Сайт о телевидении

Сайт о телевидении

» » Полевые транзисторы с изолированным каналом. Полевой моп транзистор

Полевые транзисторы с изолированным каналом. Полевой моп транзистор

Условные графические обозначения МДП-транзистора индуцированным каналом n-типа (а) и p-типа (б)

У него нет встроенного канала между областями истока и стока. При отсутствии напряжения на затворе ток между истоком и стоком не потечет ни при какой полярности напряжения, так как один из p-n-переходов будет обязательно заперт.

Если подать на затвор напряжение положительной полярности относительно истока, то под действием возникающего поперечного электрического поля электроны из областей истока и стока, а также из областей кристалла, будут перемещаться в приповерхностную область по направлению к затвору. Когда напряжение на затворе превысит некоторое пороговое значение, то в приповерхностном слое концентрация электронов повысится настолько, что превысит концентрацию дырок в этой области и здесь произойдет инверсия типа электропроводности, т. е. образуется тонкий канал n-типа и в цепи стока появится ток. Чем больше положительное напряжение на затворе, тем больше проводимость канала и больше ток стока.

Таким образом, такой транзистор может работать только в режиме обогащения. Вид его выходных характеристик и характеристики управления показан на рис.

Если кристалл полупроводника имеет электроприводность n-типа, то области истока и стока должны быть p-типа. Такого же типа проводимости будет индуцироваться и канал, если на затвор подавать отрицательное напряжение относительно истока.

51. Мдп- транзистор со встроенным каналом

Условные графические обозначения МДП-транзистора со встроенным каналом n-типа (а) и p-типа (б)

Он представляет собой монокристалл полупроводника; обычно кремния, где создана электропроводность какого-либо типа, в рассматриваемом случае p-типа. В нем созданы две области с электропроводностью противоположного типа (в нашем случае n-типа), которые соединены между собой тонким приповерхностным слоем этого же типа проводимости. От этих двух зон сформированы электрические выводы, которые называют истоком и стоком. На поверхности канала имеется слой диэлектрика (обычно диоксида кремния) толщиной порядка , а на нем методом напыления наносится тонкая металлическая пленка, от которой также делается электрический вывод – затвор. Иногда от основания (называемого подложкой (П)) также делается вывод, который накоротко соединяют с истоком.

При подаче на затвор отрицательного напряжения относительно истока, а следовательно и кристалла, в канале возникает поперечное электрическое поле, которое будет выталкивать электроны из области канала в основание. Канал обедняется основными носителями – электронами, его сопротивление увеличивается, и ток стока уменьшается. Чем больше отрицательное напряжение на затворе, тем меньше этот ток. Такой режим называется режимом обеднения.

При подаче на затвор положительного напряжения, относительно истока, направление поперечного электрического поля изменится на противоположное, и оно будет, наоборот, притягивать электроны из областей истока и стока, а также из кристалла полупроводника. Проводимость канала увеличивается, и ток стока возрастает. Такой режим называется режимом обогащения.

Рассмотренный транзистор, таким образом, может работать как в режиме обеднения, так и режиме обогащения токопроводящего канала, что иллюстрируют его выходные характеристики а) и характеристика управления б).

Рассмотрим принцип действия МДП-транзистора с индуцированным каналом n -типа.

При постепенном увеличении положительного относительно истока напряжения
и
на затворе образуется положительный заряд, а в приповерхностном слое полупроводника сначала образуется слой, обедненный основными носителями подложки (в данном случае - дырками).

При дальнейшем росте
свободные электроныp -полупроводника подложки (собственные, а не примесные) перемещаются в приповерхностную область под затвором и образуют индуцированный (наведенный полем) инверсный (с инверсной по отношению кp -полупроводнику подложки проводимостью) слой, который и представляет собой каналn -типа между истоком и стоком (рис. 10.18).

Напряжение
, при котором возникает канал, называется пороговым
. Канал отделяется от подложки отрицательными ионами акцепторов, т.е. обедненным носителями заряда слоем. При
происходит обогащение поверхностного слоя электронами и уменьшение сопротивления канала. Такой режим работы МДП-транзистора называется режимом обогащения. В МДП-транзисторах с индуцированным каналом существует только режим обогащения.

