Сайт о телевидении

Сайт о телевидении

» » Основные файловые системы. Типы файловых систем — в чем разница между FAT32, NTFS и exFAT. Файловые системы. Структура файловой системы

Основные файловые системы. Типы файловых систем — в чем разница между FAT32, NTFS и exFAT. Файловые системы. Структура файловой системы

Файлы на носителях информации (жестких дисках, флешках, оптических носителях и т. п.) организовываются, хранятся и именуются согласно определенному порядку, который называется файловой системой. Разным носителям присущи разные типы файловых систем . С какими из них может столкнуться рядовой пользователь?

Файловая система упорядочивает файлы, чтобы операционной системе было легче с ними работать : драйвера файловой системы передают ОС данные об именах файлов, их размере, атрибутах, местах расположения. Файловая система определяет максимально возможную длину имени файла, его максимальный размер и другие параметры.

Для разных носителей существуют различные типы файловых систем. Кстати, носитель не обязательно должен быть физическим: существуют, к примеру, виртуальные и сетевые файловые системы. Какие бывают типы файловых систем в зависимости от их предназначения, то есть носителя?

В первую очередь пользователь сталкивается с файловыми системами, предназначенными для носителей с произвольным доступом . К таким носителям относятся, к примеру, жесткие диски. Если вы пользуетесь операционной системой Windows, то, скорее всего, вы имеете дело с файловой системой NTFS . Старые версии операционной системы использовали файловую систему FAT32 , которая до сих пор используется на флешках.

Во многих дистрибутивах операционных систем, основанных на ядре Linux, в качестве файловой системы по умолчанию обычно используется ext (Extended File System – расширенная файловая система). Есть несколько версий этой файловой системы - ext2, ext3, ext4 . В свежих версиях дистрибутивов, основанных на ядре Linux (в том числе и Google Android), файловой системой является ext4.

Свои файловые системы есть и у оптических носителей - CD и DVD дисков. Универсальным считается стандарт ISO 9660 , такие диски читают компьютеры с любой операционной системой - Windows, Mac OS Х, Unix. Есть также формат файловой системы UDF , который больше подходит для дисков большого объема (DVD, Blu-ray). Существуют и другие файловые системы для оптических дисков, менее распространенные.

С жесткими дисками, флешками и мы сталкиваемся чаще, чем с другими носителями, поэтому их файловые системы и интересуют нас больше всего. Но все же стоит знать, какие еще бывают типы файловых систем :

  • виртуальные файловые системы;
  • сетевые файловые системы;
  • файловые системы для носителей с последовательным доступом (к ним относятся, скажем, магнитные ленты);
  • файловые системы для флэш-памяти;
  • специализированные файловые системы.

Давайте немного подробнее поговорим про типы файловых систем, предназначенных для носителей с произвольным доступом, к примеру, жестких дисков и флешек. Тип конкретной файловой системы влияет на параметры файлов, к примеру, размер имени файла . В системе FAT32 максимальная длина имени файла - 255 символов. В NTFS по спецификации - 32 768 символов, но некоторые ОС накладывают ограничение, поэтому в реальности максимальной длиной будут все те же 255 символов Unicode. В ext2/ext3 длина имени ограничена 255 байтами.

Также от файловой системы зависят возможные атрибуты файла . Так, системы FAT32 и NTFS позволяют присваивать файлам атрибуты «только для чтения», «системный», «скрытый», «архивный». А система ext2 предлагает такие атрибуты, как «установка пользовательского ID», «установка группового ID» и так называемый «липкий бит».

Есть свои различия и между файловыми системами FAT32 и NTFS . Обе эти файловые системы используются ОС Windows, система NTFS пришла на смену FAT32 и используется в последних версиях ОС. В системе FAT32 размер диска ограничен примерно 8 терабайтами, в NTFS он может составлять 264 байт. Максимальный размер файла в FAT32 – 4 Гб, в NTFS – 264 байт минус 1 килобайт (теоретически), а фактически - 244 байт минус 64 килобайта. Также в NTFS больше максимальное количество файлов, есть и некоторые другие отличия.

Но при этом система FAT32 все еще используется на USB флеш-накопителях (флешках) , потому что обеспечивает более высокую скорость записи, чтения и копирования данных. Поэтому чаще всего флешки форматируются именно в FAT32, а не в NTFS. Форматировать флешку в NTFS есть смысл лишь в том случае, если вам нужно записать на нее файл размером больше 4 Гб.

Теперь вы знаете, какие существуют основные типы файловых систем и в каких случаях вы можете столкнуться с той или иной файловой системой.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САНКТ - ПЕТЕРБУРГСКИЙ ГОСУДАСТВЕННЫЙ УНИВЕРСИТЕТ

ЭКОНОМИКИ И ФИНАНСОВ»

КАФЕДРА ИНФОРМАТИКИ

Реферат по информатике

на тему:

Файловые системы

Выполнил: студент 110 группы О110

Э.В.Андреева

Руководитель: проф. Е.А.Осипова

Санкт-Петербург

2009 г.

Введение…………………………………………………………3

1. Файловая система FAT…………………………………..4

2. Файловая система FAT32………………………………..5

3. Файловая система HPFS…………………………………6

4. Файловая система NTFS…………………………………8

Заключение………………………………………………………9

Список используемой литературы……………………………..10

Введение

Файловая система - это то, на чем держится далеко неидеальный, но маломальский порядок на наших жестких дисках. Носители информации способны лишь хранить, записывать или считывать биты данных из определенных секторов, а за доступ к информации отвечает именно файловая система. Этому термину можно дать несколько определений, каждое из которых верно. Файловая система - это система организации и хранения информации на жестком диске или других носителях, программные алгоритмы операционной системы для управления данной системой организации информации, и, наконец, на бытовом уровне это совокупность всех файлов и папок на диске.

