Сайт о телевидении

Сайт о телевидении

» » Что такое автотрансформатор? В чем разница между силовым трансформатором и распределительным трансформатором

Что такое автотрансформатор? В чем разница между силовым трансформатором и распределительным трансформатором

Работа электрооборудования обеспечивается системой повышающих, понижающих трансформаторов. Приборы «отличаются» рядом характеристик. Бытовые агрегаты рассчитаны на напряжение 110 или 220В, а бытовые – на 380В. Некоторые из представленных устройств снижают или повышают напряжение, другие передают электричество постепенно от подстанции потребителям.

Подобные действия совершают «трансформаторы и автотрансформаторы». Агрегаты характеризуются некоторыми отличиями. Однако подобные аппараты предназначены для поддержания требуемого уровня напряжения в сети. Чтобы научиться правильно, безопасно применять подобное оборудование, нужно рассмотреть их главные отличия.

Основное определение

Чтобы понимать, «чем принципиально отличаются трансформатор и автотрансформатор», нужно рассмотреть их определение.

Трансформатор – электромагнитный прибор статического типа, преобразующий электрический ток переменного значения с определенным показателем напряжения в электроэнергию другого уровня. Прибор способен повышать или понижать этот показатель. Система способна преобразовывать частоту и количество фаз электрического тока. Также рекомендуем ознакомиться с конструкцией и принципами работы .

Оборудование включает несколько обмоток. Контуры находятся на сердечнике из специального сплава. Первичная катушка подключается к сети переменного типа. Вторичная катушка или все остальные обмотки соединены с установкой, потребляющей исходящее электричество.

Основным принципом работы прибора является закон Фарадея. При перемещении через обмотку магнитного потока определяется некоторая электродвижущая сила.

При необходимости менять параметры незначительно, разрешается применять «автотрансформатор ». Этот агрегат представляет собой систему с двумя обмотками, объединенными в одну катушку. Это обеспечивает возникновение электромагнитной, электрической связи. Подробнее о автотрансформаторе мы писали .

Основные отличия

Существует всего 5 основных отличий трансформатора и автотрансформатора. Их можно кратко перечислить:

  1. В первую очередь оба этих агрегата отличаются «тем», что у них присутствует разное количество обмоток.
  2. Надежность и безопасность автотрансформатора уступает обычному трансформатору.
  3. Автотрансформаторы стоят дешевле.
  4. Трансформатор имеет меньший уровень КПД.
  5. Габариты автотрансформатора меньше.

У трансформаторов, отличающихся количеством обмоток, есть две катушки и более. Второй тип агрегатов обладает одной совмещенной катушкой. Она имеет минимум три выхода для подключения к различным коммуникациям и получения на выходе различных показателей сети.

Автотрансформаторы применяются в сетях с напряжением от 150 кВ и более. Они компактные, удобные и стоят значительно дешевле. Их главным преимуществом является высокий уровень КПД. Однако существенным недостатком является отсутствие между обмотками изоляционного материала. Это понижает безопасность представленных приборов при его эксплуатации и обслуживании. Для промышленных сетей это не столь важно, но для бытового применения подобный факт является существенным недостатком.

Если применять этот прибор в бытовых сетях, при возникновении аварийной ситуации электричество может быть приложено из первичной обмотки к низшему напряжению. Это происходит из-за пробоя изоляции частей, проводящих электричество. Части агрегата будут соединены с высоковольтными частями. Поэтому для бытовых нужд применяют трансформаторы, а в промышленности – автотрансформаторы.

Рассмотрев основные отличия автотрансформаторов и трансформаторов, каждый пользователь сможет правильно применять подобное оборудование в своих целях.

Автотрансформаторы бывают повышающие и понижающие, однофазные и трехфазные. Применяются они для питания бытовых приборов, пуска асинхронных электрических двигателей, в промышленных электрических сетях. В быту автотрансформаторы используют для регулировки напряжения сети, если оно завышено или занижено. В промышленности с их помощью уменьшают пусковые токи электрических двигателей, повышают напряжение в линиях электропередач для уменьшения потерь.

