Сайт о телевидении

Сайт о телевидении

» » Измерения ачх акустики. Акустические измерения. Измеряем АЧХ подручными средствами

Измерения ачх акустики. Акустические измерения. Измеряем АЧХ подручными средствами

Измерение АЧХ акустических систем в домашних условиях.

Акустика для тестирования:
Напольные Tannoy Turnberry GR LE ,
АС центрального канала Tannoy Revolution XT Center ,
Полочные АС Canton Vento 830.2 ,
Настенные АС Canton Ergo 610 .



Размещение микрофона.






Блок схема подключения для измерения амплитудно частотной характеристики (АЧХ).


Для измерения использовались следующие устройства:
1. Измерительный микрофон Behringer ECM8000
2. Внешняя звуковая карта Tascam US-4x4
3. ПК Acer V5-572G, DELL INSPIRON 5010
4. Балансный кабель XLR-XLR (5м)
5. Два кабеля Inakusik Premium MiniJack - 2 RCA и MiniJack-MiniJack с адаптером 6.3мм (для калибровки звуковой карты)
6. ПО Room EQ Wizard 5.19 (REW).

АВ ресивер Yamaha RX-A3060 включен в режим Pure Direct.
Все акустические системы для исходных измерений по очереди подключались к клеммам вывода фронтальных каналов.
Перед началом измерений необходимо произвести калибровочные измерения звуковой карты. Для этого соединяются выход со звуковой карты ПК и вход Jack внешней звуковой карты.
Для калибровки уровня понадобится также шумомер, однако наши измерения производились с относительной привязкой к уровню, так как весь комплекс измерений проводился с целью дальнейшей корректировки АЧХ параметрическим эквалайзером ресивера и требовалось получить данные о ее неравномерности.
Для более точных измерений желательно также провести калибровку микрофона в специальной лаборатории или использовать микрофон, который уже поставляется с калибровочным файлом. Для используемых моделей на базе Behringer ECM8000 отклонения АЧХ составляют крайне малые величины особенно в области низких и средних частот.

Исходные измерения (без привязки уровня).
Режим Pure Direct.
Характеристика звуковой карты ПК Acer Aspire V5-572. АЧХ акустической системы центрального канала Tannoy Revolution XT Center.



АЧХ фронтальных систем Tannoy Turnberry GR LE в ближнем поле.



АЧХ каналов Surround Canton Vento 830.2 в ближнем поле (сглаживание 1/12 и 1/6).



АЧХ фронтальных каналов присутствия и тыловых каналов присутствия, Canton Ergo 610.


Другие прикладные измерения.
Canton Vento 830.2. Открытый и закрытый порт фазоинвертора. Влияние сеток в ближнем поле.



Влияние металлических сеток в Canton Ergo 610 и массивных матерчатых сеток в Tannoy Turnberry GR LE (на расстоянии 20см и 1 метр).



АЧХ Tannoy Turnberry GR LE (левый и правый канал). Изменение АЧХ в точке прослушивания при переключении ВЧ регулятора (+3дБ) на колонках.


Сегодня можно встретить колонки практически любой формы. Но как это влияет на звук. Рассмотрим основные формы акустически систем, и то почему круглая колонка будет звучать лучше чем квадратная или цилиндрическая.

На конечную А мплитудно — Ч астотную Х арактеристику (АЧХ ) А кустической C истемы (АС ) влияет множество факторов. В том числе АЧХ динамика, его добротность, выбранный тип и материал корпуса, демпфирование и т.д. и т.п.. Но сегодня рассмотрим еще один интересный нюанс, вносящий свою корректировку в конечную АЧХ — форма акустической системы .

На что влияет форма АС

Сама по себе форма колонки снаружи особого значения не имеет, важно то, что она определяет форму внутреннего объема АС. На низких частотах, при которых линейные размеры корпуса меньше длины волны звука, форма внутреннего объема значения не имеет, а вот на средних частотах дифракционные эффекты вносят существенный вклад. Для упрощения далее подразумевается закрытая акустическая конструкция.

Под дифракционными эффектами подразумевается взаимное усиление и гашение звуковых волн внутри колонки. На АЧХ колонок отрицательно сказываются острые углы, впадины и выступы, т.е. на них наблюдается максимумы неравномерности звукового поля. А вот скругления и разравнивания оказывают положительное влияние на форму АЧХ. Если быть более точным, то более округлые формы оказывают минимальное воздействие на линейность АЧХ.

Цилиндрические колонки АЧХ

Самые худшие результаты дает корпус в виде горизонтального цилиндра (рис. а )
(Положение центра излучающей головки условно изображено точкой).