Файловая система определяет:

Как хранятся файлы и каталоги на диске;

Какие сведения хранятся о файлах и каталогах;

Как можно узнать, какие участки диска свободны, а какие – нет;

Формат каталогов и другой служебной информации на диске.

Мы рассмотрим четыре файловые системы – FAT, FAT 32, HPFS, NTFS.

1. Файловая система FAT

FAT является наиболее простой из поддерживаемых Windows NT файловых систем. Основой файловой системы FAT является таблица размещения файлов, которая помещена в самом начале тома.

Диск, отформатированный в файловой системе FAT, делится на кластеры, размер которых зависит от размера тома. Одновременно с созданием файла в каталоге создается запись и устанавливается номер первого кластера, содержащего данные.

Обновление таблицы размещения файлов имеет большое значение и требует много времени. Если таблица размещения файлов не обновляется регулярно, это может привести к потере данных.

Каталог FAT не имеет определенной структуры, и файлы записываются в первом обнаруженном свободном месте на диске. Кроме того, файловая система FAT поддерживает только четыре файловых атрибута: «Системный», «Скрытый», «Только чтение» и «Архивный».

Преимущества файловой системы FAT

На компьютере под управлением Windows NT в любой из поддерживаемых файловых систем нельзя отменить удаление. Файловая система FAT лучше всего подходит для использования на дисках и разделах размером до 200 МБ, потому что она запускается с минимальными накладными расходами.

Недостатки файловой системы FAT

Не стоит использовать файловую систему FAT для дисков и разделов, чей размер больше 200 МБ. Это объясняется тем, что по мере увеличения размера тома производительность файловой системы FAT быстро падает. Для файлов, расположенных в разделах FAT, невозможно установить разрешения.
Разделы FAT имеют ограничение по размеру: 4 ГБ под Windows NT и 2 ГБ под MS-DOS.

2. Файловая система FAT32

FAT 32 представляет собой цепь данных, которые связывают между собой кластеры дискового пространства и файлы. В базе данных кластеров существует только один элемент. Из них, первые два элемента представляют собой информацию о системе FAT – 32, а третий и последующий элементы ставятся в соответствии с кластерами дискового пространства.
Самое большое число кластеров в данной файловой системе равно 268 435 445 кластеров. Данная система позволяет использовать жесткие диски размером до 32 Гб. Однако FAT может поддерживать дисковые пространства размером до 2 терабайт! Первоначально данная файловая система применялась в составе Windows 95 OSR 2. Именно в данной файловой системе были расширены атрибуты файлов, которые позволили хранить время и дату создания, и модификацию последнего доступа к файлу или каталогу.

Операционная система FAT – 32 также позволяет работать с любой из копий FAT 32.

FAT 32:

1. Высокая скорость работы;

2. Низкое требование к объему оперативной памяти;

3. Эффективная работа с файлами средних и малых размеров;

4. Более низкий износ дисков, вследствие меньшего количества передвижений головок чтения/записи.

Недостатки файловой системы FAT 32:

1. Низкая защита от сбоев системы;

2. Не эффективная работа с файлами больших размеров;

3. Ограничение по максимальному объему раздела и файла;

4. Снижение быстродействия при фрагментации;

5. Снижение быстродействия при работе с каталогами, содержащими большое количество файлов

3. Файловая система HPFS

Файловая система HPFS впервые была использована для операционной системы OS/2 1.2, чтобы обеспечить доступ к появлявшимся в то время на рынке дискам большого размера

В файловой системе HPFS поддерживается структура каталогов FAT и добавлена сортировка файлов по именам. Имя файла может содержать до 254 двухбайтовых символов. Кроме того, наименьший блок для хранения данных теперь равен размеру физического сектора (512 байт), что позволяет снизить потери дискового пространства.

В каталоге файловой системы HPFS наряду с атрибутами файла здесь хранятся сведения о создании и внесении изменений, а также дата и время доступа. Записи в каталоге файловой системы HPFS указывают не на первый кластер файла, а на FNODE. FNODE может содержать данные файла, указатели на данные файла или другие структуры, указывающие на данные файла.

HPFS старается по возможности располагать данные файла в смежных секторах. Это приводит к повышению скорости последовательной обработки файла.

HPFS делит диск на блоки по 8 МБ каждый и всегда пытается записать файл в пределах одного блока. Разбиение на блоки приводит к повышению производительности.
Кроме того, файловая система HPFS содержит два уникальных объекта данных:

· Суперблок

Суперблок располагается в логическом секторе 16 и содержит указатель на FNODE корневого каталога. В этом кроется главная опасность использования HPFS: если сектор суперблока помечен как поврежденный, это приводит к потере всех данных раздела даже на неповрежденных участках диска. Для восстановления данных их необходимо скопировать на другой диск с неповрежденным сектором 16 и воссоздать суперблок.

· Запасной блок

Запасной блок располагается в логическом секторе 17 и содержит таблицу экстренных исправлений, а также блок резервного каталога. В файловой системе HPFS запись таблицы экстренных исправлений используется при обнаружении дефектного сектора, чтобы логически указать вместо него имеющийся неповрежденный сектор. Эта технология обработки ошибок записи известна как экстренное исправление.