Чем отличается автотрансформатор от трансформатора

У обычного трансформатора первичные и вторичные обмотки электрически не связаны, энергия между ними передается посредством магнитного поля. Автотрансформатор фактически имеет одну обмотку, от которой отходят выводы. Помимо электромагнитной связи, обмотки автотрансформатора связаны электрически.

Устройство автотрансформатора

В простейшем случае, на замкнутом магнитопроводе располагаются две обмотки соединенные последовательно. В зависимости от варианта подключения источника энергии и нагрузки, автотрансформатор может работать как повышающий или как понижающий.

Существует конструкция, в которой реализован механизм ручного регулирования выходного напряжения (Вариак, ЛАТР). Так же применяются блоки автоматической регулировки с обратной связью, по сути, автотрансформатор с таким устройством можно назвать стабилизатором напряжения.

В автотрансформаторе энергия передается не только магнитным потоком, но и электрически, так как обмотки имеют гальваническую связь. Чем ближе коэффициент трансформации к 1, тем меньше энергии передается электромагнитным способом.

Ниже вы видите схему понижающего автотрансформатора, к первичной обмотке которого подключен источник переменного напряжения, а к выводам вторичной обмотки подключена нагрузка, в виде лампы накаливания.

В режиме холостого хода автотрансформатор работает так, как и обычный трансформатор. Когда подключена нагрузка, переменный магнитный поток возникающий в сердечнике индуктирует в витках вторичной обмотки ЭДС, направленную навстречу ЭДС источника энергии. Поэтому ток протекающий по вторичной обмотке равен разнице между током нагрузки и током первичной цепи. Это позволяет вторичную обмотку изготавливать из провода малого диаметра. Экономия на меди, тем меньше, чем больше коэффициент трансформации отличается от единицы.

Автотрансформатор эффективнее трансформатора и дешевле в изготовлении, при условии, что коэффициент трансформации не сильно отличается от единицы. Существенным недостатком с точки зрения безопасности, является отсутствие гальванической развязки между обмотками.

Трансформатором называется электромагнитное устройство, предназначенное для преобразования напряжения и тока одних параметров в напряжение и ток других параметров.

ВНИМАНИЕ!

Данная статья находится на переработке! Благодарим за понимание!

Трансформаторы бывают двух-, трех- и многообмоточные, в которых сооответственно две, три или более обмотки. Все обмотки в трансформаторе гальванически не связаны (исключение - автотрансформатор). Термин "гальванически не связанные" означает, что у этих обмоток нет общего контура протекания тока, а энергия из первичной цепи во вторичную передаётся с помощью магнитного поля.

Автотрансформатором (АТ) называется трансформатор, две или более обмотки которого гальванически связаны (т.е. имеют общую часть) . В отличии от обычного трансформатора в автотрансформаторе всегда минимум три обмотки. При этом вторичная обмотка АТ является частью первичной. Передача энергии из первичной цепи автотрансформатора во вторичную происходит одновременно магнитным полем и электрическим током, а в третичную цепь АТ - только магнитным полем.

Автотрансформатор экономически более выгоден по сравнению с обычным трансформатором за счёт экономии активных материалов и меньших размеров. Достигается такая экономия следующим образом: в автотрансформаторе часть первичной обмотки используется как вторичная, что снижает в последней напряжение U 2 и соответственно ток I 2 . Это позволяет использовать во вторичной обмотке проводник меньшего сечения, а первичная обмотка, которая выполняется на высокое напряжение U 1 получается уменьшеной до общей обмотки АТ.