Неравномерность АЧХ колонки достигает 10 дБ на первом максимуме (~500Гц). Связанно это с тем, что длина волны соответствует(равна) линейным размерам корпуса. Следующие максимумы соответствуют удвоенной, утроенной и т.д. частотам. Такая картина возникает из-за вклада передней панели (на которой расположен излучатель). Отражение происходит между передней и задней панелями что приводит возникновению интерференционной картины между ними.


По это причине АС имеющей форму цилиндра с динамической головкой на боковой панели (рис. б ) имеет более равномерную АЧХ. Передняя панель в данном случае создает рассеянное поле во внутреннем объеме, а верхняя и нижняя стенки влияют мало, т.к. находятся не на одной оси с излучателем.

Круглая колонка и квадратная колонка

Корпус кубической формы (рис. в ) Также создает сильно неравномерную АЧХ, т.к. также возникает интерференционная картина.


Самое минимальное влияние на форму АЧХ оказывает сферическая акустика (рис.г ). В корпусе такой формы рассеяние звука происходит одинаково во всех направлениях.


Однако изготовление круглой колонки достаточно трудоемкий процесс. Хотя использование современных материалов, таких как пластмассы и упрощает решение этой задачи, все же пластик не самый лучший материал для корпуса высококачественной акустической системы.

Положительный результат дает использование мастик и подобных материалов, нанесение которых в углы и стыки приводит к их скруглению и линеарезации АЧХ колонок. Так же для улучшения АЧХ применяется демпфирование внутреннего объема акустической системы.

Даже сферическая акустика, обладающая наилучшей АЧХ имеет спад в низкочастотной области. Наиболее эффективным решением этой проблемы может стать .

ВведениеВряд ли я сделаю открытие, назвав тему тестирования компьютерной акустики одной из самых непопулярных в компьютерной прессе. Если проанализировать большинство обзоров, то можно прийти к заключению, что все они носят чисто описательный характер и состоят, как правило, из перекомпиляции пресс-релизов с переписыванием основных технических параметров, любованием корпусного исполнения, да крайне субъективных итоговых оценок, не подкрепленных какими-либо доказательствами. Причина такой "нелюбви" – отсутствие в распоряжении тестеров таких специализированных средств измерения, как аудиоанализаторы, чувствительные микрофоны, милливольтметры, генераторы звуковых сигналов и пр. Подобный набор оборудования стоит приличных денег, и по сей причине по карману далеко не каждой тестовой лаборатории (тем более что компьютерная акустика стоит несоизмеримо мало по сравнению с подобной измерительной техникой). Кроме того, тестер, безусловно, должен обладать "правильными ушами" и, желательно, иметь представление о качественном звуке не по своему бытовому музыкальному центру, а по звучанию симфонического оркестра в зале консерватории, например. Как бы то ни было, компьютерная акустика хоть и не претендует занять место hi-end и радовать слух пользователя достоверной передачей тембров, в точности передавая эмоциональное содержимое звуковой картины, но должна хотя бы не искажать звучание ряда инструментов, не вносить дискомфорт в сознание слушателя. Объективно, человеческое ухо, конечно же, нивелирует большинство искажений, выделяя и восстанавливая звуковую картину даже из треска динамика радиотрансляционного репродуктора, однако при прослушивании того же произведения на более качественной акустике, слушатель начинает различать новые и дополнительные детали, какие-то музыкальные оттенки (вроде того, что “…если взглянуть вооруженным глазом, то можно заметить три звездочки!..”). Наверное, и по этой причине тоже, к выбору компьютерной акустики стоит подходить более серьезно и осознанно.
В последнее время число пользователей, желающих оснастить свой компьютер действительно качественными акустическими системами, неуклонно растет. Чтобы облегчить Вам задачу выбора, мы решили развить эту тему на страницах нашего сайта, а для того, чтобы обзоры не носили чисто субъективный характер, не строились лишь на личных предпочтениях автора-тестера, F-Center оснастил тестовую лабораторию специальным прибором – аудиоанализатором PRO600S производства французской фирмы Euraudio. Давайте рассмотрим этот прибор чуть подробнее.

