Сайт о телевидении

Сайт о телевидении

» » Дополнительный модуль управления вентилятором охлаждения. Вентилятор охлаждения двигателя автомобиля

Дополнительный модуль управления вентилятором охлаждения. Вентилятор охлаждения двигателя автомобиля

На схеме не указано - VD3 - КС522

Измеренная температура двигателя отображается в диапазоне от 0 до 99 градусов. Если температура ниже нуля градусов, то на дисплее высвечивается Lo (низкая), а когда больше 99 градусов - высвечивается Hi (высокая). Хотя предел индикации 99 градусов, термометр все равно продолжает измерять температуру. Как только температура дойдет до 110 градусов (что для двигателя мерседеса считается нормально, он не кипит при такой температуре) - то на дисплее будет высвечено Ot (перегрев). А на выходе RA4 микроконтроллера появляется сигнал логического 0 - ошибка, этот сигнал можно использовать для включения светодиода в салоне, или для управления бипером. Сигнал на RA4 будет сброшен только после выключения зажигания, снижение температуры двигателя никакого влияния на этот сигнал уже не окажет. При температуре ниже 40 градусов будет включен подогреватель впускного коллектора. Аналогично при температуре 89 градусов будет включен вентилятор охлаждения. Чтобы снизить нагрузку на аккумулятор, устройство имеет вход который соединяется с реле стартера. Когда включен стартер, не зависимо от температуры двигателя, выключаются вентилятор и подогреватель, как только стартер будет выключен, ветилятор и подогреватель включаться согласно измеренной температуры.

Сам термометр-термостат собран на печатной плате и размещен в пластиковом корпусе. Корпус закреплен двумя саморезами прямо в моторном отсеке. Размещать прибор нужно так, чтобы он был максимально удален от высоковольтных проводов зажигания и других силовых проводов, а также как можно дальше от горячих деталей двигателя. Очень желательно применить микроконтроллер в расширенном температурным исполнением - PIC16F628A-E/P, но можно и в промышленном - PIC16F628A-I/P. Плата разработана под сдвоенный светодиодный индикатор фирмы Bright LED - BD-A816RD. По большому счету индикатор в этом устройстве и не нужен, но я его установил, чтобы не было устройство совсем простым, а так же, чтобы прямо под капотом можно увидеть температуру двигателя. Микросхемный стабилизатор 7805 нужно установить на малогабаритный радиатор - полоску алюминия. Электролитические конденсаторы нужно выбирать из морозостойких экземпляров.

Для изготовления самого датчика температуры понадобилась болванка из латуни, из нее был выточен корпус для датчика DS18B20. Этот корпус изготовлен так, чтобы он легко вкручивался на место одного из штатных датчиков (они к сожалению благополучно умерли:-), поэтому и пришлось разработать это устройство). Корпус желательно сделать максимально облегченным, чтобы уменьшить его температурную инерцию. Соединять датчик с платой микроконтроллера нужно экранированным термостойким проводом.

В процессе эксплуатации транспортного средства происходит нагревание двигателя. Чтобы предотвратить перегрев силового агрегата, автомобили оборудованы системой охлаждения. Главная деталь, которая обеспечивает обдув мотора и жидкости в радиаторе - это вентилятор системы охлаждения двигателя.

Приводное устройство вентилятора

Конструкция вентилятора охлаждения агрегата состоит из шкива и закрепленных на нем лопастей. Эффективность нагнетания воздуха обеспечивается установкой лопастей под определенным углом. Принцип работы зависит от конструктивных особенностей привода.

Механический

Вращение на шкив от коленчатого вала через ременную передачу. Это простейшая установка, которая находится в постоянном зацеплении с коленвалом. Недостаток такого механизма в том, что для постоянного вращения вентилятора охлаждения радиатора ДВС затрачивает много полезной энергии.

На сегодняшний день механический тип привода почти не встретить. Обычно их устанавливают на агрегаты с продольным расположением, вездеходные джипы.

Гидромеханичиеский

Это приводное устройство, работающее от разницы давления в муфте. Муфты бывают двух типов: гидравлическая и вязкостная. Частота вращения последнего равна входным оборотам коленчатого вала. Поэтому, для сохранения крыльчатки и лопастей при высоких оборотах мотора используют вязкостную муфту.

Как она работает

Корпус такой муфты заполнен специальной жидкостью - силиконом. Когда движок работает под постоянной нагрузкой или на высоких оборотах, происходит процесс нагрева силиконовой жидкости. По мере нагрева жидкость расширяется, постепенно зажимая муфту, что приводит в работу вентилятор охлаждения.