В двухобмоточном трансформаторе различают обмотку высокого напряжения - ВН и низкого напряжения - НН . В трехобмоточном трансформаторе (автотрансформаторе) кроме обмотки ВН и НН различают обмотку среднего напряжения - СН . К трансформаторам с 4-мя и более обмотками понятия ВН, СН, НН не применяется (исключение - расщепление обмоток), а вместо этого в названии обмотки указывается ее номер: вторичная, третичная и четвертичная обмотки . При этом первичной считается обмотка с наибольшим напряжением, вторичной - со вторым по величене, третичной - третьим и так далее. Термины первичная, вторичная обмотки по отношению к двухобмоточному трансформатору имеют другое значение - первичной называется та обмотка, к которой подводится электрическая энергия, а вторичной - от которой эта энергия отводится.

Рисунок 1 - Принципиальная схема трансформатора

Рисунок 2 - Принципиальная схема автотрансформатора

На принципиальных схемах трансформаторы и автотрансформаторы обозначаются в соответствии со стандартом. Ниже на рисунках 3-6 изображены условные обозначения наиболее распостранненных трансформаторов.

Рисунок 3 - Двухобмоточный трансформатор

Рисунок 4 - Трансформатор с расщеплённой обмоткой

Рисунок 5 - Трансформатор с расщеплённой обмоткой

Рисунок 6 - Автотрансформатор

Каждый трансформатор имеет следующий набор параметров:

  • Номинальная мощность S ном ;
  • Номинальное напряжение трансформатора U ном и его обмоток: U вн , U нн (для трехобмоточного трансформатора - U сн );
  • Номинальный ток I ном ;
  • Группа соединения обмоток трансформатора;
  • Напряжение короткого замыкания U кз ;
  • Ток холостого хода I хх ;
  • Потери короткого замыкания P кз ;
  • Потери холостого хода Q хх .

Номинальной мощностью S ном в трех- и многообмоточном трансформаторе называется наибольшая из мощностей его обмоток, а в двухобмоточном - мощность каждой из его обмоток (обмотки двухобмоточного трансформатора выполняются одинаковой мощности).

Номинальным напряжением трансформатора U ном называется наибольшее номинальное напряжение его обмоток. За номинальное напряжение обмотки принимается напряжение между соответствующими зажимами, связанными с данной обмоткой при холостом ходе трансформатора.

Номинальным током трансформатора I ном называется величина тока, протекающая по его первичной обмотке под напряжением U ном и нагрузке S ном .

Напряжением короткого замыкания U кз называется величина напряжения, которое, при замкнутой накоротко вторичной обмотке, необходимо приложить к первичной обмотке трансформатора, чтобы по ней протекал ток I ном . Напряжение короткого замыкания обычно выражается в процентах. Физически, U кз представляет собой реактивное сопротивление трансформатора, выраженное в относительных единицах (о.е.).

Током холостого хода I хх называется величина тока протекающего по первичной обмотке трансформатора под напряжением U ном и разомкнутой вторичной обмотке. I хх выражается в процентах от номинального тока трансформатора. Физически ток холостого хода представляет собой полное сопротивление трансформатора в о.е.

Потерями короткого замыкания трансформатора P кз называется величина активной мощности, которая рассеивается в трансформаторе при замкнутой накоротко вторичной обмотке и токе I ном в первичной. P кз выражается в кВт (киловатт).

Потерями холостого хода Q хх называется величина реактивной мощности, рассеиваемая трансформатором в опыте холостого хода. Q хх выражается в кВар (киловар).

Кроме параметров перечисленных выше у трансформаторов могут быть и другие, характерные для одного типа. Например у кроме все прочих имеется параметр угловая погрешность показывающий отклонение вектора напряжения (тока) вторичной обмотки, от такого же вектора первичной обмотки.

Трансформаторы разделяют на:

  • Силовые трансформаторы;
  • Измерительные трансформаторы;
  • Трансформаторы частоты;
  • Вольтодобавочные трансформатры.

Задача силовых трансформаторов - питание сетей и приёмников электроэнергии. Силовые трансформаторы бывают:

Рисунок 7 - Силовой трансформатор общего назначения

Рисунок 8 - Силовой трансформатор специального назначения

Трансформаторы общего назачения включается в сети, не отличающиеся особыми условиями работы, а также служат для питания электроприемников, не отличающихся характером нагрузки или режимом работы. Трансформаторы специального назначения применяются для питания сетей и приёмников электроэнергии, если таковые работают в особых услових или имеют специфический характер нагрузки или режим работы (например выпрямительные установки, рудничные и шахтные сети).