Если
и напряжение
, то при протекании по каналу тока стокаэквипотенциальная картина поля, изображенная на рис. 10.18, нарушается. Потенциал поверхности под действием тока стока увеличивается по направлению от истока к стоку, а разность потенциалов между затвором и поверхностью уменьшается, что в конечном итоге сужает канал. При увеличении напряжения
ток стокатоже растет с постепенным замедлением скорости роста. Когда падение напряжения на объемном сопротивлении канала от протекающего тока стокаскомпенсирует превышение напряжения
над пороговым, напряжение между стоком и затвором станет равным
и у стока произойдет смыкание обедненного слоя с поверхностью полупроводника, препятствуя дальнейшему росту тока стока(рис. 10.19).

Это называется насыщением тока стока. Напряжение
, при котором происходит насыщение тока стока, называется напряжением насыщения
.

При дальнейшем увеличении напряжения
сверх
ток стоканезначительно увеличивается только в силу уменьшения длины канала и, следовательно, уменьшения сопротивления канала (рис. 10.20).

Явление переноса носителей заряда (в данном случае электронов) из канала через обедненную область в сток подобно переходу зарядов из базы в коллектор биполярного транзистора через обратно смещенный pn -переход под действием его поля. Все приращения напряжения
сверх
прикладываются в основном к высокоомной обедненной области, расположенной у стока, в результате чего ток стокапочти не увеличивается.

Напряжение
существенно зависит от напряжения на подложке, так как с его ростом увеличивается область, обедненная зарядами. Обычно в МДП-структурах сn -каналом на подложку подают наиболее отрицательный потенциал схемы, чтобы переход «исток - подложка» всегда был закрыт. Влияние постоянного напряжения между истоком и подложкой можно учесть, включив его с определенным коэффициентом в выражение для
.

На рис. 10.17 – 10.20 проведены четкие границы между зарядовыми областями МДП-структуры. Реально изменение концентраций зарядов плавное, и резко обозначенных границ между областями зарядов не существует.

При больших напряжениях на стоке
может произойти пробой МДП-транзистора, при этом может быть два вида пробоя: пробойpn -перехода под стоком и пробой диэлектрика под затвором. Пробойpn -перехода обычно имеет лавинный характер, так как МДП-транзисторы изготавливаются обычно на основе кремния. При этом на пробивное напряжение
может влиять напряжение на затворе: так как на сток и на затвор МДП-транзистора с индуцированным каналом подаются потенциалы одной полярности, то с увеличением напряжения на затворе будет увеличиваться
. Пробой диэлектрика под затвором может происходить при напряжении на затворе всего в несколько десятков вольт, так как толщина слоя диоксида кремния около 0,1 мкм. Пробой обычно имеет тепловой характер. Этот вид пробоя может возникать в результате накопления статических зарядов, так как входное сопротивление МДП-транзисторов велико. Для исключения возможности такого вида пробоя вход МДП-транзистора часто защищают стабилитроном, ограничивающим напряжение на затворе.

Семейство статических характеристик
при
МДП-транзистора с индуцированным каналом, построенное в соответствии со сказанным приведено на рис. 10.21.

участок резкого изменения тока и участок, на котором изменение тока мало.

Параметром семейства выходных характеристик биполярного транзистора является ток базы – прибор управляется током; для МДП-транзистора с индуцированным каналом параметром семейства выходных характеристик является напряжение на затворе
- прибор управляется напряжением. С увеличением напряжения
сопротивление канала уменьшается, и ток стокавозрастает – характеристика идет выше. Выходные ВАХ МДП-транзистора выходят из начала координат, в то время как выходные ВАХ биполярного транзистора могут быть сдвинуты по оси напряжений.

На графике семейства
при
МДП – транзистора с индуцированным каналом (рис. 10.21) можно выделить три основные рабочие области:

1 – область отсечки выходного тока: транзистор закрыт (
), и в цепи стока протекает малы ток, обусловленный утечкой и обратным током стокового перехода (10 -6 А)4

2 – активная область (пологая часть выходных ВАХ, для которой
и
) – область, где выходной токостается практически неизменным с ростом
;

3 – область открытого состояния (крутая часть выходной ВАХ): ток в этой области работы задается внешней цепью.

Таким образом, в области 1 рабочая точка находится, если МДП-транзистор заперт, в области 3 – если открыт; эти области соответствуют статическим состояниям МДП-транзистора в ключевом режиме эксплуатации. Активная область (область 2) для ключевого режима МДП-транзистора является областью динамического состояния: в этой области рабочая точка находится кратковременно в течение переходного процесса из одного статического состояния в другое (из закрытого в открытое и наоборот).

