще не существовало. Проверка правильности производилась путем "прохода" по всем линиям зеленым или желтым фломастером. Сама маска изготавливалась путем переноса чертежа с лавсановой пленки на так называемый рубилит - огромные двухслойные листы рубинового цвета. Гравировка на рубилите также осуществлялась вручную. Затем несколько дней приходилось перепроверять точность гравировки. В том случае, если необходимо было убрать или добавить какие-то транзисторы, это делалось опять-таки вручную, с использованием скальпеля. Только после тщательной проверки лист рубилита передавался изготовителю маски. Малейшая ошибка на любом этапе - и все приходилось начинать сначала. Например, первый тестовый экземпляр "изделия 3101" получился 63-разрядным.

Словом, 12 новых микросхем Intel физически не могла потянуть. Но Мур и Нойс были не только замечательными инженерами, но и предпринимателями, в связи с чем им сильно не хотелось терять выгодный заказ. И тут одному из сотрудников Intel, Теду Хоффу (Ted Hoff), пришло в голову, что, раз компания не имеет возможности спроектировать 12 микросхем, нужно сделать всего одну универсальную микросхему, которая по своим функциональным возможностям заменит их все. Иначе говоря, Тед Хофф сформулировал идею микропроцессора - первого в мире. В июле 1969 года была создана группа по разработке, и работа началась. В сентябре к группе присоединился также перешедший из Fairchild Стэн Мазор (Stan Mazor). Контролером от заказчика в группу вошел японец Масатоси Сима (Masatoshi Shima). Чтобы полностью обеспечить работу калькулятора, необходимо было изготовить не одну, а четыре микросхемы. Таким образом, вместо 12 чипов требовалось разработать только четыре, но один из них - универсальный. Изготовлением микросхем такой сложности до этого никто не занимался.


Итальяно-японское содружество

В апреле 1970 года к группе по выполнению заказа Busicom присоединился новый сотрудник. Он пришел из кузницы кадров для Intel - компании Fairchild Semiconductor. Звали нового сотрудника Федерико Фэджин (Federico Faggin). Ему было 28 лет, но уже почти десять лет он занимался созданием компьютеров. В девятнадцать лет Фэджин участвовал в построении мини-ЭВМ итальянской компании Olivetti. Затем он попал в итальянское представительство Fairchild, где занимался разработкой нескольких микросхем. В 1968 году Фэджин покинул Италию и перебрался в США, в лабораторию Fairchild Semiconductor в Пало-Альто.
Стэн Мазор показал новому члену группы общую спецификацию проектируемого набора микросхем и сказал, что на следующий день прилетает представитель заказчика.