Преимущества файловой системы HPFS

HPFS – оптимальный вариант файловой системы для использования с дисками размером 200–400 МБ.

Недостатки файловой системы HPFS

Дополнительные накладные расходы, связанные с использованием HPFS, снижают эффективность ее применения на дисках размером меньше 200 МБ. Кроме того, производительность также снижается при использовании дисков размером больше 400 МБ. При использовании HPFS под Windows NT нельзя установить параметры безопасности.

Файловая система HPFS поддерживается только операционной системой Windows NT версий 3.1, 3.5 и 3.51. Нельзя получить доступ к разделу HPFS с помощью Windows NT 4.0.

4. Файловая система NTFS

Файловая система Windows NT (NTFS) обеспечивает производительность, надежность и совместимость. NTFS разрабатывалась с целью обеспечения скоростного выполнения стандартных операций над файлами (включая чтение, запись, поиск) и предоставления продвинутых возможностей.
Кроме того, NTFS обладает характеристиками защищенности, которые необходимы на мощных файловых серверах и высокопроизводительных компьютерах в корпоративных средах. Файловая система NTFS поддерживает контроль доступа к данным и привилегии владельца. NTFS - единственная файловая система в Windows NT, которая позволяет назначать права доступа к отдельным файлам.
Файловая система NTFS является простой, и одновременно чрезвычайно мощной. Практически все, что имеется на томе, представляет собой файл, а все, что имеется в файле представляет собой атрибут, включая атрибуты данных, атрибуты системы безопасности, атрибуты имени файла. Каждый занятый сектор на томе NTFS принадлежит какому-нибудь файлу.

Преимущества файловой системы NTFS :

1. Быстрая скорость доступа к файлам малого размера;

2. Размер дискового пространства на сегодняшний день практически не ограничен;

3. Фрагментация файлов не влияет на саму файловую систему;

4. Высокая надежность сохранения данных и собственно самой файловой структуры;

5. Высокая производительность при работе с файлами большого размера;

Недостатки файловой системы NTFS :

Классификация, структура, характеристики файловых систем!!!

1.Понятие, структура и работа файловой системы.

Файловая система - совокупность (порядок, структура и содержание) организации хранения данных на носителях информации, которая непосредственно представляет доступ к хранимым данным, на бытовом уровне это совокупность всех файлов и папок на диске. Основными "единицами" файловой системы принято считать кластер, файл, каталог, раздел, том, диск.
Совокупность нулей и единиц на носителе информации составляют кластера (минимальный размер места для хранения информации, также их принято называть понятием сектор, размер их кратен 512 байтам).
Файлы - поименованная совокупность байтов, разделенная на сектора. В зависимости от файловой системы, файл может обладать различным набором свойств. Для удобства в работе с файлами используются их (символьные идентификаторы) имена.
Для организации строения файловой системы файлы группируются в каталоги .
Раздел - область диска созданная при его разметке и содержащая один или несколько отформатированных томов.
Том - область раздела с файловой системой, таблицей файлов и областью данных. Один или несколько разделов составляют диск .
Вся информация о файлах хранится в особой области раздела - таблице файлов. Таблица файлов позволяет ассоциировать числовые идентификаторы файлов и дополнительную информацию о них (дата изменения, права доступа, имя и т. д.) с непосредственным содержимым файла, хранящимся в другой области раздела.

MBR (Master Boot Record) специальная область расположенная в начале диска - содержащая необходимую для BIOS информацию для загрузки операционной системы с жесткого диска.
Таблица разделов (partition table) также расположена в начале диска, ее задача - хранить информацию о разделах: начало, длина, загрузка. На загрузочном разделе расположен загрузочный сектор (boot sector), хранящий программу загрузки операционной системы.

Отсчет начинается от MBR (от сектора с номером 0) для всех основных (primary) разделов, как для обычных, так и для расширенного, и только для основных.
Все обычные логические (not extended logical) разделы задаются сдвигом относительно начала того расширенного раздела, в котором они описаны.
Все расширенные логические (extended logical) разделы задаются сдвигом относительно начала основного расширенного раздела (extended primary).

Процесс загрузки операционной системы выглядит следующим образом:
При включении компьютера управление процессором получает BIOS ,идет загрузка (boot) с винчестера, подгружается в оперативную память компьютера первый сектор диска (MBR) и передается ему управление).

В MBR может быть записан как "стандартный" загрузчик,

так и загрузчики типа LILO/GRUB.

Стандартный загрузчик находит в таблице основных разделов первый раздел с флагом bootable (загрузочный), считывает его первый сектор (boot-сектор) и передает управление коду, записанному в этом boot-секторе. Если вместо стандартного загрузчика MBR стоит другой, то он не смотрит на флаг bootable, может загружать с любого раздела (прописанных в его настройках).

Например для загрузки операционной системы Windows NT/2k/XP/2003 в boot-секторе записывается код, загружающий с текущего раздела в память основной загрузчик (ntloader).
Для каждой файловой системы FAT16/FAT32/NTFS используется свой загрузчик. В корне раздела обязательно должен присутствовать файл ntldr. Если вы видете при попытке загрузить Windows сообщение "NTLDR is missing", то это как раз тот случай, когда файл ntldr отсутствует. Также для нормальной работы ntldr возможно нужны файлы bootfont.bin, ntbootdd.sys, ntdetect.com и правильно написанный boot.ini.