В активной области рабочая точка находится при эксплуатации МДП-транзистора в усилительном режиме, когда между входными и выходными сигналами сохраняется линейная зависимость.

В области 4 достаточно больших напряжений
наступают предпробойные явления, а затем и пробой, сопровождающийся резким увеличением тока. Область пробоя определяет выбор предельно допустимых напряжений.

Характер статических характеристик передачи
при
ясен из принципа действия МДП-транзистора с индуцированным каналом. Характеристики для разных напряжений
выходят из точки на оси абсцисс, соответствующей
.(рис. 10.22).

Интересным и важным с точки зрения применения МДП-транзисторов является температурное изменение статических характеристик передачи. Эти изменения вызваны различными физическими процессам, которые приводят к тому, что с увеличением температуры пороговое напряжение
уменьшается.

быть как отрицательными, так и положительными, а также нулевыми в определенной рабочей точке статических характеристик.

Обычно эффект температурной компенсации получается при напряжениях на затворе, незначительно превышающих
. Кроме того, еще надо учитывать, что крутизнахарактеристики передачи, определяющая усилительные свойства МДП-транзистора, изменяется с температурой даже при неизменном постоянном токе стока.

Рассмотрим принцип действия МДП-транзистора со встроенным каналом n -типа (рис. 10.24).

Модуляция сопротивления проводящего канала может происходить при изменении напряжения на затворе как положительной, так и отрицательной полярности. При напряжениях
и
через каналn -типа течет ток. Если
, то затвор заряжается отрицательно, а в расположенном под ним приповерхностном слое вследствие ухода из него свободных электронов появляется положительный заряд ионов. Обедненный основными носителями слой увеличивает сопротивление канала. При достижении
обедненный слой перекрывает канал, и ток через него не течет. Имеет место режим отсечки. При
происходит обогащение канала носителями заряда (в данном случае электронами), его сопротивление уменьшается, что приводит к увеличению тока стока.

Таким образом, МДП-транзистора со встроенным каналом может работать как в режиме обогащения, так и в режиме обеднения канала носителями заряда.

Семейство выходных статических характеристик и статическая характеристика передачи МДП-транзистора со встроенным каналом n -типа приведены на рис. 10.25.

выходные статические характеристики

характеристика передачи

Полевой транзистор – электрический полупроводниковый прибор, выходной ток которого управляется полем, следовательно, напряжением, одного знака. Формирующий сигнал подается на затвор, регулирует проводимость канала n или p-типа. В отличие от биполярных транзисторов, где сигнал переменной полярности. Вторым признаком назовем формирование тока исключительно основными носителями (одного знака).

Классификация полевых транзисторов

Начнём классификацией. Разновидности полевых транзисторов многочисленны, каждая работает сообразно алгоритму:

Помимо общей классификации придумана специализированная, определяющая принципы работы. Различают:

  1. Полевые транзисторы с управляющим p-n-переходом.
  2. Полевые транзисторы с барьером Шоттки.
  3. Полевые транзисторы с изолированным затвором:
  • С встроенным каналом.
  • С индуцированным каналом.

В литературе дополнительно упорядочивают структуры следующим образом: применять обозначение МОП нецелесообразно, конструкции на оксидах считают частным случаем МДП (металл, диэлектрик, полупроводник). Барьер Шоттки (МеП) следует отдельно выделять, поскольку это иная структура. Напоминает свойствами p-n-переход. Добавим, что конструктивно в состав транзистора способны входить одновременно диэлектрик (нитрид кремния), оксид (четырехвалентный кремния), как это случилось с КП305. Такие технические решения используются людьми, ищущими методы получения уникальных свойств изделия, удешевления.

Среди зарубежных аббревиатур для полевых транзисторов зарезервировано сочетание FET, иногда обозначает тип управления – с p-n-переходом. В последнем случае наравне с этим встретим JFET. Слова-синонимы. За рубежом принято отделять оксидные (MOSFET, MOS, MOST – синонимы), нитридные (MNS, MNSFET) полевые транзисторы. Наличие барьера Шоттки маркируется SBGT. По-видимому, материал значение, отечественная литература значение факта замалчивает.

Электроды полевых транзисторов на схемах обозначаются: D (drain) – сток, S (source) – исток, G (gate) – затвор. Подложку принято именовать substrate.