Аудиоанализатор Euraudio PRO600S

Аудиоанализатор Euraudio PRO600S представляет собой компактное мобильное устройство, предназначенное для произведения электроакустических измерений в режиме реального времени. Его корпус выполнен из прочной пластмассы, а эргономичные выступы по бокам обеспечивают определенный комфорт при работе "в полевых условиях". Для стационарной установки на штатив предусмотрено специальное крепление в днище прибора. Вообще, в мире существует достаточно много аналогичных по назначению приборов, однако, основное и выгодное отличие Euraudio PRO600S – его полная автономность. Внутри аудиоанализатора есть собственный аккумулятор, позволяющий пользоваться прибором в удалении от электрических сетей (заряда аккумулятора хватает приблизительно на четыре часа автономной работы). Интересный факт: именно этот мобильный аудиоанализатор взят на вооружение установщиками автомобильной акустики, ввиду чего предусмотрен вариант запитки прибора от прикуривателя. При стационарном использовании к PRO600S подсоединяется внешний 12В источник питания.
Для измерения акустических параметров в настройках аудиоанализатора выбирается либо встроенный, либо подключаемый внешний микрофон, а для проведения электрических измерений – линейный вход. Встроенный микрофон используется в тех случаях, когда высокой точности измерений не требуется (например, при первичной настройке системы). Если поставлена задача снятия более точных параметров, либо есть нужда в особом позиционировании микрофона к динамику АС, к прибору можно подключить внешние высокочувствительные микрофоны. В нашем распоряжении есть два таких микрофона. Первый – микрофон фирмы Neutrik (удачная замена встроенного микрофона), второй – специальный микрофон Linearx M52, предназначенный для измерения высоких уровней звукового давления (High-SPL Microphone). Разъемы этих внешних микрофонов соответствуют стандарту AES/EBU (если не ошибаюсь, это сокращения от American Electromechanical Society / European Broadcasting Union) и подключаются к XLR-разъему аудиоанализатора через специальный экранированный переходной кабель.



Микрофон Neutrik



High-SPL-микрофон Linearx M52



Разъем для подключения внешнего микрофона


Линейный вход аудиоанализатора позволяет проводить измерения электрических (и акустических) контуров. Этот вход может быть подключен к линейным выходам предусилителей, микшерских пультов, CD-плееров, эквалайзеров и т.п. Исключение составляют лишь выходы усилителей мощности, высокий электрический потенциал которых может вывести электронику прибора из строя. При проведении измерений с помощью линейного входа уровни на ЖК-дисплее индицируются в дБв.



Режим измерения электрических контуров по линейному входу


Управление прибором осуществляется при помощи элементарной системы экранного меню и немногочисленных кнопок на его лицевой панели. Пятидюймовый монохромный ЖК-дисплей имеет разрешение 240х128 точек, обеспечивая легкое прочтение показаний. В других случаях, когда аудиоанализатор используется не в "полевых условиях", к нему можно подключить принтер или компьютер. Для этого он располагает интерфейсными портами IEEE1284 (LPT) и RS-232 (COM).



На задней панели аудиоанализатора находится: линейный вход (1), встроенный микрофон (2), выключатель питания (3), разъем для подключения внешнего ИП (4), COM-порт (5), LPT-порт (6)


Выбор источника входного сигнала в меню Input Selection производится между встроенным микрофоном (Internal Microphone), внешним третьоктавным микрофоном (1/3 Oct External Microphone), внешним High-SPL-микрофоном или линейным входом (Line Input).



Выбор источника входного сигнала


Режимов измерения несколько: режим выявления амплитудно-частотной характеристики акустической системы, максимального уровня звукового давления, соревновательный режим с подсчетом очков и режим для измерения электрических трактов. Метод "взвешивания" или "нагружения" (weighting) выбирается из меню Weighting SPL, которое состоит из пунктов A-weighting, C-weighting и Linear.



Выбор метода взвешивания



Режим для проведения соревнований по звуку


В общих чертах, дабы не утруждать читателя теоретическим материалом, это происходит так. Акустический сигнал, полученный аудиоанализатором с микрофона, направляется на его полосовые фильтры, которые занимаются усилением одних частот и сглаживанием (аттенюированием) других. Эти фильтры являются своего рода нагрузками. Различают два типа нагружения, которые обозначают литерами "А" и "С" (A- и C-weighting). Кривая "A" определяется приближенным инверсивным значением 40 фон ("phon" – единица эквивалентной громкости, равная 1 децибелу) эквивалентного контура громкости (equal loudness contour), а кривая "C" – 100 фон. Здесь низкие частоты атеннюируются, а частоты речевого диапазона (1 000 – 1 400 Гц) наоборот усиливаются. Режим "L" (Linear) обозначает отсутствие нагружения.


Кривые "А" и "С"


Далее я постараюсь наиболее популярно изложить суть измерения АЧХ.

