Сайт о телевидении

Сайт о телевидении

» » Какова цель создания системы обработки данных oltp. Практика реализации сложных OLTP-систем

Какова цель создания системы обработки данных oltp. Практика реализации сложных OLTP-систем

В предыдущем подразделœе отмечалось, что для адекватного представления предметной области, простоты разработки и поддержания базы данных отношения должны быть приведены к третьей нормальной форме (существуют формы нормализации и более высоких порядков, но на практике они используются достаточно редко), то есть быть сильно нормализованными. При этом слабо нормализованные отношения также имеют свои достоинства, основным из которых является то, что если к базе данных обращаться в основном только с запросами, а модификации и добавление данных проводить очень редко, то их выборка производится значительно быстрее. Это объясняется тем, что в слабо нормализованных отношениях уже как бы произведено их соединœение и на это не тратится процессорное время. Выделяют два класса систем, для которых в большей степени подходят сильно и слабо нормализованные отношения.

Сильно нормализованные модели данных хорошо подходят для OLTP-приложений – On-Line Transaction Processing (OLTP) – приложений оперативной обработки транзакций. Типичными примерами OLTP-приложений являются системы складского учета͵ заказов билетов, операционные банковские системы и другие. Основная функция подобных систем заключается в выполнении большого количества коротких транзакций. Сами транзакции являются достаточно простыми, но проблемы состоят в том, что таких транзакций очень много, выполняются они одновременно и при возникновении ошибок транзакция должна откатиться и вернуть систему в состояние, в котором та была до начала транзакции. Практически всœе запросы к базе данных в OLTP-приложениях состоят из команд вставки, обновления и удаления. Запросы на выборку, в основном, предназначены для предоставления пользователям выборки данных из различного рода справочников. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, большая часть запросов известна заранее ещё на этапе проектирования системы. Критическим для OLTP-приложений является скорость и надежность выполнения коротких операций обновления данных. Чем выше уровень нормализации данных в OLTP-приложениях, тем оно быстрее и надежней. Отступления от этого правила могут происходить тогда, когда уже на этапе разработки известны некоторые часто возникающие запросы, требующие соединœения отношений и от скорости выполнения которых существенно зависит работа приложений.

Другим типом приложений являются OLAP-приложения – On-Line Analitical Processing (OLAP) – приложения оперативной аналитической обработки данных. Это обобщенный термин, характеризующий принципы построения систем поддержки принятия решений – Decision Support System (DSS), хранилищ данных – Data Warehouse, систем интеллектуального анализа данных – Data Mining. Такие системы предназначены для нахождения зависимостей между данными, для проведения динамического анализа по принципу «что если…» и тому подобных задач. OLAP-приложения оперируют с большими массивами данных, накопленными на предприятии или взятыми из других источников. Такие системы характеризуются следующими признаками:

Добавление в систему новых данных происходит относительно редко крупными блоками, к примеру, один раз в месяц или квартал;

Данные, добавленные в систему, как правило, никогда не удаляются;

перед загрузкой данные проходят различные подготовительные процедуры, связанные с приведением их к определœенным форматам;

Запросы к системе являются нерегламентированными и достаточно сложными;

скорость выполнения запросов важна, но не критична.

Базы данных OLAP-приложений обычно представлены в виде одного или нескольких гиперкубов, измерения которого представляют собой справочные данные, а в ячейках самого гиперкуба хранятся значения этих данных. Физически гиперкуб может быть построен на основе специальной многомерной модели данных – Multidimensional OLAP (MOLAP) или представлен средствами реляционной модели данных – Relational OLAP (ROLAP).

В системах OLAP, использующих реляционную модель данных, данные целœесообразно хранить в виде слабо нормализованных отношений, содержащих заранее вычисленные основные итоговые данные. Избыточность данных и связанные с ней проблемы здесь не страшны, так как их обновление происходит достаточно редко и вместе с обновлением данных осуществляется пересчет итогов.