Устройство полевого транзистора

Управляющий электрод полевого транзистора называется затвором. Канал образован полупроводником произвольного типа проводимости. Сообразно полярность управляющего напряжения положительная или отрицательная. Поле соответствующего знака вытесняет свободные носители, пока перешеек под электродом затвора не опустеет вовсе. Достигается путем воздействия поля либо на p-n-переход, либо на однородный полупроводник. Ток становится равным нулю. Так работает полевой транзистор.

Ток протекает от истока к стоку, новичков традиционно мучает вопрос различения двух указанных электродов. Отсутствует разница, в каком направлении движутся заряды. Полевой транзистор обратим. Униполярность носителей заряда объясняет малый уровень шумов. Поэтому в технике полевые транзисторы занимают доминирующую позицию.

Ключевой особенностью приборов назовем большое входное сопротивление, в особенности, переменному току. Очевидный факт, проистекающий из управления обратно смещённым p-n-переходом (переходом Шоттки), либо емкости технологического конденсатора в районе изолированного затвора.

Подложки часто выступает нелегированный полупроводник. Для полевых транзисторов с затвором Шоттки — арсенид галлия. В чистом виде неплохой изолятор, к которому в составе изделия предъявляются требования:

Сложно создать значительной толщины слой, отвечающий перечню условий. Поэтому добавляется пятое требование, заключающееся в возможности постепенного наращивания подложки до нужных размеров.

Полевые транзисторы с управляющим p-n-переходом и МеП

В этом случае тип проводимости материала затвора отличается от используемого каналом. На практике встретите разные улучшения. Затвор составлен пятью областями, утопленными в канале. Меньшим напряжением удается управлять протеканием тока. Означая увеличение коэффициента усиления.

Биполярный транзистор

В схемах используется обратное смещение p-n-перехода, чем сильнее, тем уже канал для протекания тока. При некотором значении напряжения транзистор запирается. Прямое смещение опасно использовать по той причине, что мощная управляемая цепь может повлиять на контур затвора. Если переход открыт, потечет большой ток, либо приложится высокое напряжение. Нормальный режим обеспечивается правильным подбором полярности и других характеристик источника питания, выбором рабочей точки транзистора.

Однако в некоторых случаях намеренно используются прямые токи затвора. Примечательно, что этот режим могут использовать те МДП-транзисторы, где подложка образует с каналом p-n-переход. Движущийся заряд истока делится между затвором и стоком. Можно найти область, где получается значительный коэффициент усиления по току. Управляется режим затвором. При росте тока iз (до 100 мкА) параметры схемы резко ухудшаются.

Аналогичное включение используется схемой так называемого затворного частотного детектора. Конструкция эксплуатирует выпрямительные свойства p-n-перехода между затвором и каналом. Прямое смещение мало или вовсе нулевое. Прибор по-прежнему управляется током затвора. В цепи стока получается значительное усиление сигнала. Выпрямленное напряжение для затвора является запирающим, изменяется по входному закону. Одновременно с детектированием достигается усиление сигнала. Напряжение цепи стока содержит компоненты:

  • Постоянная составляющая. Никак не используется.
  • Сигнал с частотой несущей. Заводится на землю путем использования фильтрующих емкостей.
  • Сигнал с частотой модулирующего сигнала. Обрабатывается для извлечения заложенной информации.

Недостатком затворного частотного детектора считают большой коэффициент нелинейных искажений. Причем результаты одинаково плохи для слабых (квадратичная зависимость рабочей характеристики) и сильных (выход в режим отсечки) сигналов. Несколько лучшие демонстрирует фазовый детектор на двухзатворном транзисторе. На один управляющий электрод подают опорный сигнал, на стоке образуется информационная составляющая, усиленная полевым транзистором.

Несмотря на большие линейные искажения эффект находит применение. Например, в избирательных усилителях мощности, дозировано пропускающих узкий спектр частот. Гармоники фильтруются, не оказывают большого влияния на итоговое качество работы схемы.

Транзисторы металл-полупроводник (МеП) с барьером Шоттки почти не отличаются от имеющих p-n-переход. По крайней мере, когда дело касается принципов работы. Но благодаря особым качествам перехода металл-полупроводник, изделия способны работать на повышенной частоте (десятки ГГц, граничные частоты в районе 100 ГГц). Одновременно МеП структура проще в реализации, когда дело касается производства и технологических процессов. Частотные характеристики определяются временем заряда затвора и подвижностью носителей (для GaAs свыше 10000 кв. см/В с).