Измерение АЧХ с помощью Euraudio PRO600S

Итак, прибор позволяет производить измерения амплитудно-частотных характеристик акустических систем по звуковому давлению в режиме реального времени. Если взять чисто гипотетически, то сам процесс измерения АЧХ можно было бы организовать следующим образом: последовательно изменяя частоту сигнала на входе, измерять текущее значение звукового давления на выходе. Для получения "не размытого" представления о форме АЧХ нужно провести такие замеры как минимум на тридцати отрезках частотной шкалы звукового спектра, отстоящих друг от друга не дальше трети октавы. Такой вот "ручной" режим измерения займет значительное время, что можно позволить лишь при тестировании отдельно взятой АС, да и то, если не прибегать к каким-либо дополнительным подстройкам в процессе (чтобы не прокатываться затем вновь по всем частотам). Именно поэтому в акустических лабораториях используется метод измерения АЧХ по звуковому давлению в режиме реального времени (RTA – Real Time Analyzing). Здесь вместо отдельных сигналов на вход системы подается единый сигнал, равномерно насыщенный по всему спектру частот звукового диапазона (от 20 до 20 000 Гц), который называется "розовым шумом" (pink noise). На слух такой сигнал напоминает звук ненастроенного радиоприемника или шум водопада. Акустическая система воспроизводит "розовый шум", который, в свою очередь, улавливается микрофоном аудиоанализатора, после чего направляется на его полосовые фильтры, вырезающие из спектра узкую полосу частот (каждый свою), ширина которой составляет треть октавы. Например, первый фильтр настроен на полосу от 20 до 25 Гц, второй – от 25 до 31,5 Гц и т.д. Усиленный сигнал по каждой полосе диапазона отображается на ЖК-дисплее аудиоанализатора в виде столбика-уровня. Для перекрытия диапазона частот от 20 до 20 000 Гц потребуется тридцать полосовых фильтров. Понятно, что и индикатор прибора должен отображать все тридцать уровней. Большая часть ЖК-дисплея Euraudio PRO600S занята этими третьоктавными столбиками, перекрывающими звуковой диапазон от 25 до 20 000 Гц. На дисплее прибора шкала частот отображается в логарифмическом виде, что соответствует выражению высоты тона в октавах пропорционально логарифму отношения частот (экранное разрешение таково, что один пиксел на дисплее прибора равняется одному децибелу).
Справа на экране находится индикатор общего уровня звукового давления, который оформлен в виде столбика-уровня с продублированным сверху цифровым значением. Использующийся метод нагружения индицируется под этим столбиком.



Режим измерения АЧХ по звуковому давлению в режиме реального времени


При измерении АЧХ существует возможность изменения времени интегрирования (Integration Time), другими словами, времени реагирования аудиоанализатора на изменение звуковой обстановки. Для этого предусмотрено три режима: Fast (125 мс), Slow (1 с) и Long (3 с). В любой момент измерения можно приостановить, а текущие показания аудиоанализатора окажутся "замороженными". Теперь, если нажать на одну из пяти пронумерованных кнопок, показания дисплея запишутся в соответствующую номеру кнопки ячейку памяти. Такая возможность оставлена для передачи данных от аудиоанализатора принтеру.
В комплект поставки прибора входит компакт-диск с сервисной программой Euraudio, которая достаточно проста. Она лишена какой-либо аналитической части и требуется, в основном, для представления результатов тестирования на компьютере. Кроме этого, программа переводит показания третьоктавных фильтров в цифровой вид, записывая данные с разделителями в текстовом файле (для преобразования в любую известную электронную таблицу).

При измерении АЧХ, дабы не внести искажения от предусилителей какой-либо аудиокарты, испытуемая акустическая система подключается непосредственно к линейному выходу CD-проигрывателя, а тестовый сигнал "розовый шум" считывается со специального компакт-диска IASCA.
Определение относительной неравномерности АЧХ производится так: на основе полученных с помощью аудиоанализатора данных, находится максимальный перепад между соседними полосовыми частотными фильтрами, после чего вычисляется разница между ними. Учитывая тот факт, что в наших тестированиях принимают участие мультимедийные акустические системы, класс которых на порядок отличается от класса качественной бытовой аудиоаппаратуры (многие системы просто-напросто не работают в диапазоне 20 – 20 000 Гц), то подсчет неравномерности АЧХ мы решили ограничить отрезком от 50 до 15 000 Гц. На основании показателя неравномерности АЧХ можно говорить о качестве той или иной акустической системы. Частота раздела определялась визуально, по снятой АЧХ. Кстати, по картинке можно узнать и о настройках порта фазоинвертора сабвуфера и о частотах настройки полосовых фильтров системы.
Измерение максимального уровня звукового давления производилось следующим образом: к прибору подключается SPL-микрофон, из меню выбирается соответствующий режим измерений, и активизируется опция сохранения пиковых значений. Далее, с компакт-диска IASCA запускается тестовый трек SPL Competition, который "заставляет" систему работать на максимально возможных допустимых значениях. В ходе данного этапа, на дисплей аудиоанализатора выводится (и остается, как пик) лишь максимальный достигнутый уровень звукового давления. Именно по этому параметру можно судить о способности той или иной акустической системы "перевернуть Ваши внутренности" при прослушивании на максимальных значениях громкости.