  • - Пути обеспечения надежности системы водоснабжения

    Обеспечение надежности системы водоснабжения, как и других систем массового обслуживания, является одной из основных задач при их проектировании. Система должна быть запроектирована и построена так, чтобы в процессе эксплуатации она выполняла свои функции с заданной... [читать подробенее]


  • - I. Концепция безопасности системы защиты

    Концепция безопасности разрабатываемой системы - «это на­бор законов, правил и норм поведения, определяющих, как орга­низация обрабатывает, защищает и распространяет информацию. В частности, правила определяют, в каких случаях пользователь имеет право оперировать с... [читать подробенее]


  • - После принятия основных решений по конструкции системы отопления

    ПРОЕКТИРОВАНИЕ СИСТЕМЫ ВОДЯНОГО ОТОПЛЕНИЯ ЗДАНИЯ Начертите схемы тепловых узлов при подключении системы отопления по открытой и закрытой схемам. Вопросы для самопроверки При теплоснабжении нескольких зданий. Насосы и другое оборудование устанавливают... [читать подробенее]


  • - Требования по обеспечению пожарной безопасности системы предотвращения пожара.

    Основы обеспечения пожарной безопасности технологических процессов. Вопрос 2.Пожарная профилактика объекта (25мин.) Пожарная профилактика включает в себя комплекс организационных и технических мероприятий, направленных на обеспечение безопасности людей,... [читать подробенее]


  • - Ткани и системы органов животных

    Ткани животных . У животных также выделяют несколько типов тканей. Важнейшими из них являются следующие. Эпителиальныеткани - это пограничные ткани, покрывающие организм снаружи, выстилающие внутренние полости и органы, входящие в состав печени, легких, желез.... [читать подробенее]

    В геномах высших эукариот присутствуют многочисленные повторяющиеся последовательности ДНК. У человека, например, такие повторы занимают более 40 % всего генома. И этого следует, что при образовании DSBs вероятность одновременного образования нескольких разрывов по... [читать подробенее]


  • - Определение групп крови системы АВО цоликлонами анти-А, анти-В и анти-АВ

    ОПРЕДЕЛЕНИЕ ГРУПП КРОВИ Согласно этому правилу всем больным можно переливать кровь О(1) группы, так как она не содержит агглютиногенов, а реципиентам АВ(1У) группы можно переливать кровь других групп, так как она не содержит агглютиногенов. Отсюда введены понятия...

  • Для решения задач анализа данных и поиска решений необходимо накопление и хранение достаточно больших объемов данных. Этим целям служат базы данных (БД).

    Чтобы сохранять данные согласно какой-либо модели предметной области, структура БД должна максимально соответствовать этой модели. Первой такой структурой, используемой в СУБД, была иерархическая структура, появившаяся в начале 60-х годов прошлого века.

    Иерархическая структура предполагала хранение данных в виде структуры дерева.

    Попыткой улучшить иерархическую структуру была сетевая структура БД, которая предполагает представление структуры данных в виде сети.

    Наиболее распространены в настоящее время реляционные БД. Для хранения такого вида информации предлагается использовать постреляционные модели в виде объектно-ориентированных структур хранения данных. Общий подход заключается в хранении любой информации в виде объектов. При этом сами объекты могут быть организованы в рамках иерархической модели. К сожалению, такой подход, в отличие от реляционной структуры, которая опирается на реляционную алгебру, недостаточно формализован, что не позволяет широко использовать его на практике.

    В соответствии с правилами Кодда СУБД должна обеспечивать выполнение операций над БД, предоставляя при этом возможность одновременной работы нескольким пользователям (с нескольких компьютеров) и гарантируя целостность данных. Для выполнения этих правил в СУБД используется механизм управления транзакциями.

    Транзакция − это последовательность операций над БД, рассматриваемых СУБД как единое целое. Транзакция переводит БД из одного целостного состояния в другое.

    Как правило, транзакцию составляют операции, манипулирующие с данными, принадлежащими разным таблицам и логически связанными друг с другом. Если при выполнении транзакции будут выполнены операции, модифицирующие только часть данных, а остальные данные не будут изменены, то будет нарушена целостность. Следовательно, либо все операции, включенные в транзакцию, должны быть выполненными, либо не выполнена ни одна из них. Процесс отмены выполнения транзакции называется откатом транзакции. Сохранение изменений, производимых в результате выполнения операций транзакции, называется фиксацией транзакции.

    Свойство транзакции переводить БД из одного целостного состояния в другое позволяет использовать понятие транзакции как единицу активности пользователя. В случае одновременного обращения пользователей к БД транзакции, инициируемые разными пользователями, выполняются не параллельно (что невозможно для одной БД), а в соответствии с некоторым планом ставятся в очередь и выполняются последовательно. Таким образом, для пользователя, по инициативе которого образована транзакция, присутствие транзакций других пользователей будет незаметно, если не считать некоторого замедления работы по сравнению с однопользовательским режимом.