МДП-транзисторы

В МДП-структурах затвор надежно изолирован от канала, управление происходит полностью за счет воздействия поля. Изоляция ведётся за счет оксида кремния или нитрида. Именно эти покрытия проще нанести на поверхности кристалла. Примечательно, что в этом случае также имеются переходы металл-полупроводник в районе истока и стока, как и в любом полярном транзисторе. Об этом факте забывают многие авторы, либо упоминают вскользь путем применения загадочного словосочетания омические контакты.

В теме про диод Шоттки поднимался этот вопрос. Не всегда на стыке металла и полупроводника возникает барьер. В некоторых случаях контакт омический. Это зависит по большей части от особенностей технологической обработки и геометрических размеров. Технические характеристики реальных приборов сильно зависят от различных дефектов оксидного (нитридного) слоя. Вот некоторые:

  1. Несовершенство кристаллической решетки в поверхностной области обусловлено разорванными связями на границе смены материалов. Влияние оказывают как свободные атомы полупроводника, там и примесей наподобие кислорода, который имеется в любом случае. Например, при использовании методов эпитаксии. В результате появляются энергетические уровни, лежащие в глубине запрещенной зоны.
  2. На границе оксида и полупроводника (толщиной 3 нм) образуется избыточный заряд, природа которого на сегодняшний день еще не объяснена. Предположительно, роль играют положительные свободные места (дырки) дефектных атомов самого полупроводника и кислорода.
  3. Дрейф ионизированных атомов натрия, калия и других щелочных металлов происходит при низких напряжениях на электроде. Это увеличивает заряд, скопившийся на границе слоев. Для блокировки этого эффекта в оксиде кремния используют окись фосфора (ангидрид).

Как часто вы слышали название МОП, MOSFET, MOS, полевик, МДП-транзистор, транзистор с изолированным затвором ? Да-да… это все слова синонимы и относятся они к одному и тому же радиоэлементу.

Полное название такого радиоэлемента на английский манер звучит как M etal O xide S emiconductor F ield E ffect T ransistors (MOSFET), что в дословном переводе звучит как Металл Оксид Полупроводник Поле Влияние Транзистор. Если преобразовать на наш могучий русский язык, то получается как полевой транзистор со структурой Металл Оксид Полупроводник или просто МОП-транзистор ;-). Почему МОП-транзистор также называют МДП-транзистором и ? С чем это связано? Об этих и других вещах вы узнаете в нашей статье. Не переключайтесь на другую вкладку! ;-)

Виды МОП-транзисторов

В семействе МОП-транзисторов в основном выделяют 4 вида:

1) N-канальный с индуцированным каналом

2) P-канальный с индуцированным каналом

3) N-канальный со встроенным каналом

4) P-канальный со встроенным каналом


Как вы могли заметить, разница только в обозначении самого канала. С индуцированным каналом он обозначается штриховой линией, а со встроенным каналом — сплошной.

В современном мире МОП-транзисторы со встроенным каналом используются все реже и реже, поэтому в наших статьям мы их затрагивать не будем, а будем рассматривать только N и P — канальные транзисторы с индуцированным каналом.

Откуда пошло название «МОП»

Начнем наш цикл статей про МОП-транзисторы именно с самого распространенного N-канального МОП-транзистора с индуцированным каналом. Go!

Если взять тонкий-тонкий нож и разрезать МОП-транзистор вдоль, то можно увидеть вот такую картину:


Если рассмотреть с точки зрения еды на вашем столе, то МОП-транзистор будет больше похож на бутерброд. Полупроводник P-типа — толстый кусок хлеба, диэлектрик — тонкий кусок колбасы, а сверху кладем еще слой металла — тонкую пластинку сыра. И у нас получается вот такой бутерброд:


А как будет строение транзистора сверху-вниз? Сыр — металл, колбаса — диэлектрик, хлеб — полупроводник. Следовательно получаем Металл-Диэлектрик-Полупроводник. А если взять первые буквы с каждого названия, то получается МДП — М еталл-Д иэлектрик-П олупроводник, не так ли? Значит, такой транзистор можно назвать по первым буквам МДП-транзистором;-). А так как в качестве диэлектрика используется очень тонкий слой оксида кремния (SiO 2), можно сказать что почти стекло, то и вместо названия «диэлектрик» взяли название «оксид, окисел», и получилось М еталл-О кисел-П олупроводник, сокращенно МОП. Ну вот, теперь все встало на свои места;-)