Основная функция измерительных трансформаторов - преобразовывать величину напряжения или тока до значений, удобных для приборов и автоматики. Вторая сторона использования измерительных трансформаторов в качестве промежуточного звена при измерениях - наличие гальванической развязки. При наличии гальванической развязки измерительный прибор оказывается изолированным от высоковольтной (сильноточной) цепи, что повышает безопасность работы с ним. Измерительные трансформаторы делятся на:

  • Трансформаторы тока (ТТ);
  • Трансформаторы напряжения (ТН).

Номинальный ток первичной обмотки трансформатора тока может достигать 40 кА, при этом вторичная обмотка исполняется на номинальный ток 1 или 5 А.

Трансформаторы тока по токовой погрешности разделены на пять классов точности: 0,2; 0,5; 1; 3; 10. Величина погрешности определяется по формуле:

ΔI = (I 2K - I 1) × 100/I 1

где I 1 = (1÷1,2)×I 1 .

Рисунок 9 - Трансформатор тока

Трансформаторы тока по конструкции делятся на:

  • Одновитковые ТТ;
  • Многовитковые ТТ.

По количеству фаз ТТ делятся на:

  • Однофазные ТТ;
  • Трехфазные ТТ.

Конструкцией трансформатора тока предусмотрено, что первичной обмоткой является силовой кабель или токоведущая шина или ввод, а вторичная обмотка ТТ "оборачивается" вокруг токоведущего элемента.

Трансформатор напряжения (ТН) изготавливается на номинальное напряжение вторичной обмотки 100 В. Номинальное напряжение первичной обмотки ТН может достигать 110 кВ. При измерении напряжения в сетях выше 110 кВ применяются ёмкостные делители напряжения.

Рисунок 10 - Однофазный трансформатор напряжения на ёмкостном делителе

Рисунок 11 - Трехфазный трансформатор напряжения

Трансформаторы напряжения выполняются:

  • Однофазные ТН;
  • Трехфазные ТН.

По виду изоляции ТН делятся на:

  • Сухие;
  • Масляные;
  • С литой изоляцией;

Трансформаторы напряжения по погрешности делятся на четыре класса точности: 0,05; 0,1; 0,2; 0,5.

Трансформаторы частоты позволяют удвоить или утроить частоту сети.

Вольтодобавочные трансформаторы предназначены для повышения напряжения в отдельных точках электрических сетей.

Рисунок 12 - Вольтодобавочный трансформатор

Для защиты трансформатора от повреждений предустатривается его релейная защита. На трансформатор могут быть установлены следующие виды защит:

  • Токовая отсечка;
  • Максимальная токовая защита;
  • Токовая защита нулевой последовательности;
  • Диффиренциальная защита;
  • Диффиренциально - фазная защита;
  • Газовая защита.

Список использованных источников

  1. Пункт автоматического регулирования напряжения серии ВДТ/VR-32 [электронный ресурс] - Режим доступа: http://www.ipenet.ru/vr-32.shtml
Опубликовано: 16 сентября 2016 Просмотров: 5.4k

Найти информацию о том, чем отличаются трансформаторы тока от трансформаторов напряжения непросто из-за недостатка информации по этой теме. В рамках этой статьи вы узнаете все необходимой по данной теме и сможете разобраться. В чем отличие в роли и специфике применения каждого типа трансформаторов.

Что такое трансформаторы напряжения

Трансформаторы напряжения в свое время были разработаны для перехода с высокого напряжения на более низкое, а также наоборот. Сегодня они чаще всего используются для того, чтобы привести какую-то отдельную электрическую сеть к определенному стандарту. Трансформаторы напряжения могут предотвратить массу происшествий, которые могут быть вызваны чрезвычайно высоким или низким напряжением, увеличивают степень безопасности всей сети. Они также предотвращают порчу приборов, которая зачастую может быть вызвана свойствами электрической сети.