Режим измерения максимального уровня звукового давления


По окончании тестирования, некоторые результаты измерений записывались в таблицу, глядя на которую достаточно легко понять, какая же система заслуживает внимания. Итак, проведение измерений с помощью аудиоанализатора позволяют нам судить о максимальном уровне звукового давления, относительной неравномерности АЧХ, частотах раздела и реальном диапазоне воспроизводимых частот акустической системой. По последнему параметру можно проверить расхождения заявленных производителем характеристик с теми, которые получились у нас.

Измерение импеданса

Аудиоанализатор, как я уже говорил, оснащен линейным входом, оформленным в виде RCA-разъема. Благодаря этому, прибор позволяет не ограничиваться лишь акустическими тестами, измеряя уровень звукового давления при получении данных с микрофона. С помощью этого линейного входа можно подключиться вразрез электрической цепи акустической системы и измерить (приближенно, конечно), к примеру, импеданс и коэффициент гармонических искажений.
Импеданс – это очень полезная функция, с помощью которой можно проверить способность динамика корректно работать при данном уровне усиления и отметить резонансные частоты низкочастотного динамика. Для проведения измерения, на вход усилителя акустической системы подается тестовый сигнал "pink noise". Взгляните на приведенный ниже рисунок: усилитель не должен включаться по мостовой схеме (т.е. его отрицательный полюс должен быть общей землей). Резисторы 4 и 8 Ом используются для калибровки. Сначала выбирается резистор 4 Ом, производится увеличение громкости до проявления читаемых уровней сигнала на дисплее аудиоанализатора (обычно такой уровень представляет собой прямую линию). После этого выбирается режим 8 Ом, и уровни выставляются для него. Затем переключатель устанавливается в положение для тестирования динамика, и путем сравнения этих двух линий оценивается его импеданс во всем акустическом диапазоне, отыскивается резонансная частота (или частоты).


Схема измерения импеданса


Примечание: к сожалению, на данный момент мы не успели подготовить стенд для определения импеданса, поэтому результаты по данному этапу будут доступны несколько позднее.

Тестовый аудиодиск IASCA Competition CD

Начну с того, что в конце 70-х годов производители акустики сознательно пытались провести аналогии между аудиоаппаратурой и… утюгами, крайне активно внедряя в умы потребителей наборы технических требований, выполнение которых гарантирует (якобы) высочайшее качество звучания аппаратуры. Уже тогда, производителей, пытающихся сделать ставку только на объективные параметры, называли "объективистами". Однако в начале 80-х годов всех их ждало разочарование в виде падения спроса и общего снижения объемов продаж на аудиоаппаратуру, несмотря на то, что "объективные параметры" постоянно улучшались, а качество звучания, почему-то, наоборот, становилось хуже. Такая общая тенденция дала толчок рождению движения субъективистов, чей лозунг поверг многих ортодоксов в шок: "Если между объективными параметрами и субъективными оценками есть противоречия, то результат объективных измерений учитывать не следует". Однако по сегодняшним меркам, тогдашний лозунг субъективистов оказался достаточно взвешенным. Хотя слуховое восприятие может нас подвести, оно, тем не менее, является самым чувствительным инструментом оценки качества звучания. Саму же оценку невозможно дать без прослушивания различных тестовых музыкальных композиций (симфонической и инструментальной музыки, хора мальчиков и знаменитого тенора, джазовых и роковых композиций), поэтому многими звукозаписывающими компаниями были разработаны специальные сборники, вроде того, о котором дальнейшее повествование.
Наш тестовый музыкальный диск можно назвать универсальным. Он используется как для определения объективных параметров (некоторые дорожки используются в качестве источника тестового сигнала), так и для построения субъективных оценок от прослушивания. Это компакт-диск IASCA Competition CD от достаточно известной международной ассоциации International Audio Sound Challenge Association .




На этом диске размещено 37 аудиотреков, а некоторые дорожки носят аннотационный характер, доводя до слушателя то, на что следует обратить внимание при прослушивании. Кстати, информация об этом диске есть в базе данных CDDB, поэтому после установки в CD-проигрыватель компьютера, из Интернет загружаются заголовки всех его треков. Порядок размещения записей на диске подчиняется определенному закону, т.е. фонограммы разбиты на группы по оцениваемым характеристикам звучания (тональная чистота, спектральный баланс, звуковая сцена и т.д.). Многие записи взяты из известных музыкальных архивов, таких как Telarc, Clarity, Reference, Sheffield и Mapleshade. Ниже приведен список дорожек IASCA Competition CD.