Строение МОП-транзистора

Давайте еще раз рассмотрим структуру нашего МОП-транзистора:

Имеем «кирпич» полупроводникового материала P-проводимости. Как вы помните, основными носителями в полупроводнике P-типа являются дырки, поэтому их концентрация в данном материале намного больше, чем электронов. Но электроны тоже есть в P-полупроводнике. Как вы помните, электроны в P-полупроводнике — это неосновные носители и их концентрация очень мала, по сравнению с дырками. «Кирпич» P-полупроводника носит название Подложки . Она является основой МОП-транзистора, так как на ней создаются другие слои. От подложки выходит вывод с таким же названием.

Другие слои — это материал N+ типа, диэлектрик, металл. Почему N+, а не просто N? Дело в том, что этот материал сильно легирован, то есть концентрация электронов в этом полупроводнике очень большая. От полупроводников N+ типа, которые располагаются по краям, отходят два вывода: Исток и Сток.

Между Истоком и Стоком через диэлектрик располагается металлическая пластинка, от который идет вывод и называется Затвором. Между Затвором и другими выводами нет никакой электрической связи. Затвор вообще изолирован от всех выводов транзистора, поэтому МОП-транзистор также называют транзистором с изолированным затвором .

Подложка МОП-транзистора

Итак, смотря на рисунок выше, мы видим, что МОП-транзистор на схеме имеет 4 вывода (Исток, Сток, Затвор, Подложка), а в реальности только 3. В чем прикол? Дело все в том, что Подложку обычно соединяют с Истоком. Иногда это уже делается в самом транзисторе еще на этапе разработки. В результате того, что Исток соединен с Подложкой, у нас образуется диод между Стоком и Истоком, который иногда даже не указывается в схемах, но всегда присутствует:


Поэтому, требуется соблюдать цоколевку при подключении МОП-транзистора в схему.

Принцип работы МОП-транзистора

Тут все то же самое как и в . Исток — это вывод, откуда начинают свой путь основные носители заряда, Сток — это вывод, куда они притекают, а Затвор — это вывод, с помощью которого мы контролируем поток основных носителей.

Пусть Затвор у нас пока что никуда не подключен. Для того, чтобы устроить движуху электронов через Исток-Сток, нам потребуется источник питания Bat:


Если рассмотреть наш транзистор с точки зрения и диодов на их основе, то можно нарисовать эквивалентную схемку для нашего рисунка. Она будет выглядеть вот так:

где

И-исток, П-Подложка, С-Сток.

Как вы видите, диод VD2 включен в обратном направлении, так что электрический ток никуда не потечет.

Значит, в этой схеме


никакой движухи электрического тока не намечается.

НО…

Индуцирование канала в МОП-транзисторе

Если подать определенное напряжение на Затвор, в подложке начинаются волшебные превращения. В ней начинает индуцироваться канал .

Индукция, индуцирование — это буквально означает «наведение», «влияние». Под этим термином понимают возбуждение в объекте какого-либо свойства или активности в присутствии возбуждающего субъекта (индуктора), но без непосредственного контакта (например, через электрическое поле). Последнее выражение для нас имеет более глубокий смысл: «через электрическое поле».

Полевыми транзисторами называют активные полупроводниковые приборы, в которых выходным током управляют с помощью электрического поля (в биполярных транзисторах выходной ток управляется входным током). Полевые транзисторы называют также униполярными, так как в процессе протекания электрического тока участвует только один вид носителей.

Различают два вида полевых транзисторов: с управляющим переходом и с изолированным затвором. Все они имеют три электрода: исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители).

Транзистор с управляющим p — n -переходом. Его схематическое изображение приведено на рис. 1.21, а условное графическое обозначение этого транзистора – на рис. 1.22, а , б (p — и n -типов соответственно). Стрелка указывает направление от слоя р к слою п (как и стрелка в изображении эмиттера биполярного транзистора). В интегральных микросхемах линейные размеры транзисторов могут быть существенно меньше 1 мкм.

Рис. 1.22 Устройство транзистора

Рис. 1.23 Графическое изображение: а – канал р-типа; б – канал n -типа

Удельное сопротивление слоя n (затвора) намного меньше удельного сопротивления слоя р (канала), поэтому область р- n -перехода, обедненная подвижными носителями заряда и имеющая очень большое удельное сопротивление, расположена главным образом в слое р.