Трансформатор напряжения, пусть и небольшой, присутствует почти в каждом приборе, работающем от электричества, будь то компьютер или насос. Они защищают технику от перепадов напряжения и тем самым продлевают срок службы.

Что такое трансформаторы тока

Трансформаторы тока сконструированы, прежде всего, как измерительное устройство, но они также выполняют защитные функции. Трансформаторы тока постоянно встраиваются в такие приборы, как измерительные реле, счетчики энергии и т.д. Существует несколько типов трансформаторов тока, каждый из которых подробно описан ниже:

Они занимаются преобразованием переменного тока таким путем, чтобы затем можно было измерить его значения. Измерительные трансформаторы применяют, когда к сети нужно подключить амперметр, вольтметр и другие устройства. Измерительные трансформаторы тока дают не только предельно точные измерения мощности напряжение, но предоставляют некую минимально необходимую для безопасности изоляцию.

Важнейшая функция этих устройств понятная из самого их названия. Эти приборы необходимы для того, чтобы каждый подключенный к сети прибор не получил чрезвычайно мощный заряд тока, способный испортить его. Гаджет строго контролирует состояние сети и при этом поддерживает в ней очень высокое напряжение. Защитный трансформатор тока также предоставляет «свободное окно» на случай сбоев в работе устройств и/или сети. Этим окном смогут воспользоваться специалисты, который займутся починкой системы.

Лабораторные . Эти устройства встречаются нечасто и в основном используются в различных исследованиях и экспериментах, отсюда и название. В повседневной практике вы их вряд ли встретите, поэтому стоит ограничиться двумя предыдущими типами.

Ключевые отличия между трансформаторами

Главное отличие между трансформатором напряжения и трансформатором тока кроется в том, какую роль играют эти устройства в рамках электрической сети и для каких целей их туда устанавливают.

Устройство для тока сосредоточено на защите и гарантировании точности. Эти две вещи критически необходимы в проведении измерений и при обслуживании сетей. По этой причине отказаться от использования трансформатора тока просто невозможно, и он обязательно должен присутствовать.

Вместе с тем трансформатор напряжения никак не связан с измерениями, проверками, а также тонкостями технического обслуживания приборов. Он относится напрямую к их эксплуатации. Сегодня привести электросеть в рабочее состояние без него просто нереально. Смена силы напряжения с повышенной на пониженную критически необходима. Именно трансформатор напряжения позволяет использовать повсеместно одну универсальную электрическую сеть вне зависимости от того, какую технику вы собираетесь подключать. Это могут быть промышленное оборудование. Бытовые устройства и прочие приборы – сеть сможет питать всю технику без нанесения повреждений.

При этом необходимо обратить внимание на угрозу, которая способна исходить от каждого из трансформаторов. Вернее, угроза кроется в отсутствии или неисправности трансформаторов. Без трансформатора напряжения ваша сеть перестанет регулироваться и многие подключенные к ней устройства могут просто «сгореть» из-за слишком высокого уровня напряжения, либо просто отключаться по причине слишком низкой мощности сети.

Вывод

Теперь вы понимаете, чем отличается трансформатор тока от трансформатора напряжений. Реальный отличия между данными устройствами очень существенны. Они ни в коем случае не заменяют друг друга и их никогда нельзя путать. Недостаток любого из приборов в электросети или его сбой могут обернуться очень серьезными негативными последствиями, поэтому часто практикуют установку дополнительный, резервных приборов.

Трансформаторы тока

Чтобы понять, чем отличается трансформатор тока от трансформатора напряжения, необходимо знать особенности первого и второго устройства. Трансформаторы тока созданы - в первую очередь - как измерительные или же защитные приборы.