Гидравлическая конструкция работает в зависимости от изменения объема масла. Момент блокировки не зависит от частоты вращения коленвала. В режиме высоких оборотов ДВС муфта не дает крыльчатки разгонятся, предохраняя ее от разрушения. Первоначальной задачей системы управления вентилятором является удерживать оптимальные обороты необходимые для эффективного охлаждения.

Электронное приводное устройство

На современные автомарки, оборудованы автоматическими системами контроля начали устанавливать электрический двигатель вентилятора охлаждения радиатора. Достоинством привода является независимое функционирование, легкость в настройке.

Управление вентилятором охлаждения двигателя осуществляется через температурные модули охлаждающей жидкости. По данным с датчиков блок управления вентилятором охлаждения двигателя корректирует скоростной режим крыльчатки, изменяя скорость вращения и период работы.

Питание на двигатель вентилятора поступает через электронные приборы автомобиля (аккумулятор, генератор).

Методы управление вентилятором системы охлаждения двигателя:

  • термовыключатель;
  • блок управления.

Технические показатели.

Термовыключатель использовался на ранних этапах производства автомобилей. По показателям с датчика температуры в радиаторе, механизм определяет, включится или отключится вентилятор охлаждения двигателя. В агрегатах с термовыключателя вентилятор системы охлаждения двигателя работает в узком температурном диапазоне. Включается вентилятор охлаждения при прогреве блока до 85 С°, отключение происходит при остывании до 70 С°.

Принцип работы механизма

Когда температура тосола в радиаторе прогревается до максимально заданного значения, происходит замыкание контактов терморегулятора. Цепь питания в двигателе вентилятора замыкается, и вентилятор охлаждения двигателя начитает вращатся. После снижения температуры контакты расходятся, работающий вентилятор останавливается.

Схема управления с ЭБУ

Чтобы узнать, как работает вентилятор охлаждения двигателя с ЭБУ, необходимо ознакомится с ее строением.

Стандартное электронное управление состоит из таких элементов:

  • электродвигатель;
  • расходомер воздуха;
  • модуль частоты вращения коленчатого вала;
  • реле момента включения вентилятора;
  • датчик колебания температуры охлаждающей жидкости.

Для контроля над температурой жидкости в патрубке радиатора установлен датчик температуры. Некоторые модели авто оборудованы двумя датчиками, один на выходном канале радиатора, другой в блоке цилиндров.

Для более точного определения режима работы движка установлены модуль частоты вращения и воздухомер. Показания с датчиков поступают на центральный блок. ЦБ обрабатывает информацию и задает программу работы на реле.

Сохранность системы охлаждения

После нагрева движка до предельной температуры, должен включаться вентилятор. Существует много минусов резкого старт, которые негативно действуют на электропроводку автомобиля.

Перегрузку получают такие элементы:

  • генератор, аккумуляторная батарея, электропроводка;
  • детали крепления, подшипники;
  • датчики температуры, вследствие эффекта термокачки.

Чтобы проводка выдержала пусковые перегрузки, в автомобиль установлен мощный и дорогой предохранитель. Решить проблему перегрузки поможет плавное включение вентилятора охлаждения. Многие современные модели авто уже имеют такую функцию, но есть такие которые нужно переоборудовать своими руками.

Известно несколько способов плавного включения вентилятора охлаждения двигателя самостоятельно.

  1. Установить в свой радиатор датчик охлаждения с более низкой температурой срабатывания.

Особенности функционирования штатного устройства:

  • высокая производительность. Привод работает на высокой скорости, что приводит к частым старт-стопам системы.
  • высокая температура срабатывания датчика, что приводит к перебоям в оборотах двигателя и закипанию.

Хорошую производительность обеспечит невысокие обороты привода и плавное срабатывание.

  1. Установка кнопки принудительного обдува. Такой способ позлит водителю самостоятельно решать, когда включится вентилятор охлаждения двигателя. Такое решение поддерживает стабильную температуру ОЖ и сохраняет систему от резкого скачка напряжения. Это обеспечивается благодаря установке дополнительного реле с большим сопротивлением.
  2. Монтаж генератора пуска. Метод подходит для водителей, которые знакомы с устройством электрики и методами пайки. Регулятор придется переделать индивидуально для автомобиля и установить в цепь питания устройства. Как работает генератор: после подачи напряжения на устройство, для определения момента открытия затвора, ток проходит через драйвер транзисторов, диоды и конденсатор. Величина и плавность открытия заслонки зависит от емкости конденсатора. Инструкции по подключению можно найти на форумах.
  3. Эффективный, но дорогостоящий вариант - это установить блок управления. Его эффективность заключается в постепенном изменении оборотов электромотора в зависимости от изменения температуры ОЖ.