    Существует несколько базовых алгоритмов планирования очередности транзакций. В централизованных СУБД наиболее распространены алгоритмы, основанные на синхронизации захвата объектов БД.

    При использовании любого алгоритма возможны ситуации конфликтов между двумя или более транзакциями по доступу к объектам БД. В этом случае для поддержания плана необходимо выполнять откат одной или более транзакций. Это один из случаев, когда пользователь многопользовательской СУБД может реально ощутить присутствие в системе транзакций других пользователей.

    История развития СУБД тесно связана с совершенствованием подходов к решению задач хранения данных и управления транзакциями. Развитый механизм управления транзакциями в современных СУБД сделал их основным средством построения ОLTP-систем, основной задачей которых является обеспечение выполнения операций с БД.

    3.1.3. Использование OLTP-технологии
    в системах поддержки принятия решений

    OLTP-системы оперативной обработки транзакций характеризуются большим количеством изменений, одновременным обращением множества пользователей к одним и тем же данным для выполнения разнообразных операций − чтения, записи, удаления или модификации данных. Для нормальной работы множества пользователей применяются блокировки и транзакции. Эффективная обработка транзакций и поддержка блокировок входят в число важнейших требований к системам оперативной обработки транзакций.

    К этому классу систем относятся, кстати, и первые СППР − информационные системы руководства. Такие системы, как правило, строятся на основе реляционных СУБД, включают в себя подсистемы сбора, хранения и информационно-поискового анализа информации, а также содержат в себе предопределенное множество запросов для повседневной работы. Каждый новый запрос, непредусмотренный при проектировании такой системы, должен быть сначала формально описан, закодирован программистом и только затем выполнен. Время ожидания в этом случае может составлять часы и дни, что неприемлемо для оперативного принятия решений.

    Практика использования OLTP-систем показала неэффективность их применения для полноценного анализа информации. Такие системы достаточно успешно решают задачи сбора, хранения и поиска информации, но они не удовлетворяют требованиям, предъявляемым к современным СППР. Подходы, связанные с наращиванием функциональности OLTP-систем, не дали удовлетворительных результатов. Основной причиной неудачи является противоречивость требований, предъявляемых к системам OLTP и СППР.

    Основными требованиями предъявляемыми к системам OLTP и СППР являются следующие:

    1. Степень детализации хранимых данных. Типичный запрос в OLTP-системе, как правило, выборочно затрагивает отдельные записи в таблицах, которые эффективно извлекаются с помощью индексов.

    2. Качество данных. OLTP-системы, как правило, хранят информацию, вводимую непосредственно пользователями систем (операторами ЭВМ). Присутствие "человеческого фактора" при вводе повышает вероятность ошибочных данных и может создать локальные проблемы в системе.

    3. Формат хранения данных. OLTP-системы, обслуживающие различные участки работы, не связаны между собой. Они часто реализуются на разных программно-аппаратных платформах. Одни и те же данные в разных базах могут быть представлены в различном виде и могут не совпадать (например, данные, о клиенте, который взаимодействовал с разными отделами компании, могут не совпадать в базах данных этих отделов).

    4. Допущение избыточных данных. Структура базы данных, обслуживающей OLTP-систему, обычно довольно сложна. Она может содержать многие десятки и даже сотни таблиц, ссылающихся друг на друга. Данные в такой БД сильно нормализованы для оптимизации занимаемых ресурсов. Аналитические запросы к БД очень трудно формулируются и крайне неэффективно выполняются, поскольку содержат в себе представления, объединяющие большое количество таблиц.

    5. Управление данными. Основное требование к OLTP-системам − обеспечить выполнение операций модификации над БД. При этом предполагается, что они должны выполняться в реальном режиме, и часто очень интенсивно.

    6. Количество хранимых данных. Как правило, системы анализа предназначены для анализа временных зависимостей, в то время как OLTP-системы обычно имеют дело с текущими значениями каких-либо параметров.

    7. Характер запросов к данным. В OLTP-системах из-за нормализации БД составление запросов является достаточно сложной работой и требует необходимой квалификации.

    8. Время обработки обращений к данным. OLTP-системы, как правило, работают в режиме реального времени, поэтому к ним предъявляются жесткие требования по обработке данных.