  • Защитные трансформаторы

Основную функцию данных трансформаторов легко понять. Они строго «следят» за тем, чтобы каждый, кто залез в электрическую сеть, не получил смертельный удар. Отличительной особенностью является строгое контролирование. В самой электрической системе для комфортной работы приборов поддерживается очень высокое напряжение. Однако любая техника рано или поздно может дать сбой, поэтому обязательно нужно оставить окно, через которое специалисты-ремонтники смогут проверять состояние сети, проводить профилактические работы. Происходит это за счет трансформатора тока, который в определенном месте дает максимально безопасный доступ.

  • Измерительные трансформаторы

Измерительные трансформаторы представляют собой особые приборы. Основная их задача - преобразовывать переменный ток, в итоге получается такой же переменный, но уже с допустимыми для измерения значениями. С помощью данного устройства можно подключить к цепи вольтметр, амперметр или любой другой измерительный прибор.

Также имеется дополнительная функция - возможность подключить любую технику, не испортив ее, а также получить максимально точный и правильный результат измерений (иногда даже десятые доли могут радикально изменить картину).

Независимо от конкретного типа основная особенность трансформатора тока заключается в особой точности, а также в возможности образовывать некоторую необходимую безопасную изоляцию.

Трансформаторы напряжения

Трансформаторы тока и напряжения имеют разное предназначение.

Вторые созданы для изменения напряжения с высокого на низкое и наоборот. Это отличный способ «подогнать» определенную электрическую сеть под нужный стандарт.

Подобные трансформаторы позволяют достичь необходимого уровня безопасности, предотвратить огромное количество чрезвычайных происшествий, спасти жизни и здоровье людей, а также оставить огромное количество приборов исправными.

Мало кто знает, что трансформаторы напряжения присутствуют практически в каждом приборе для того, чтобы защитить его от внезапного повышения напряжения, например, при ударе молнии или же в случае нарушения правил эксплуатации.

Основное отличие

Основное отличие этих двух трансформаторов (напряжения и тока) заключается именно в их предназначении и функциях, которые они надежно выполняют.

Основная задача устройства для тока состоит в защите или в обеспечении точности, которая просто необходима для различных измерений или же любого обслуживания электрических сетей как в конкретном месте, так и в комплексе.

Назначение же трансформатора напряжения связано не с проверками и измерениями и даже не с ремонтом и профилактикой, а непосредственно с эксплуатацией. Невозможно запустить сеть без данного аппарата. Обязательно нужно преобразовывать напряжение с пониженного на повышенное. Именно с помощью подобных трансформаторов можно использовать везде универсальную электрическую сеть, ток в которой изменяется данным аппаратом и подходит под любую технику, будь то бытовые приборы или же устройства промышленного назначения.

Также стоит отдельно отметить опасность каждого трансформатора. Угрожает безопасности отсутствие или неработоспособность устройства, регулирующего напряжение: если неожиданно единица измерения повысится в большую сторону, то могут быть очень серьезные последствия, которые чреваты разнообразными трагедиями - от пожаров до других бедствий. Также отсутствие изоляции угрожает ремонтникам, а отсутствие точных измерений может нарушить работу; но слишком серьезных последствий практически невозможно добиться.

Предназначение в электрической сети

Присутствие и одного, и другого трансформатора в электрической сети незаменимо. Трансформатор напряжения встречается практически везде. Он может быть встроен в каждый бытовой прибор. Обязательно находится в общедомовой сети, не говоря уже о более серьезных промышленных объектах. Отличительной особенностью работы трансформатора тока является то, что он не нужен на каждом мелком объекте, он подходит для достаточно крупных предприятий, куда подводится сеть очень большой мощности. Настолько большой, что необходима дополнительная изоляция даже для того, чтобы просто измерить все величины.

Не стоит путать эти трансформаторы, это может иметь очень печальные последствия. Нужно грамотно разбираться в данной технике для того, чтобы устанавливать и ремонтировать ее, правильно пользоваться и знать все опасности.

Инженерный центр "ПрофЭнергия" имеет все необходимые инструменты для качественного проведения диагностики трансформаторов, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории "ПрофЭнергия" вы выбираете надежную и качествунную работу своего оборудования!