Устройство использует отдельный стандартный датчик температуры 423.3828, что позволяет не вмешиваться в штатную систему инжектора и не мудрить с проводкой и подключением к приборке или родному датчику температуры ОЖ.

Принцип работы

При запущенном двигателе контроллер постоянно следит за показаниями с дополнительного датчика, и:
  • при достижении заданного порога температуры (90 o С) запускается вентилятор на малых оборотах
  • при повышении до максимального значения (95 o С) плавно разгоняет вентилятор до максимальных оборотов
  • при понижении температуры - плавно снижает обороты, и после преодоления порога ниже 90 o С – полностью останавливает вентилятор.

Таким образом, рабочая температура двигателя на малых скоростях и в летних пробках фактически не превышает 90-92 o C, за исключением конечно аномальной летней жары. За 9 месяцев работы контроллера (с апреля по декабрь) и 15 000 км пробега, на моём ВАЗ 2110 1.6 16V (+ГБО) двигатель ни разу не нагревался больше 95 o C, и соответственно ни разу не сработала штатная система охлаждения.

Разработка и реализация

За основу схемы управления был взят AVR микроконтроллер семейства Tiny, в моем случае – ATTiny85. Но также можно было использовать любой ардуино-совместимый микроконтроллер семейства AVR Tiny, MEGA, а также готовые ардуино-платы с небольшими дополнениями. Для силовой части был использован очень мощный мосфет-транзистор IRF1405 (можно использовать и менее мощный). С помощью отладочной ардуино-платы были сняты показания датчика при пороговых значениях температуры (90-95 С).

Как обыграть онлайн-казино на 368 548 рублей, используя дыру в алгоритме?
Пошаговая инструкция

Привет! В интернете меня знают, как Джером Холден и я зарабатываю на тестировании алгоритмов всем известного казино Вулкан: ищу уязвимости в играх, делаю ставки и срываю куш.

Сейчас я собираю комьюнити для более глобального проекта, поэтому делюсь схемами бесплатно. Рассказываю все максимально подробно, ничего сложного нет, работать можно прямо с телефона, справятся даже девушки)). Можешь протестировать алгоритмы, заработать денег и решить - присоединиться к моей команде или нет. Подробности тут .

За три месяца я заработал на своих схемах 973 000 рублей:


Принцип регулировки оборотов вентилятора - обычный ШИМ. В двух словах, для тех, кто не знает, что такое ШИМ (широтно-импульсная модуляция) - это изменение ширины импульсов (в нашем случае постоянного тока с напряжением 12В) определённой частоты для регулировки силы тока на нагрузке (в нашем случае вентиляторе), что обеспечивает управление скоростью вращения любого электродвигателя постоянного тока (анимация и видео ниже):


Т.е. чем шире импульс, тем больше ток, и тем быстрее скорость вращения вентилятора и наоборот.
На видео «крутилка» (потенциометр) имитирует показания с датчика ОЖ. при повышении/понижении температуры.

Таким образом, цель разработки заключалась в реализации управления электровентилятора ШИМ-сигналом на основании показаний датчика температуры ОЖ. С серьезным подходом к программированию микроконтроллеров у меня пока проблемы))), так что было решено использовать платформу ардуино с собственным и очень простым языком программирования для начинающих. И на основании многих примеров, взятых из интернета, была разработана программа для управления микроконтроллером.