Пример boot.ini

C:\boot.ini

timeout=8
default=C:\gentoo.bin

C:\gentoo.bin="Gentoo Linux"
multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows XP (32-bit)" /fastdetect /NoExecute=OptIn
multi(0)disk(0)rdisk(0)partition(3)\WINDOWS="Windows XP (64-bit)" /fastdetect /usepmtimer

Пример конфигурационного файла grub.conf

#grub.conf generated by anaconda
#
#Note that you do not have to rerun grub after making changes to this file
#
#NOTICE: You have a /boot partition. This means that
#all kernel and initrd paths are relative to /boot/, eg.
#root (hdO.O)
#kernel /vmlinuz-version ro root=/dev/sda2
#initrd /initrd-version.img
#boot=/dev/sda default=0 timeout=5
splashimage=(hdO,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux server (2.6.18-53.el 5)
root (hdO.O)
kernel /vmlinuz-2.6.18-53.el5 ro root=LABEL=/ rhgb quiet-
initrd /initrd-2.6.18-53.el5.img

Структура файла lilo.conf

# LILO configuration file generated by "liloconfig"
//Секция описания глобальных параметров
# Start LILO global section
//Место, куда записан Lilo. В данном случае это MBR
boot = /dev/hda
//Сообщение, которое выводится при загрузке
message = /boot/boot_message.txt
//Вывод приглашения
prompt
//Time Out на выбор операционной системы
timeout = 1200
# Override dangerous defaults that rewrite the partition table:
change-rules
reset
# VESA framebuffer console @ 800x600x256
//Выбор видеорежима отображения меню
vga = 771
# End LILO global section
//Секция описания параметров загрузки windows
# DOS bootable partition config begins
other = /dev/hda1
label = Windows98
table = /dev/hda
# DOS bootable partition config ends
//Секция описания параметров загрузки QNX
# QNX bootable partition config begins
//Путь к операцционной системе
other = /dev/hda2
label = QNX
table = /dev/hda
# QNX bootable partition config ends
//Секция описания параметров загрузки Linux
# Linux bootable partition config begins
//Путь к образу ядра
image = /boot/vmlinuz
root = /dev/hda4
label = Slackware
read-only
# Linux bootable partition config ends


2.Наиболее известные файловые системы.

  • Advanced Disc Filing System
  • AdvFS
  • Be File System
  • CSI - DOS
  • Encrypting File System
  • Extended File System
  • Second Extended File System
  • Third Extended File System
  • Fourth Extended File System
  • File Allocation Table (FAT)
  • Files - 11
  • Hierarchical File System
  • HFS Plus
  • High Perfomance File System (HPFS)
  • ISO 9660
  • Journaled File System
  • Macintosh File System
  • MINIX file system
  • MicroDOS
  • Next3
  • New Implementation of a Log-structured F (NILFS)
  • Novell Storage Services
  • New Technology File System (NTFS)
  • Protogon
  • ReiserFS
  • Smart File System
  • Squashfs
  • Unix File System
  • Universal Disk Format (UDF)
  • Veritas File System
  • Windows Future Storage (WinFS)
  • Write Anywhere File Layout
  • Zettabyte File System (ZFS)

3.Основные характеристики файловых систем.

Операционная система предоставляет приложениям набор функций и структур для работы с файлами. Возможности операционной системы накладывают дополнительные ограничения на ограничения файловой системы, к основным ограничениям можно отнести:

Максимальный (минимальный) размер тома;
- Максимальное (минимальное) количество файлов в корневом каталоге;
- Максимальное количество файлов в некорневом каталоге;
- Безопасность на уровне файлов;
- Поддержка длинных имен файлов;
- Самовосстановление;
- Сжатие на уровне файлов;
- Ведение журналов транзакций;

4.Краткое описание наиболее распространенных файловых систем FAT, NTFS, EXT.

Файловая система FAT .

FAT (file allocation table) означает «таблица размещения файлов».
В файловой системе FAT логическое дисковое пространство любого логического диска делится на две области:
- системную область;
- область данных.
Системная область создается при форматировании и обновляется при манипулировании файловой структурой. Область данных содержит файлы и каталоги, подчиненные корневому, и доступна через пользовательский интерфейс. Системная область состоит из следующих компонентов:
- загрузочной записи;
- зарезервированных секторов;
- таблицы размещения файлов (FAT);
- корневого каталога.
Таблица размещения файлов представляет собой карту (образ) области данных, в которой описывается состояние каждого участка области данных. Область данных разбивается на кластеры. Кластер – один или несколько смежных секторов в логическом дисковом адресном пространстве (только в области данных). В таблице FAT кластеры, принадлежащие одному файлу (некорневому каталогу), связываются в цепочки. Для указания номера кластера в системе управления файлами FAT16 используется 16-битовое слово, следовательно, можно иметь до 65536 кластеров.
Кластер – минимальная адресуемая единица дисковой памяти, выделяемая файлу или некорневому каталогу. Файл или каталог занимает целое число кластеров. Последний кластер при этом может быть задействован не полностью, что приведет к заметной потере дискового пространства при большом размере кластера.
Так как FAT используется при доступе к диску очень интенсивно, она загружается в ОЗУ и находится там максимально долго.
Корневой каталог отличается от обычного каталога тем, что он размещается в фиксированном месте логического диска и имеет фиксированное число элементов. Для каждого файла и каталога в файловой системе хранится информация в соответствии со следующей структурой:
- имя файла или каталога – 11 байт;
- атрибуты файла – 1 байт;
- резервное поле – 1 байт;
- время создания – 3 байта;
- дата создания – 2 байта;
- дата последнего доступа – 2 байта;
- зарезервировано – 2 байта;
- время последней модификации – 2 байта;
- номер начального кластера в FAT – 2 байта;
- размер файла – 4 байта.
Структура системы файлов является иерархической.