Плей-лист IASCA Competition CD

  • DIY или Сделай сам ,
  • Звук
  • Я купил bluetooth-наушники Motorola Pulse Escape. Звучание в целом понравилось, но остался непонятен один момент. Согласно инструкции, в них имеется переключение эквалайзера. Предположительно, наушники имеют несколько вшитых настроек, которые переключаются по кругу. К сожалению, я не смог определить на слух, какие там настройки и сколько их, и решил выяснить это при помощи измерений.

    Итак, мы хотим измерить амплитудно-частотную характеристику (АЧХ) наушников — это график, который показывает, какие частоты воспроизводятся громче, а какие — тише. Оказывается, такие измерения можно произвести «на коленке», без специальной аппаратуры.

    Нам понадобится компьютер с Windows (я использовал ноутбук), микрофон, а также источник звука — какой-нибудь плеер с bluetooth (я взял смартфон). Ну и сами наушники, конечно.

    (Под катом — много картинок).

    Подготовка

    Вот такой микрофон у меня нашёлся среди старых гаджетов. Микрофон копеечный, для разговоров, не предназначенный ни для записи музыки, ни тем более не для измерений.

    Конечно, такой микрофон имеет свою АЧХ (и, забегая вперёд, диаграмму направленности), поэтому сильно исказит результаты измерений, но для поставленной задачи подойдёт, потому что нас интересуют не столько абсолютные характеристики наушников, сколько то, как они изменяются при переключении эквалайзера.

    У ноутбука имелся всего один комбинированный аудиоразъём. Подключаем туда наш микрофон:


    Windows спрашивает, что за прибор мы подключили. Отвечаем, что это микрофон:


    Windows — немецкий, извините. Я ведь обещал использовать подручные материалы.

    Тем самым единственный аудиоразъём оказывается занятым, поэтому и нужен дополнительный источник звука. Скачиваем на смартфон специальный тестовый аудиосигнал — так называемый розовый шум. Розовый шум — это звук, содержащий весь спектр частот, причём равной мощности по всему диапазону. (Не путайте его с белым шумом! У белого шума другое распределение мощности, поэтому его нельзя использовать для измерений, это грозит повреждением динамиков).

    Настраиваем уровень чувствительности микрофона. Нажимаем правую кнопку мыши на значке громкоговорителя в Windows и выбираем регулировку устройств записи:


    Находим наш микрофон (у меня он получил название Jack Mic):


    Выбираем его в качестве устройства записи (птичка в зелёном кружочке). Выставляем ему уровень чувствительности поближе к максимуму:


    Microphone Boost (если есть) убираем! Это автоматическая подстройка чувствительности. Для голоса — хорошо, а при измерениях будет только мешать.

    Устанавливаем на ноутбук измерительную программу. Я люблю TrueRTA за возможность видеть сразу много графиков на одном экране. (RTA — по-английски АЧХ). В бесплатной демо-версии программа измеряет АЧХ с шагом в октаву (то есть соседние точки измерения отличаются по частоте в 2 раза). Это, конечно, очень грубо, но для наших целей сойдёт.

    При помощи скотча закрепляем микрофон около края стола, так чтобы его можно было накрыть наушником:


    Важно зафиксировать микрофон, чтобы не сдвинулся в процессе измерений. Подсоединяем наушники проводом к смартфону и кладём одним наушником поверх микрофона, так чтобы плотно закрыть его сверху — примерно так наушник охватывает человеческое ухо:


    Второй наушник свободно висит под столом, из него мы будем слышать включённый тестовый сигнал. Убеждаемся, что наушники лежат стабильно, их тоже нельзя сдвигать в процессе измерений. Можно начинать.

    Измерения

    Запускаем программу TrueRTA и видим:


    Основная часть окна — поле для графиков. Слева от него находятся кнопки генератора сигналов, он нам не понадобится, потому что у нас внешний источник сигнала, смартфон. Справа — настройки графиков и измерений. Сверху — ещё кое-какие настройки и управление. Ставим белый цвет поля, чтобы лучше видеть графики (меню View → Background Color → White).

    Выставляем границу измерений 20 Hz и количество измерений, скажем, 100. Программа будет автоматически делать указанное количество измерений подряд и усреднять результат, для шумового сигнала это необходимо. Выключаем отображение столбчатых диаграмм, пусть вместо них рисуются графики (кнопка сверху с изображением столбиков, отмечена на следующем скриншоте).