    9. Характер вычислительной нагрузки на систему. Как уже отмечалось ранее, работа с OLTP-системами, как правило, выполняется в режиме реального времени.

    10. Приоритетность характеристик системы. Для OLTP-систем приоритетным является высокая производительность и доступность данных, т. к. работа с ними ведется в режиме реального времени. Для систем анализа более приоритетными являются задачи обеспечения гибкости системы и независимости работы пользователей, т. е. то, что необходимо аналитикам для анализа данных.

    Следует отметить, что противоречивость требований к OLTP-системам и системам, ориентированным на глубокий анализ информации, усложняет задачу их интеграции как подсистем единой СППР. В настоящее время наиболее популярным решением этой проблемы является подход, ориентированный на использование концепции хранилищ данных.

    Общая идея хранилищ данных заключается в разделении БД для − систем и БД для выполнения анализа и последующем их проектировании с учетом соответствующих требований.

    СППР решают три основные задачи: сбор, хранение и анализ хранимой информации. Задача анализа в общем виде может включать: информационно-поисковый анализ, оперативно-аналитический анализ и интеллектуальный анализ.

    Подсистемы сбора, хранения информации и решения задач информационно-поискового анализа в настоящее время успешно реализуются в рамках систем информационно-поискового анализа средствами СУБД. Для реализации подсистем, выполняющих оперативно-аналитический анализ, используется концепция многомерного представления данных. Подсистема интеллектуального анализа данных реализует методы.

    Для упрощения разработки прикладных программ, использующих БД, создаются системы управления базами данных (СУБД) − программное обеспечение для управления данными, их хранения и безопасности данных.

    В СУБД развит механизм управления транзакциями, что сделало их основным средством создания систем оперативной обработки транзакций (OLTP-систем). К таким системам относятся первые СППР, решающие задачи информационно-поискового анализа − ИСР.

    OLTP-системы не могут эффективно использоваться для решения задач оперативно-аналитического и интеллектуального анализа информации. Основная причина заключается в противоречивости требований к OLTP-системе и к СППР.

    В настоящее время в целях повышения эффективности оперативно-аналитического и интеллектуального анализа для объединения в рамках одной системы OLTP-подсистем и подсистем анализа используется концепция хранилищ данных. Общая идея заключается в выделении БД для OLTP-подсистем и БД для выполнения анализа. Таким образом обеспечивается оптимальный подход к обработке данных в системах поддержки принятия решений.

    Вопросы для самоконтроля

    1. Перечислите основные задачи, которые решают системы поддержки принятия решений.

    2. Обозначьте концептуальные направления построения хранилищ данных в системах поддержки принятия решений.

    3. Укажите типы структур для организации хранилищ данных в СППР. В чем состоят преимущества и недостатки каждого из типов структур?

    4. Обоснуйте целесообразность использования постреляционной модели подсистемы сбора и обработки информации в СППР.

    5. Как интерпретируется понятие транзакции в системах обработки данных?

    6. В чем проявляется основное свойство транзакции в системах обработки данных?

    7. Кратко охарактеризуйте механизм управления транзакциями в OLTP-системах.

    8. Укажите роль и место OLTP-систем для оперативной обработки транзакций. Почему OLTP-системы неэффективны для решения задач оперативно-аналитического и интеллектуального анализа?

    9. Назовите основные требования к OLTP-системам. В чем состоит противоречивость требований к OLTP-системам?

    10. Назовите пути повышения эффективности оперативно-аналитического и интеллектуального анализа в СППР.

    Знаете ли Вы, в чем ложность понятия "физический вакуум"?

    Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

    Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

    Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик , уже нельзя. Слишком много фактов противоречит этому.

    Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

    Система оперативной обработки данных (ON LINE TRANSACTION PROCESSING) OLTP рассчитаны на быстрое обслуживание относительно простых запросов большого числа пользователей. Эти системы требуют защиты от несанкционированного доступа, от нарушения целостности данных, аппаратных и программированных сбоев.

    Их характеризует малое время ожидания выполнения запросов.

    Сфера применения √ это сфера платежей, учета, резервирования мест, банки и биржевые операции

    Транзакция - это некоторое законченное с точки зрения пользователя действие над БД.