Файловая система FAT32.
FAT32 является полностью независимой 32-разрядной файловой системой и содержит многочисленные усовершенствования и дополнения по сравнению с FAT16. Принципиальное отличие FAT32 заключается в более эффективном использовании дискового пространства: FAT32 использует кластеры меньшего размера, что приводит к экономии дискового пространства.
FAT32 может перемещать корневой каталог и использовать резервную копию FAT вместо стандартной. Расширенная загрузочная запись FAT32 позволяет создавать копии критических структур данных, что повышает устойчивость дисков к нарушениям структуры FAT по сравнению с предыдущими версиями. Корневой каталог представляет собой обычную цепочку кластеров, поэтому может находиться в произвольном месте диска, что снимает ограничение на размер корневого каталога.


Файловая система NTFS.
Файловая система NTFS (New Technology File System) содержит ряд значительных усовершенствований и изменений, существенно отличающих ее от других файловых систем. С точки зрения пользователей файлы по-прежнему хранятся в каталогах, но работа на дисках большого объема в NTFS происходит намного эффективнее:
- имеются средства для ограничения доступа к файлам и каталогам;
- введены механизмы, существенно повышающие надежность файловой системы;
- сняты многие ограничения на максимальное количество дисковых секторов и/или кластеров.

Основные характеристики файловой системы NTFS:
- надежность. Высокопроизводительные компьютеры и системы совместного использования должны обладать повышенной надежностью, для этой цели введен механизм транзакций, при котором ведется журналирование файловых операций;
- расширенная функциональность. В NTFS введены новые возможности: усовершенствованная отказоустойчивость, эмуляция других файловых систем, мощная модель безопасности, параллельная обработка потоков данных, создание файловых атрибутов, определенных пользователем;
- поддержка стандарта POSIX. К числу базовых средств относятся необязательное использование имен файлов с учетом регистра, хранение времени последнего обращения к файлу и механизм альтернативных имен, позволяющий ссылаться на один и тот же файл по нескольким именам;
- гибкость. Распределение дискового пространства отличается большой гибкостью: размер кластера может изменяться от 512 байт до 64 Кбайт.
NTFS хорошо работает с большими массивами данных и большими томами. Максимальный размер тома (и файла) – 16 Эбайт. (1 Эбайт равен 2**64 или 16000 млрд. гигабайт.) Количество файлов в корневом и некорневом каталогах не ограничено. Поскольку в основу структуры каталогов NTFS заложена эффективная структура данных, называемая «бинарным деревом», время поиска файлов в NTFS не связано линейной зависимостью с их количеством.
Система NTFS обладает некоторыми средствами для самовосстановления и поддерживает различные механизмы проверки целостности системы, включая ведение журнала транзакций, позволяющий отследить по системному журналу файловые операции записи.
Файловая система NTFS поддерживает объектную модель безопасности и рассматривает все тома, каталоги и файлы как самостоятельные объекты NTFS. Права доступа к томам, каталогам и файлам зависит от учетной записи пользователя и той группы, к которой он принадлежит.
Файловая система NTFS обладает встроенными средствами сжатия, которые можно применять к томам, каталогам и файлам.

Файловая система Ext3.
Файловая система ext3 может поддерживать файлы размером до 1 ТБ. С Linux-ядром 2.4 объём файловой системы ограничен максимальным размером блочного устройства, что составляет 2 терабайта. В Linux 2.6 (для 32-разрядных процессоров) максимальный размер блочных устройств составляет 16 ТБ, однако ext3 поддерживает только до 4 ТБ.
Ext3 имеет хорошую совместимость с NFS и не имеет проблемы с производительностью при дефиците свободного дискового пространства.Еще одно достоинство ext3 происходит из того, что она основана на коде ext2. Дисковый формат ext2 и ext3 идентичен; из этого следует, что при необходимости ext3 filesystem можно монтировать как ext2 без каких либо проблем. И это еще не все. Благодаря факту, что ext2 и ext3 используют идентичные метаданные, имеется возможность оперативного обновления ext2 в ext3.
Надежность Ext3
В дополнение к ext2-compatible, ext3 наследует другие преимущества общего формата metadata. Пользователи ext3 имеют в своем распоряжении годами проверенный fsck tool. Конечно, основная причина перехода на journaling filesystem - отказ от необходимости периодических и долгих проверок непротиворечивости метаданных на диске. Однако "журналирование" не способно защитить от сбоев ядра или повреждения поверхности диска (или кое-чего подобного). В аварийной ситуации вы оцените факт преемственности ext3 от ext2 с ее fsck.
Журнализация в ext3.
Теперь, когда имеется общее понимание проблемы, посмотрим, как ext3 осуществляет journaling. В коде журнализации для ext3 используется специальный API, называемый Journaling Block Device layer или JBD. JBD был разработан для журнализации на любых block device. Ext3 привязана к JBD API. При этом код ext3 filesystem сообщает JBD о необходимости проведения модификации и запрашивает у JBD разрешение на ее проведение. Журналом управляет JBD от имени драйвера ext3 filesystem. Такое соглашение очень удобно, так как JBD развивается как отдельный, универсальный объект и может использоваться в будущем для журналирования в других filesystems.
Защита данных в Ext3
Теперь можно поговорить о том, как ext3 filesystem обеспечивает журнализацию и data, и metadata. Фактически в ext3 имеются два метода гарантирования непротиворечивости.
Первоначально ext3 разрабатывалась для журналирования full data и metadata. В этом режиме (называется "data=journal" mode), JBD журналирует все изменения в filesystem, связанные как с data, так и с metadata. При этом JBD может использовать журнал для отката и восстановления metadata и data. Недостаток "полного" журналирования в достаточно низкой производительности и расходе большого объема дискового пространства под журнал.
Недавно для ext3 был добавлен новый режим журналирования, который сочетает высокую производительность и гарантию непротиворечивости структуры файловой системы после сбоя (как у "обычных" журналируемых файловых систем). Новый режим работы обслуживает только metadata. Однако драйвер ext3 filesystem по-прежнему отслеживает обработку целых блоков данных (если они связаны с модификацией метаданных), и группирует их в отдельный объект, называемый transaction. Транзакция будет завершена только после записи на диск всех данных. "Побочный" эффект такой "грубой" методики (называемой "data=ordered" mode) - ext3 обеспечивает более высокую вероятность сохранности данных (по сравнению с "продвинутыми" журналируемыми файловыми системами) при гарантии непротиворечивости metadata. При этом происходит журналирование изменений только структуры файловой системы. Ext3 использует этот режим по умолчанию.
Ext3 имеет множество преимуществ. Она разработана для максимальной простоты развертывания. Она основана на годами проверенном коде ext2 и получила "по наследству" замечательный fsck tool. Ext3 в первую очередь предназначена для приложений, не имеющих встроенных возможностей по гарантированию сохранности данных. В целом, ext3 - замечательная файловая система и достойное продолжение ext2.Есть еще одна характеристика, положительно отличающая ext3 от остальных journaled filesystems под Linux - высокая надежность.