Если типы проводимости слоев полупроводника в рассмотренном транзисторе изменить на противоположные, то получим полевой транзистор с управляющим
р- n -переходом и каналом n -типа. Если подать положительное напряжение между затвором и истоком транзистора с каналом р-типа: и зи > 0, то оно сместит p n -переход в обратном направлении.

При увеличении обратного напряжения на переходе он расширяется в основном за счет канала (в силу указанного выше различия в удельных сопротивлениях). Увеличение ширины перехода уменьшает толщину канала и, следовательно, увеличивает его сопротивление. Это приводит к уменьшению тока между истоком и стоком. Именно это явление позволяет управлять током с помощью напряжения и соответствующего ему электрического поля. Если напряжение и зи достаточно велико, то канал полностью перекрывается областью p n -перехода (напряжение отсечки).

В рабочем режиме р n -переход должен находиться под обратным или нулевым напряжением. Поэтому в рабочем режиме ток затвора примерно равен нулю (i з ? 0 ), а ток стока практически равен току истока.

На ширину р n -перехода и толщину канала прямое влияние также оказывает напряжение между истоком и стоком. Пусть u зи = 0 и подано положительное напряжение u ис (рис. 1.24). Это напряжение окажется поданным и на промежуток затвор – сток, т.е. окажется, что u зс = u ис и р n -переход находится под обратным напряжением.

Обратное напряжение в различных областях р n -перехода различно. В областях вблизи истока это напряжение практически равно нулю, а в областях вблизи стока это напряжение примерно равно величине u ис . Поэтому p n -переход будет шире в тех областях, которые ближе к стоку. Можно считать, что напряжение в канале от истока к стоку увеличивается линейно.

При u ис = U зи отс канал полностью перекроется вблизи стока (рис. 1.25). При дальнейшем увеличении напряжения u ис эта область канала, в которой он перекрыт, будет расширяться.

Схемы включения транзистора. Для полевого транзистора, как и для биполярного, существуют три схемы включения: схемы с общим затвором (03), общим истоком (ОИ) и общим стоком (ОС). Наиболее часто используются схемы с общим истоком (рис. 1.26).

Так как в рабочем режиме i c ? 0, то входные характеристики обычно не рассматриваются.

Выходные (стоковые) характеристики. Выходной характеристикой называют зависимость вида

где f – некоторая функция.

Выходные характеристики для транзистора с р n -переходом и каналом n -типа приведены на рис. 1.27.

Обратимся к хар актеристике, соответствующей условию u зи = 0. В линейной области (u ис < 4 В) характеристика почти линейна (все характеристики этой области представляют собой почти прямые линии, веерообразно выходящие из начала координат). Она определяется сопротивлением канала. Транзистор, работающий в линейной области, можно использовать в качестве линейного управляемого сопротивления.

При u ис > 4 В канал в области стока перекрывается. Дальнейшее увеличение напряжения приводит к очень незначительному росту тока, так как с увеличением напряжения область, в которой канал перекрыт, расширяется. При этом сопротивление промежутка исток-сток увеличивается, а ток i c практически не изменяется. Это область насыщения. Ток стока в области насыщения u зи = 0 и при заданном напряжении и си называют начальным током стока и обозначают через i c нач . Для рассматриваемых характеристик i c нач = 5 мА при и си = 10 В.

Параметрами, характеризующими свойства транзистора усиливать напряжение, являются:

1) Крутизна стокозатворной характеристики S (крутизна характеристики полевого транзистора):

2) Внутреннее дифференциальное сопротивление Rис диф

3) Коэффициент усиления

Можно заметить, что

Транзисторы с изолированным затвором. Полевой транзистор с изолированным затвором – это транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. Физической основой работы таких транзисторов является эффект поля, который состоит в изменении концентрации свободных носителей заряда в приповерхностной области полупроводника под действием внешнего электрического поля. В соответствии с их структурой такие транзисторы называют МДП-транзисторами (металл-диэлектрик-полупроводник) или МОП-транзисторами (металл-оксид-полупроводник). Существуют две разновидности МДП-транзисторов: с индуцированным и со встроенным каналами.

На рис. 1.28 показан принцип устройства транзистора со встроенным каналом.