/**_____________________ПЕРЕМЕННЫЕ:______________________**/
int dc = 0;
int val;
int reg;
int bal;
/**_____________________//ПЕРЕМЕННЫЕ____________________**/
/**___________________Инициализация:____________________**/
void setup()
{
pinMode(1, OUTPUT); //нога(6): Индикация подстройки порога температуры срабатывания (светодиод)
pinMode(0, OUTPUT); //нога(5): Вывод драйвера силового транзистора
pinMode(A2, INPUT); //нога(3): Вход датчика температуры
pinMode(A3, INPUT); //нога(2): Вход потенциометра (регулятора порога срабатывания)
bal = analogRead(A3);
bal = constrain(bal,1,1023);
reg = map(bal,1,1023,0,30);
val = (analogRead(A2))+reg;
val = constrain(val,865,895); //Промежуток значений датчика для диапазона регулировки температуры(!!подбирался эксперементальным путем, значения подходят только для вазовского(исправного инжекторного датчика тепературы 423.3828
dc = map(val, 865, 895, 1, 9999);
}
/**___________________//Инициализация____________________**/
/**___________________ОСНОВНОЙ ЦИКЛ:______________________**/
//Контроллер постоянно считывает значения датчика, и при срабатывании порога включения запускает вентилятор со скоростью пропорциональной росту значениям температуры: при увеличении значений тепературы - повышаются обороты венитятора; при уменьшении значени - понижаются оброты; при уменьшении ниже порога срабатываний, вентилятор - отключается; при увеличении выше порога регулировки - вентилятор вращается на максимальных оборотах
void loop()
{
void (* resetFunc) (void) = 0;
if(dc > 1)
{
digitalWrite(13, HIGH);
digitalWrite(3, HIGH);
delayMicroseconds(dc);
digitalWrite(3, LOW);
if(dc >= 9999)
{
digitalWrite(3, HIGH);
}
else
{
delayMicroseconds(10000 - dc); // частота регулировки 100Гц (шим)
}
dc = 0;
resetFunc();
}
else
{
digitalWrite(3, LOW);
digitalWrite(13, LOW);
resetFunc();
}
}
/**___________________//ОСНОВНОЙ ЦИКЛ____________________**/

Принципиальная схема устройства выглядит следующим образом:


Это уже доработанная схема с подстройкой порога температуры срабатывания. Питание осуществляется от вывода «D» генератора, что позволяет контроллеру работать только при заведенном двигателе, хотя это не критично и можно запитываться от «зажигания». В схеме реализована стабилизация питания микроконтроллера (5В) на базе преобразователя VR1. В роли драйвера силового транзистора-VT1 используется оптрон-DD2. Транзистор нуждается в охлаждении, так как через него проходят большие токи (около 10 Ампер). Подойдет любой радиатор площадью охлаждающей поверхности в 30 кв. см и выше.

Также обязательна установка предохранителей по «+» питания контроллера (не мене 100милиАмпер), и по цепи массы – не менее 20 Ампер (так как коммутация вентилятора силовым транзистором осуществляется именно по «массе»)! Номиналы всех радиодеталей должны быть четко соблюдены. Частота ШИМ-сигнала была подобрана экспериментальным путем во избежании низкочастотных помех в бортовой сети, а также для снижения шумов обмоток электродвигателя вентилятора при малых оборотах, и составляет 100Гц.

Печатная плата проектировалась «на коленке», поэтому корпус и проводка собрана из подручных материалов:

Рисунок печатной платы не принципиальный, кому интересно все материалы в архиве .

Подключение. Крыльчатка вентилятора используется 8-лопасная , так как от стандартной 4-лопасной крыльчатки эффекта на низких оборотах очень мало + лишня вибрация никогда не добавляла комфорта.


Видео испытаний, подключение:
По итогам сборки заморочек получилось, конечно, много, но себестоимость устройства составила около 10 у.е.))) и это хорошо! Любые вопросы пишите в комментариях.

Модуль управления силовым агрегатом (PCM) в зависимости от температуры изменяет параметры управления двигателем автомобиля. PCM управляется сигналом, поступающим с датчика температуры(ECT) , который находится на распределителе жидкости, под катушкой зажигания. Зависимость напряжения от температуры, измеренная на датчике ECT автомобиля представлена в таблице

Указатель температуры на панели приборов, тоже включен в PCM. Однако значения, которые указывает прибор, не соответствует истинной температуре охлаждающей жидкости. При Т=45°С на приборе стрелка на 60. Затем при прогреве она доходит до деления 90 при Т=80-83°С и останавливается. Дальнейший рост температуры на показания прибора не влияет. Стрелка стоит на отметки 90. И только на 116°С прибор начинает изменять свои показания. И при температуре 120°С стрелка становится на отметку 120.

Данный алгоритм работы указателей температуры применен на многих автомобилях. И при отказах в системе охлаждения (сгоревший предохранитель, заклинивший вентилятор) легко довести температуру ОЖ до значения 110-115°С и выше. Что нежелательно сказывается на работе двигателя в целом.

Для односкоростного варианта температура включения вентилятора составляет 105°С . Для двухскоростного варианта при 94°С медленная, при 97°С максимальная скорость вентилятора.