Файловая система ext4 является достойным эволюционным продолжением системы ext.

FAT32 : старая система Windows, применяемая на небольших съемных носителях. Используется на небольших устройствах хранения или для совместимости с цифровыми камерами, игровыми консолями, телевизионными приставками и другими устройствами, поддерживающими только FAT32.

NTFS : современные версии Windows начиная с Win XP — используют ее для своих разделов. Внешние носители форматируются посредством FAT32, большие внешние жесткие диски емкостью 1 ТБ форматируются посредством NTFS.

HFS+ : на компьютерах Macintosh применяют HFS + для своих внутренних разделов, а также для форматирования внешнего носителя с HFS+. Мас считывает и записывает файлы в FAT32, но по умолчанию считывает только NTFS. Для записи в формате NTFS Macintosh понадобится стороннее ПО.

Ext2 / Ext3 / Ext4 : встречаются в Линукс. Ext2 — это более старая ФС, в ней отсутствуют важные функции, такие как ведение журнала — если питание отключается или компьютер перезагружается при записи на диск ext2, данные могут быть потеряны. Ext3 добавляет функции надежности за счет скорости. Ext4 оказывается более современной, быстрой и стандартной системой для большинства дистрибутивов Линукс и работает быстрее. Win и Mac не поддерживают Ext2 / Ext3 / Ext4 — понадобится дополнительный инструмент для доступа к файлам. По этой причине часто идеально форматировать разделы Linux, как ext4 и оставлять съемные устройства, отформатированные посредством FAT32 или NTFS, если необходима совместимость с другими ОС. Linux считывает и записывает как в FAT32, так и в NTFS.

Btrfs : создана для Linux, находится в разработке. На данный момент она не является стандартным для большинства дистрибутивов Линукс, но вскоре Btrfs займет лидирующую позицию. Цель состоит в том, чтобы предоставить дополнительные функции, которые позволяют Линукс масштабироваться для большего объема хранилища.

Swap : в Linux «swap» не оказывается ФС. Раздел, отформатированный как «swap», используется только как пространство подкачки ОС — похоже на файл страницы в Windows, но для этого требуется выделенный раздел.

Файловые системы для внешних USB-носителей

Все внешние накопители также имеют свои файловые системы:

  • FAT — ФС разработана корпорацией Microsoft, является самой широко распространённой на картах памяти и usb-флешках. Используется в бытовых приборах, таких как: видеокамера, телевизор, DVD-плеер, музыкальный центр. Ограничением является то, что она имеет максимальный объем файла 4 Гб.
  • exFAT — создана Microsoft, расширенная версия FAT, используется для flash-устройств. Упразднены ограничения на размер файлов, объем разделов. Недостаток: не поддерживается большинством бытовых устройств и ранними версиями Win XP.
  • FFS2 — создана в 1990 году и запатентована компанией Майкрософт. Продолжила систему FFS1, одна из ранних ФС для flash-карт.
  • JFFS — лог-структурированная Linux система для NOR-usb-носителей.
  • JFFS2 — используется в устройствах flash-памяти. Последователь JFFS. Поддерживает устройства Nand, улучшена работоспособность. Трудности при работе с Flash-накопителями больших объемов.
  • LogFS — в стадии разработки, используется для Linux, заменяет JFFS2. Улучшена для быстрой компоновки флеш-накопителей большого объёма.
  • YAFFS — разработана для NAND-flash, возможно использование в NOR-флеш-дисках.

В настоящее время компьютерный рынок предлагает множество возможностей хранения огромного количества личной или корпоративной информации в цифровой форме. Устройства хранения включают в себя внутренние и внешние жесткие диски, флэш-накопители USB, карты памяти фото / видеокамер, сложные RAID-системы и т. д. Фактические документы, презентации, изображения, музыка, видео, базы данных, электронные сообщения хранятся в виде файлов, которые могут занимать много места.