Основанием (подложкой) служит кремниевая пластинка с электропроводностью p -типа. В ней созданы две области с электропроводностью n + -типа с повышенной проводимостью. Эти области являются истоком и стоком и от них сделаны выводы. Между стоком и истоком имеется приповерхностый канал с электропроводностью n-типа. Заштрихованная область – диэлектрический слой из диоксида кремния (его толщина обычно составляет 0,1 – 0,2 мкм). Сверху диэлектрического слоя расположен затвор в виде тонкой металлической пленки. Кристалл такого транзистора обычно соединен с истоком, и его потенциал принимается за нулевой. Иногда от кристалла бывает сделан отдельный вывод.

Если к затвору приложено нулевое напряжение, то при подаче между стоком и истоком напряжения через канал потечет ток, представляющий собой поток электронов. Через кристалл ток не пойдет, так как один из p n -переходов находится под обратным напряжением. При подаче на затвор напряжения отрицательной полярности относительно истока (следовательно, и кристалла) в канале образуется поперечное электрическое поле, которое выталкивает электроны из канала в области истока, стока и кристалла. Канал обедняется электронами, его сопротивление увеличивается, ток уменьшается. Чем больше напряжение на затворе, тем меньше ток. Такой режим называется режимом обеднения . Если подать положительное напряжение на затвор, то под действием поля из областей стока, истока и кристалла в канал будут приходить электроны. Сопротивление канала падает, ток увеличивается. Такой режим называется режимом обогащения . Если кристалл n -типа, то канал должен быть p-типа и полярность напряжения меняется на противоположную.

Другим типом является транзистор с индуцированным (инверсным) каналом (рис. 1.29). От предыдущего он отличается тем, что канал возникает только при подаче на затвор напряжения определенной полярности.

При отсутствии напряжения на затворе канала нет, между истоком и стоком
n + -типа расположен только кристалл p -типа и на одном из p-n + -переходов получается обратное напряжение. В этом состоянии сопротивление между стоком и истоком велико и транзистор закрыт. При подаче на затвор напряжения положительной полярности под влиянием поля затвора электроны проводимости будут перемещаться из областей стока и истока и p -области по направлению к затвору. Когда напряжение на затворе достигает своего отпирающего (порогового) значения (еденицы вольт), в приповерхностном слое концентрация электронов настолько увеличивается, что превышает концентрацию дырок, и в этом слое произойдет так называемая инверсия типа электропроводности, т.е. образуется тонкий канал n -типа, и транзистор начнет проводить ток. Чем больше напряжение на затворе, тем больше ток стока. Очевидно, что такой транзистор может работать только в режиме обогащения. Если подложка n -типа, то получится индуцированный канал p -типа. Транзисторы с индуцированным каналом часто встречаются в устройствах переключения. Схемы включения полевых транзисторов подобны схемам включения биполярных. Следует отметить, что полевой транзистор позволяет получить намного больший коэффициент усиления, нежели биполярный. Обладая высоким входным сопротивлением (и низким выходным) полевые транзисторы постепенно вытесняют биполярные.

По электропроводности канала различают p -канальные и n- канальные МДП-транзисторы. Условное обозначение этих приборов на электрических схемах показано на рис. 1.30. Существует классификация МДП-транзисторов по конструктивно-технологическим признакам (чаще по виду материала затвора).

Рис. 1.30 Условные графические обозначения полевых транзисторов
с изолированным затвором: а – со встроенным р-каналом; б – со встроенным
n-каналом; в – с индуцированным p-каналом; г – с индуцированным n-каналом

Интегральные микросхемы, содержащие одновременно p канальные и n -канальные МДП-транзисторы, называют комплементарными (сокращенно КМДП-ИМС). КМДП-ИМС отличаются высокой помехоустойчивостью, малой потребляемой мощностью, высоким быстродействием.

Частотные свойства полевых транзисторов определяются постоянной времени RC -цепи затвора. Поскольку входная емкость С зи у транзисторов с р n -переходом велика (десятки пикофарад), их применение в усилительных каскадах с большим входным сопротивлением возможно в диапазоне частот, не превышающих сотен килогерц – единиц мегагерц.

При работе в переключающих схемах скорость переключения полностью определяется постоянной времени RC-цепи затвора. У полевых транзисторов с изолированным затвором входная емкость значительно меньше, поэтому их частотные свойства намного лучше, чем у полевых транзисторов с р-n -переходом.