Прочитав форум по электрооборудованию было принято решение снизить температуру включения со 105°С до 97°С. Для этого был сделан блок, который работает в параллель с PCM автомобиля и управляет вентилятором.

Принципиальная схема блока

Схема содержит два компаратора и усилитель тока. Первый компаратор включает реле вентилятора K8 и светодиод VD3 при достижении заданного напряжения на датчике температуры. Напряжение с датчика подается на вход Ud. Образцовое напряжение задается делителем R1,R2. Для создания гистерезиса в схеме включен резистор R6.Резистор подобран так, чтобы перепад межу включением и выключением составлял 80мВ., что соответствует 4°С Транзистор Q2 открывается, подает питание на реле K8 , которое включает вентилятор. Зажигается красный светодиод LED3. Происходит принудительное охлаждение радиатора двигателя.

Напряжение на датчике после этого возрастает, компаратор срабатывает, и на выходе появляется 0. Транзистор Q2 закрывается, отключая питание реле K8. Реле выключает мотор вентилятора.

На втором компараторе собран измеритель рабочей температуры. До 81°С охлаждающей жидкости горит желтый светодиод LED1. От 81°С до 97°С горит зеленый светодиод LED2, указывающий на нормальный рабочий режим.

Образцовое напряжение, соответствующее напряжению на датчике при Т=81°С, задается резисторами R8, R9.

Значение 81°С было выбрано не зря. По проведенным наблюдениям эта та температура, когда открывается термостат и включается в работу большой круг системы охлаждения двигателя.

Стабилизатор напряжения LM7809 можно заменить и на другие. Тогда придется пересчитать делители R1,R2 R8,R9 R5, и R7. Используется микросхема LM2903 (2 компаратора) , транзисторы VT1- КТ315 и VT2- КТ 815, или им подобные. Резисторами R10, R11 подбирается яркость свечения светодиодов.

Данный блок работает в параллель с РСМ автомобиля. Для включения используется основное реле K8, расположенное на блоке предохранителей.

В настройке блок не нуждается. Делителем R1,R2 выставлено напряжение 0.63-0.65 в, что соответствует Т=97°С.

При рабочей температуре и включении кондиционера могут гореть одновременно зеленый и красный светодиоды. В этом режиме вентилятор и красный светодиод включает РСМ.

Так выглядит блок.

Подвожу провод к датчику температуры

Подключение на блоке предохранителей

Блок стоит на автомобиле

На современной машине установлен один вентилятор , работающий в разных скоростных режимах.

Управление вентилятором охлаждения выполняет две задачи :

  1. предотвращение перегрева мотора;
  2. охлаждение фреона в конденсаторе.

Управляет блок управления, который расположен на арматуре вентилятора. Вентилятор, арматура и блок управления являются одним узлом. При выходе из строя одной из частей заменяются весь узел в сборе.

Неисправность блока управления

Одна из бед системы охлаждения - выход из строя вентилятором охлаждения, что не даёт сработку вентилятора и вызывает перегрев мотора, а при использовании кондиционера - перегрев фреона, повышение давления, а в результате повреждение системы кондиционирования.

Если перегрев можно заметить по данным прибора температуры двигателя на приборной панели, то перегрев фреона можно определить только по косвенным признакам (недостаточное охлаждение воздуха).

Управление вентилятором охлаждения не подразумевает , но отремонтировать его можно. Два слабых места это полевые транзисторы IRF477. Они N-канальные транзисторы с напряжением 450В и током 8,8А. При ремонте заменяются на IRF640, так как в продаже 477-ые встречаются редко и их сложно найти в магазинах.

Выход из строя транзистора также может повлечь повреждение микросхемы TL494 . При ремонте этого блока управления вентилятором охлаждения, замена микросхемы не потребовалась.

Ремонт блока управления

Чтобы заменить транзисторы необходимо удалить часть компаунда. Это легко сделать нагрев его феном паяльной станции.

Далее откручиваем гайки, которые крепят транзисторы, просверлив два отверстия в нижней стенке корпуса, через которые надодержать винты отверткой, что бы гайки не проворачивались вместе с винтами. Далее работаем паяльником.

Для проверки нашей конструкции после ремонта без машины собираем имитатор, хотя можно замкнуть сиреневый провод на минус, подав питание на блок управления.

После подачи питания вентилятор не должен крутиться, а при замыкании управляющего провода на «–» должен крутиться на средних оборотах. С помощью имитатора, легко регулировать скорость вращения во всем диапазоне.