    Сделав настройки, производим первое измерение — это будет измерение тишины. Закрываем окна и двери, просим детей помолчать и нажимаем Go:


    Если всё сделано правильно, в поле начнёт вырисовываться график. Подождём, пока он стабилизируется (перестанет «плясать» туда-сюда) и нажмём Stop:


    Видим, что «громкость тишины» (фоновых шумов) не превышает -40dBu, и выставляем (регулятор dB Bottom в правой части окна) нижнюю границу отображения в -40dBu, чтобы убрать фоновый шум с экрана и покрупнее видеть график интересующего нас сигнала.

    Теперь будем измерять настоящий тестовый сигнал. Включаем плеер на смартфоне, начав с малой громкости.

    Запускаем измерение в TrueRTA кнопкой Go и постепенно прибавляем громкость на смартфоне. Из свободного наушника начинает доноситься шипящий шум, а на экране возникает график. Добавляем громкость, пока график не достигнет по высоте примерно -10...0dBu:


    Дождавшись стабилизации графика, останавливаем измерение кнопкой Stop в программе. Плеер тоже пока останавливаем. Итак, что мы видим на графике? Неплохие басы (кроме самых глубоких), некоторый спад к средним частотам и резкий спад к верхним частотам. Напоминаю, что это не настоящая АЧХ наушников, свой вклад вносит микрофон.

    Этот график мы возьмем в качестве эталонного. Наушники получали сигнал по проводу, в этом режиме они работают как пассивные динамики без всяких эквалайзеров, их кнопки не действуют. Занесём график в память номер 1 (через меню View → Save to Memory → Save to Memory 1 или нажав Alt+1). В ячейках памяти можно сохранять графики, а кнопками Mem1..Mem20 в верхней части окна включать или отключать показ этих графиков на экране.

    Теперь отсоединяем провод (как от наушников, так и от смартфона) и подключаем наушники к смартфону по bluetooth, стараясь не сдвинуть их на столе.


    Снова включаем плеер, запускаем измерение кнопкой Go и, регулируя громкость на смартфоне, приводим новый график по уровню к эталонному. Эталонный график изображён зелёным, а новый — синим:


    Останавливаем измерение (плеер можно не выключать, если не раздражает шипение из свободного наушника) и радуемся, что по bluetooth наушники выдают такую же АЧХ, как по проводу. Заносим график в память номер 2 (Alt+2), чтоб не ушёл с экрана.

    Теперь переключаем эквалайзер кнопками наушников. Наушники рапортуют бодрым женским голосом «EQ changed». Включаем измерение и, дождавшись стабилизации графика, видим:


    Хм. Кое-где есть отличия в 1 децибел, но это как-то несерьёзно. Скорее похоже на погрешности измерений. Заносим и этот график в память, переключаем эквалайзер ещё раз и после измерения видим ещё один график (если очень хорошо присмотреться):


    Ну, вы уже поняли. Сколько я ни переключал эквалайзер на наушниках, никаких изменений это не давало!

    На этом, в принципе, можно заканчивать работу и делать вывод: у этих наушников работающего эквалайзера нет . (Теперь понятно, почему его не получалось услышать).

    Однако тот факт, что мы не увидели никаких изменений в результатах, огорчает и даже вызывает сомнения в правильности методики. Может, мы измеряли что-то не то?

    Бонусные измерения

    Чтобы убедиться, что мы измеряли АЧХ, а не погоду на Луне, давайте покрутим эквалайзер в другом месте. У нас же есть плеер в смартфоне! Воспользуемся его эквалайзером:

    Перед тем как подходить к обзору комбиков для игры на улице хотелось бы разобраться с главным. С тем, как формируется звук, который мы слышим?
    Звук в процессе формирования проходит примерно такой путь:

    Звукосниматель или микрофон --->
    предварительный усилитель --->
    эквалайзер / набор эффектов --->
    усилитель мощности --->
    акустическая система.

    Акустическая система(динамик) у нас находится на выходе. И хотя на картинке спикер занимает очень мало места - он формирует звук, а значит, во многом и определяет.