    Системы аналитической обработки данных (ON LINE ANALIZIS PROCESSING) OLAP- это системы поддержки принятия решений, ориентированны на выполнение более сложных запросов, требующих статистической обработки исторических данных, накопленных за определенный промежуток времени. Аналитические системы включают:

    1. средства обработки информации на основе методов искусственного интеллекта

    2. средства графического представления данных.

    Эти системы определяются большим объемом исторических данных, позволяя выделить из них содержательную информацию, т.е. получить знания из данных.

    Требования к скорости и качеству анализу привело к появлению систем аналитической обработки (OLAP). Оперативность обработки достигается за счет применения мощной многопроцессорной техники, сложных методов анализа, специализированных хранилищ данных.

    Приведенные классы систем (OLAP и OLTP), они основаны на использовании СУБД, но типы запросов сильно отличаются.

    Обработка транзакций в OLTP системах

    Транзакция - неделимая с позиции воздействия на БД последовательность операций манипулирования данными. Это может быть операция чтения, удаления, вставки и т.д.

    Транзакция реализует некоторое осмысленное с точки зрения пользователя действие, например, перевод денег со счета, резервирования места, доставления нового служащего.

    Транзакция должна обладать 4 основными свойствами:

    1. атомарность, транзакция должна выполнятся как единая операция доступа к БД, она должна быть выполнена полностью или не выполнена вообще.

    2. согласованность , гарантирует взаимную целостность данных.

    3. изолированность , транзакции будут выполнятся изолированно в пользовательской системе.

    4. долговечность , если транзакция выполнена успешно, то произведенные ею изменения в данных не будут потеряны ни при каких обстоятельствах.

    Результатом выполнения транзакции может быть ее фиксация и откат.

    Фиксация - это действие, обеспечивающее запись в БД всех изменений.

    Откат - если нормальное завершение транзакции невозможно, БД возвращается в исходное состояние, все изменения аннулируются.


    При откате и фиксации транзакции используется журнал транзакций, в котором сохраняются все изменения.

    При выполнении любой операции, изменяющей базу данных СУБД автоматически сохраняет в журнал транзакций состояния модифицируемых строк до операции и после ее. Только после этого, изменения вносится в БД.

    При откате СУБД по журналу транзакций восстанавливает те строки, которые были модифицированы.

    Границы транзакции - это первая и последняя, входящая в неё операции. Предполагается, что транзакция начинается с 1-го SQL оператора, следующие операторы составляют тело транзакции и тело может разветвляется:

    1. SQL оператором commit work

    SQL оператором rollback

    2. простым завершением оператора, вызвавшего транзакцию.

    Точки сохранения - применяются в длинных транзакциях, т.е. в теле транзакции может быть определены точки, в которых сохраняется состояние БД.

    Применение транзакции - это эффективный механизм организации многопользовательского доступа к БД.

    Проблемы:

    1. как избежать потери изменений в базе данных в ситуации, когда несколько программ читают одни и те же данные, изменяют их и записывают на прежнее место. В базе данных могут быть сохранены изменения от одной программы, результаты работы всех остальных будут потеряны.

    2. исключить возможность чтения нефиксированных изменений, например, когда одна транзакция вносит изменения в базу данных они тут же считываются в других транзакциях, но затем другая транзакция прерывается оператором rollback.

    Для устранения этого используют сериализацию (совместная отработка):

    1. транзакция не может получить доступ к незафиксированным данным

    2. результат совместного выполнения транзакций должен быть эквивалентен результату их последовательности выполнения.

    В современном СУБД сериализация транзакций реализуется через механизм блокировок: на время выполнения транзакции 1 СУБД блокирует часть базы данных к которой транзакция 1 обращается. Блокировка сохраняется до момента фиксации транзакции 1, если в этот момент другая транзакции 2 обращается к блокированным данным, то транзакции 2 приостанавливается до момента завершения транзакции 1

    Взаимоблокировка транзакций

    Пусть транзакция т1 обновляет отношение - о1. Далее эта транзакция т1 пытается модифицировать отношение о2 , которая была ранее заблокирована транзакцией т2. Транзакция т1 переводится в состояния ожидания пока не снята блокировка с отношения о2; в тот же момент транзакция т2 пытается изменить данные отношения о1, ранее заблокирована транзакцией т1. СУБД вынуждена перевести в состояния ожидания и транзакцию т2 следовательно возникает ситуация взаимоблокировки транзакций.