В этой статье представлено подробное описание того, как информация хранится на устройстве хранения.

Любой компьютерный файл хранится в хранилище с заданной емкостью. Фактически, каждое хранилище представляет собой линейное пространство для чтения или считывания и записи цифровой информации. Каждый байт информации в хранилище имеет свое собственное смещение от начала хранения (адрес) и ссылается на этот адрес. Хранилище может быть представлено в виде сетки с набором пронумерованных ячеек (каждая ячейка представляет собой один байт). Любой файл, который сохраняется в хранилище, получает эти ячейки.

Как правило, в компьютерных хранилищах используется пара секторов и смещение в секторе для ссылки на любой байт информации в хранилище. Сектор представляет собой группу байтов (обычно 512 байт), минимальную адресуемую единицу физического хранилища. Например, 1040 байт на жестком диске будет упоминаться как сектор № 3 и смещение в секторе 16 байт ([сектор - 512] + [сектор - 512] + ). Эта схема применяется для оптимизации адресации хранилища и использования меньшего числа для ссылки на любую часть информации в хранилище.

Чтобы опустить вторую часть адреса (смещение в секторе), файлы обычно хранятся, начиная с начала сектора и занимая целые сектора (например, 10-байтовый файл занимает весь сектор, 512-байтовый файл также занимает весь сектор, в то же время 514-байтовый файл занимает два целых сектора).

Каждый файл хранится в «неиспользуемых» секторах и может быть прочитан по известному положению и размеру. Однако, как мы узнаем, какие сектора используются, а какие нет? Где хранятся размер, положение и имя файла? Эти ответы даются файловой системой.

В целом файловая система представляет собой структурированное представление данных и набор метаданных, описывающих сохраненные данные. Файловая система служит для хранения всего хранилища, а также является частью изолированного сегмента хранения - раздела диска. Обычно файловая система управляет блоками, а не секторами. Блоки файловой системы представляют собой группы секторов, которые оптимизируют адресацию хранилища. Современные файловые системы обычно используют размеры блоков от 1 до 128 секторов (512-65536 байт). Файлы обычно хранятся в начале блока и занимают целые блоки.

Огромные операции записи / удаления в файловой системе приводят к фрагментации файловой системы. Таким образом, файлы не сохраняются как целые единицы, а делятся на фрагменты. Например, хранилище целиком занимают файлы размером около 4 блоков (например, коллекция изображений). Пользователь хочет сохранить файл, который займет 8 блоков и, следовательно, удалит первый и последний файлы. Делая это, он очищает пространство на 8 блоков, однако первый сегмент близок к началу хранения, а второй - к концу хранилища. В этом случае файл с 8 блоками разбивается на две части (по 4 блока для каждой части) и занимает «дыры» свободного пространства. Информация об обоих фрагментах как части одного файла хранится в файловой системе.

В дополнение к файлам пользователя файловая система также содержит свои собственные параметры (например, размер блока), дескрипторы файлов (включая размер файла, местоположение файла, его фрагменты и т. д.), Имена файлов и иерархию каталогов. Он также может хранить информацию о безопасности, расширенные атрибуты и другие параметры.

Чтобы соответствовать различным требованиям, таким как производительность, стабильность и надежность хранилища, большое количество файловых систем разработано для обслуживания определенных пользовательских целей.

Файловые системы Windows

ОС Microsoft Windows использует две основные файловые системы: FAT, унаследованные от старой DOS с ее более поздним расширением FAT32 и широко используемыми файловыми системами NTFS. Недавно выпущенная файловая система ReFS была разработана Microsoft как файловая система нового поколения для серверов Windows 8, 10.

FAT (таблица распределения файлов) - один из простейших типов файловых систем. Он состоит из сектора дескриптора файловой системы (загрузочного сектора или суперблока), таблицы распределения блоков файловой системы (называемой таблицей распределения файлов) и простого пространства для хранения файлов и папок. Файлы в FAT хранятся в каталогах. Каждый каталог представляет собой массив из 32-байтных записей, каждый из которых определяет файлы или расширенные атрибуты файла (например, длинное имя файла). Запись файла присваивает первый блок файла. Любой следующий блок можно найти через таблицу распределения блоков, используя его как связанный список.

Таблица распределения блоков содержит массив дескрипторов блоков. Значение «ноль» указывает, что блок не используется, а значение отличное от нуля относится к следующему блоку файла или специальному значению для конца файла.

Числа в FAT12, FAT16, FAT32 обозначают количество бит, используемых для перечисления блока файловой системы. Это означает, что FAT12 может использовать до 4096 различных ссылок на блоки, в то время как FAT16 и FAT32 могут использовать до 65536 и 4294967296 соответственно. Фактическое максимальное количество блоков еще меньше и зависит от реализации драйвера файловой системы.

FAT12 использовался для старых дискет. FAT16 (или просто FAT) и FAT32 широко используются для карт флэш-памяти и USB-флеш-накопителей. Система поддерживается мобильными телефонами, цифровыми камерами и другими портативными устройствами.

FAT или FAT32 - это файловая система, которая используется в Windows-совместимых внешних хранилищах или дисковых разделах с размером менее 2 ГБ (для FAT) или 32 ГБ (для FAT32). Windows не может создать файловую систему FAT32 более чем на 32 ГБ (однако Linux поддерживает FAT32 до 2 ТБ).