    Другими словами: если акустическая система хреновая, то какой бы сигнал высокого качества не шел с УМ, мы услышим то, что соизволит передать АС. Стоит отметить, что иногда производители портативных комбиков забывают об этом, устанавливая на свои конструкции совершенно посредственные динамики, которые просто не в состоянии сделать звук качественным и хорошо передать то, что вы играете. Этим недостатком грешат многие комбики.
    Однако:

    АКУСТИКА В ПЕРВУЮ ОЧЕРЕДЬ ОПРЕДЕЛЯЕТ ЗВУЧАНИЕ СИСТЕМЫ!
    И является наиболее важным ее компонентом.
    Вообще странно, что в музыкальной среде идёт много разговоров о , дереве и гитарах, наборах эффектов, пред. усилителях и усилителях мощности, проводах, но о динамиках и акустических системах упоминается очень мало.
    Для меня же этот вопрос встал, прежде всего, когда стал разбирать проблемы плохого звучания портативной аппаратуры. Основная беда – маленькие невнятные, дешевые динамики с плохой чувствительностью.

    В начале 90-х, когда Hi-End впервые стал появляться в России, имела место быть замечательная эмпирическая формула о распределении ресурсов. Выглядела она примерно так: 50% - акустика, 10% - все кабели, 40% - источник и усилитель.
    И это в целом верно, т.к. именно правильно выбранная акустика является первоосновой, вокруг которой можно строить свою систему и получить качественный звук.

    И так, давайте перейдём к динамикам:

    Основные части динамика - магнит, катушка, мембрана(диффузор), рама(корзина, диффузородержатель). Основными составными частями, влияющими на звук, параметры, конфигурацию - назначение являются первые три.
    Также хочется упомянуть сразу о параметрах, которые на динамиках указываются и по которым их можно выбрать. (А уж вникнем в суть каждого из них и как каждая часть динамика влияет на него - чуть позже.)

    ПАРАМЕТРЫ ДИНАМИКА:

    «Чувствительность» - это стандартное звуковое давление (SPL), которое развивает громкоговоритель. Оно измеряется на расстоянии 1 метр при подводимой мощности 1 Ватт на фиксированной частоте (обычно 1 кГц, если в документации на динамик не указано особо).
    Чем выше чувствительность акустической системы, тем более громкий звук она способна выдать при заданной подводимой мощности. Имея АС с высокой чувствительностью, можно иметь не слишком мощный усилитель, и напротив, чтобы «раскачать» АС с малой чувствительностью, потребуется усилитель большей мощности.
    Численное значение чувствительности, например, 90 дБ/Вт/м, означает, что эта АС способна создать звуковое давление в 90 дБ на расстоянии 1 м от динамика при подводимой мощности 1 Вт. Чувствительность обычных АС лежит в пределах от 84 до 102 дБ. Условно чувствительность 84-88 дБ можно назвать низкой, 89-92 дБ - средней, 94-102 дБ - высокой. Если измерения проводятся в обычном помещении, то к прямому излучению АС примешивается звук, отраженный от стен, повышая уровень звукового давления. Поэтому некоторые компании указывают для своих АС «безэховую» (anechoic) чувствительность, измеренную в безэховой камере. Понятно, что безэховая чувствительность - более «честная» характеристика.

    «Диапазон воспроизводимых частот» указывает частотные границы, в пределах которых отклонение звукового давления не превосходит некоторых пределов. Обычно эти пределы указаны в такой характеристике, как «неравномерность АЧХ».

    АЧХ - амплитудно-частотная характеристика динамика.
    Показывает уровень звукового давления динамика в зависимости от воспроизводимой частоты. Обычно представленна в виде графика. Вот пример АЧХ для динамика Celestion Vintage 30:

    «Неравномерность АЧХ» - показывает неравномерность амплитуды в диапазоне воспроизводимых частот. Обычно от 10 до 18 дБ.

    (Поправка - да, ± 3дБ - это характеристика АС, необходимая для более «честного» воспроизведения сигнала в указанном диапазоне.)

    «Импеданс»(СОПРОТИВЛЕНИЕ) - полное электрическое сопротивление динамика, обычно 4 или 8 Ом. Некоторые динамики имеют импеданс 16 Ом, некоторые - не стандартные значения. 2, 6, 10, 12 Ом.

    «Номинальная электрическая мощность» RMS (Rated Maxmum Sinusoidal) - постоянная долговременная подводимая мощность. Обозначает ту мощность, которую громкоговоритель может выдержать в течение продолжительного периода времени без повреждения подвеса диффузора, перегрева звуковой катушки и других неприятностей.

    «Пиковая электрическая мощность» - максимальная подводимая мощность. Обозначает ту мощность, которую громкоговоритель может выдержать в течение короткого времени(1-2 секунды) без риска повреждения.

    Теперь можно рассмотреть, как каждая из частей динамика влияют на параметры динамика и на звук - в целом. :) Но об этом в следующих статьях.

    Другие параметры динамика – такие, как размер и материал мембраны. И их влияние на свойства и звук. Рассмотрим в другой статье.

    Кирилл Труфанов
    Гитарная мастерская.