    СУБД периодически проверяет блокировку и если есть взаимоблокировки, то одна из транзакции насильственно прерывается.

    Средства восстановления после сбоев

    Одно из основных требований к современным информационным системам является надежность хранения данных. СУБД должна уметь восстановить базу данных после любых аппаратных и программных сбоев. Для этого существует журнал транзакций. Принцип восстановления - результаты выполнения транзакции до сбоя должны быть восстановлены, результаты незафиксированные транзакцией должны быть удалены.

    Если физически уничтожено содержимое внешней памяти, то для устранения этого реализуют дублированное хранение данных.

    Можно выделить некоторые классы систем, для которых больше подходят сильно или слабо нормализованные модели данных.

    Сильно нормализованные модели данных хорошо подходят для так называемыхOLTP-приложений (On-Line Transaction Processing (OLTP )-оперативная обработка транзакций ). Типичными примерами OLTP-приложений являются системы складского учета, системы заказов билетов, банковские системы, выполняющие операции по переводу денег, и т.п.

    Основная функция подобных систем заключается в выполнении большого количества коротких транзакций. Сами транзакции выглядят относительно просто, например, "снять сумму денег со счета А, добавить эту сумму на счет В".

    Проблема заключается в том, что, во-первых, транзакций очень много, во-вторых, выполняются они одновременно (к системе может быть подключено несколько тысяч одновременно работающих пользователей), в-третьих, при возникновении ошибки, транзакция должна целиком откатиться и вернуть систему к состоянию, которое было до начала транзакции (не должно быть ситуации, когда деньги сняты со счета А, но не поступили на счет В). Практически все запросы к базе данных в OLTP-приложениях состоят из команд вставки, обновления, удаления. Таким образом, критическим для OLTP-приложений является скорость и надежность выполнения коротких операций обновления данных. Чем выше уровень нормализации данных в OLTP-приложении, тем оно, как правило, быстрее и надежнее.

    Другим типом приложений являются так называемыеOLAP-приложения (On-Line Analitical Processing (OLAP ) -оперативная аналитическая обработка данных ). Это обобщенный термин, характеризующий принципы построениясистем поддержки принятия решений (Decision Support System -DSS ),хранилищ данных (Data Warehouse ),систем интеллектуального анализа данных (Data Mining ). Такие системы предназначены для нахождения зависимостей между данными (например, можно попытаться определить, как связан объем продаж товаров с характеристиками потенциальных покупателей), для проведения анализа "что если…".

    OLAP-приложения оперируют с большими массивами данных, уже накопленными в OLTP-приложениях, взятыми их электронных таблиц или из других источников данных. Такие системы характеризуются следующими признаками:

    Добавление в систему новых данных происходит относительно редко крупными блоками (например, раз в квартал загружаются данные по итогам квартальных продаж из OLTP-приложения).

    Данные, добавленные в систему, обычно никогда не удаляются.

    Перед загрузкой данные проходят различные процедуры "очистки", связанные с тем, что в одну систему могут поступать данные из многих источников, имеющих различные форматы представления для одних и тех же понятий, данные могут быть некорректны, ошибочны.

    Запросы к системе являются нерегламентированными и, как правило, достаточно сложными.

    Скорость выполнения запросов важна, но не критична.

    Данные OLAP-приложений обычно представлены в виде одного или нескольких гиперкубов, измерения которого представляют собой справочные данные, а в ячейках самого гиперкуба хранятся собственно данные. Например, можно построить гиперкуб, измерениями которого являются: время (в кварталах, годах), тип товара и отделения компании, а в ячейках хранятся объемы продаж. Такой гиперкуб будет содержать данных о продажах различных типов товаров по кварталам и подразделениям. Основываясь на этих данных, можно отвечать на вопросы вроде "у какого подразделения самые лучшие объемы продаж в текущем году?", или "каковы тенденции продаж отделений Юго-Западного региона в текущем году по сравнению с предыдущим годом?"

    Возвращаясь к проблеме нормализации данных, можно сказать, что в системах OLAP, использующих реляционную модель данных (ROLAP), данные целесообразно хранить в виде слабо нормализованных отношений, содержащих заранее вычисленные основные итоговые данные. Большая избыточность и связанные с ней проблемы тут не страшны, т.к. обновление происходит только в момент загрузки новой порции данных. При этом происходит как добавление новых данных, так и пересчет итогов.

    • < Назад
    • Вперёд >