NTFS (новая технологическая файловая система) была представлена ​​в Windows NT и в настоящее время является основной файловой системой для Windows. Это файловая система по умолчанию для дисковых разделов и единственная файловая система, которая поддерживает разделы диска по 32 ГБ. Файловая система довольно расширяема и поддерживает многие свойства файла, включая контроль доступа, шифрование и т. д. Каждый файл в NTFS хранится в виде файлового дескриптора в таблице основных файлов и содержимом файла. Таблица главного файла содержит всю информацию о файле: размер, распределение, имя и т. д. В первом и последнем секторах файловой системы содержатся параметры файловой системы (загрузочная запись или суперблок). Эта файловая система использует 48 и 64-битные значения для ссылок на файлы, тем самым поддерживая дисковые хранилища с большой емкостью.

ReFS (Resilient File System) - последняя разработка Microsoft, доступная в настоящее время для серверов Windows 8 и 10. Архитектура файловой системы абсолютно отличается от других файловых систем Windows и в основном организована в виде B + -tree. ReFS обладает высокой устойчивостью к отказам из-за новых функций, включенных в систему, а именно, Copy-on-Write (CoW): никакие метаданные не изменяются без копирования; данные записываются на новое дисковое пространство, а не поверх существующих данных. При любых модификациях файлов новая копия метаданных хранится в свободном пространстве для хранения, а затем система создает ссылку из старых метаданных в более новую. Таким образом, система хранит значительное количество старых резервных копий в разных местах, обеспечивая легкое восстановление файлов, если это место для хранения не перезаписано.

Для получения информации о восстановлении данных из этих файловых систем посетите страницу «Шансы для восстановления ».

Файловые системы MacOS

Операционная система Apple MacOS применяет две файловые системы: HFS +, расширение к своей собственной файловой системе HFS, используемой на старых компьютерах Macintosh, и недавно выпущенную APFS.

Файловая система HFS + работает под управлением продуктов Apple, включая компьютеры Mac, iPod, а также продукты Apple X Server. В расширенных серверных продуктах также используется файловая система Apple Xsan, кластерная файловая система, созданная из файловых систем StorNext или CentraVision.

Эта файловая система хранит файлы и папки и информацию Finder о просмотре каталогов, положениях окна и т. д.

Файловые системы Linux

ОС Linux с открытым исходным кодом нацелена на внедрение, тестирование и использование различных концепций файловых систем.

Самые популярные файловые системы Linux:

  • Ext2, Ext3, Ext4 - «родная» файловая система Linux. Эта файловая система подпадает под активные разработки и улучшения. Файловая система Ext3 - это просто расширение Ext2, которое использует операции записи транзакций с журналом. Ext4 является дополнительной расширенной разработкой Ext3, с поддержкой оптимизированной информации о распределении файлов (экстентов) и расширенных атрибутов файлов. Эта файловая система часто используется как «корневая» файловая система для большинства установок Linux.
  • ReiserFS - альтернативная файловая система Linux для хранения огромного количества небольших файлов. Она имеет хорошие возможности поиска файлов и позволяет компактно распределять файлы, сохраняя хвосты файлов или небольшие файлы вместе с метаданными, чтобы не использовать большие блоки файловой системы для той же цели.
  • XFS - файловая система, созданная компанией SGI и первоначально использовавшаяся для серверов IRIX компании. Теперь спецификации XFS реализованы в Linux. Файловая система XFS имеет отличную производительность и широко используется для хранения файлов.
  • JFS - файловая система, разработанная IBM для мощных вычислительных систем компании. JFS1 обычно обозначает JFS, JFS2 - вторая версия. В настоящее время эта файловая система является с открытым исходным кодом и реализована в большинстве современных версий Linux.

Концепция «жесткой связи », используемая в таких операционных системах, делает большинство файловых систем Linux одинаковыми, поскольку имя файла не рассматривается как атрибут файла и скорее определяется как псевдоним для файла в определенном каталоге. Объект файла можно связать со многими местоположениями, даже размножаться из одного и того же каталога под разными именами. Это может привести к серьезным и даже непреодолимым трудностям при восстановлении имен файлов после удаления файлов или повреждения файловой системы.

Для получения информации о восстановлении данных из этих файловых систем посетите страницу « ».

Файловые системы BSD, Solaris, Unix

Наиболее распространенной файловой системой для этих операционных систем является UFS (Unix File System), также часто называемая FFS (Fast File System).

В настоящее время UFS (в разных версиях) поддерживается всеми операционными системами семейства Unix и является основной файловой системой ОС BSD и операционной системы Sun Solaris. Современные компьютерные технологии, как правило, реализуют замены для UFS в разных операционных системах (ZFS для Solaris, JFS и производных файловых систем для Unix и т. д.).

Для получения информации о восстановлении данных из этих файловых систем посетите страницу « ».

Кластерные файловые системы

Кластерные файловые системы используются в компьютерных кластерных системах. Эти файловые системы поддерживают распределенное хранилище.

Распределенные файловые системы включают:

  • ZFS - «Zettabyte File System» - новая файловая система, разработанная для распределенных хранилищ Sun Solaris OS.
  • Apple Xsan - эволюция компании Apple в CentraVision и более поздних файловых системах StorNext.
  • VMFS - «Файловая система виртуальных машин», разработанная компанией VMware для своего VMware ESX Server.
  • GFS - Red Hat Linux «Глобальная файловая система».
  • JFS1 - оригинальный (устаревший) дизайн файловой системы IBM JFS, используемой в старых системах хранения AIX.

Общие свойства этих файловых систем включают поддержку распределенных хранилищ, расширяемость и модульность.

Для получения дополнительной информации о восстановлении данных из этих файловых систем посетите страницу « ».