Сайт о телевидении

Сайт о телевидении

» » Что это - компилятор, и как он работает. Что такое компилятор – описание

Что это - компилятор, и как он работает. Что такое компилятор – описание

Информатика, кибернетика и программирование

Компиляция Программа, представленная в виде команд языка программирования, называется исходной программой. Она состоит из инструкций, понятных человеку, но не понятных процессору компьютера. Чтобы процессор смог выполнить работу в соответствии с инс...

Компиляция

Программа, представленная в виде команд языка программирования, называется исходной программой . Она состоит из инструкций, понятных человеку, но не понятных процессору компьютера. Чтобы процессор смог выполнить работу в соответствии с инструкциями исходной программы, исходная программа должна быть переведена на машинный язык – язык команд процессора. Задачу преобразования исходной программы в машинный код выполняет специальная программа – компилятор .

Исполняемая

Программа

исходная программа

Компилятор

Синтаксический контроль текста программы

Генератор машинного

кода

сообщения об

ошибках

Рис. 1.1. Схема работы компилятора

Компилятор, схема работы которого приведена на рис. 1.1, выполняет последовательно две задачи:

  1. Проверяет текст исходной программы на отсутствие синтаксических ошибок.
  2. Создает (генерирует) исполняемую программу – машинный код.

Следует отметить, что генерация исполняемой программы происходит только в том случае, если в тексте исходной программы нет синтаксических ошибок, т.е. программа написана правильно с точки зрения правил данного языка программирования.

Генерация машинного кода компилятором свидетельствует лишь о том, что в тексте программы нет синтаксических ошибок. Убедиться, что программа работает правильно можно только в процессе ее тестирования – пробных запусках программы и анализе полученных результатов.

Например, если в программе вычисления корней квадратного уравнения допущена ошибка в выражении (формуле) вычисления дискриминанта, то, даже если это выражение будет синтаксически верно, программа выдаст неверные значения корней.


А также другие работы, которые могут Вас заинтересовать

75959. 20.83 KB
Правительство Российской Федерации. Исполнительную власть Российской Федерации осуществляет Правительство Российской Федерации. Правительство Российской Федерации состоит из Председателя Правительства Российской Федерации заместителей Председателя Правительства Российской Федерации и федеральных министров. Председатель Правительства Российской Федерации назначается Президентом Российской Федерации с согласия Государственной Думы.
75960. Становление современного российского парламентаризма. Думские выборы 1993 и 1995 годов: сравнительный анализ 22.11 KB
Утвердившийся в 1917 году коммунистический строй на 70 лет прервал формирование в нашей стране демократических институтов, пресек развитие парламентаризма. И все же ростки политической демократии и парламентаризма не были полностью искоренены...
75961. Формирование «олигархических групп», эволюция их отношений с государством в России 26.8 KB
Сейчас он означает небольшую группу финансовых магнатов Большую Восьмерку или Семь Банковских Баронов состоящих в тесных отношениях с президентом и правительством и оказывающих на них влияние. За термином олигархия скрывается некоторая неловкость реальной ситуации: доминирующее положение небольшого числа финансовых групп благодаря симбиозным отношениям с администрацией президента. Рассматривая политическую роль финансовых групп в ельцинской системе и фазы их развития можно отметить что изза слабости органов представительной власти и...
75962. Характерные черты становления рыночной экономики в РФ 19.88 KB
Черты становления рыночной экономики в России: отечественный экономист А. Смирнов на долю частной собственности в экономике России в 1914 г. В России даже в период промышленного подъема 1909 1913 гг. Значительно выросла доля России в мировом промышленном производстве накануне Первой мировой войны она занимала пятое место в мире после США Германии Англии Франции.
75963. Эволюция партийно-политической системы РФ в начале 21 века 18.23 KB
Резкий рост численности партий. При этом реальное влияние на политический процесс, включая законотворческую деятельность, оказывали не более пяти-шести партий. Как показала практика избирательных кампаний, многие партии изначально создавались для сугубо политтехнологических целей
75964. Беловежские соглашения - исторический смысл и дискуссионные проблемы 19.6 KB
БЕЛОВЕ́ЖСКИЕ СОГЛАШЕ́НИЯ термин используемый для обозначения соглашения подписанные 8 декабря 1991 высшими руководителями России Белоруссии и Украины о роспуске СССР и образовании Содружества независимых государств СНГ. Смысл: После попытки ГКЧП в августе 1991 реальная власть перешла в руки республиканских правящих элит и президент СССР М. а 5 декабря Кравчук объявил что Украина денонсирует договор 1922 о создании СССР. Тогда Кравчук Ельцин и Шушкевич собрались в Беловежской пуще для решения вопроса о сохранении СССР.
75965. Декларация о государственном суверенитете РСФСР - условия принятия и исторический смысл 17.91 KB
Декларация о государственном суверенитете РСФСР политикоправовой акт ознаменовавший начало конституционной реформы в РСФСР где суверенитет рассматривается как естественное и необходимое условие существования российской государственности. Условия: Декларация была принята Первым Съездом народных депутатов РСФСР 12 июня 1990 года и подписана Председателем Верховного Совета РСФСР Б. Значение исторический смысл: Помимо провозглашения суверенитета РСФСР и намерения создать демократическое правовое государство в составе обновлённого Союза...
75966. Шоковая терапия и ее исторические последствия 53 KB
Шоковая терапия - пропагандистское (газетное) название, с легкой руки некоторых публицистов приклеившееся к политике, которую начало проводить, придя к власти, реформаторское правительство Ельцина-Гайдара – политике стабилизации экономики. (попытка России перейти к Рыночной Экономике)

Все программы для компьютера представляют собой набор команд процессора, которые состоят из определенного набора бит. Этих команд несколько сотен и с помощью них выполняются все действия на вашем компьютере. Но писать программы непосредственно с помощью этих команд сложно. Поэтому были придуманы различные языки программирования, которые проще для восприятия человеку.

Для подготовки программы к выполнению, специальная программа собирает ее из исходного кода на языке программирования в машинный код - команды процессора. Этот процесс называется компиляция. Linux - это свободное программное обеспечение, а поэтому исходные коды программ доступны всем желающим. Если программы нет в репозитории или вы хотите сделать что-то нестандартное, то вы можете выполнить компиляцию программы.

В этой статье мы рассмотрим, как выполняется компиляция программ Linux, как происходит процесс компиляции, а также рассмотрим насколько гибко вы сможете все настроить.

Мы будем компилировать программы, написанные на Си или С++, так как это наиболее используемый язык для программ, которые требуют компиляции. Мы уже немного рассматривали эту тему в статье установка из tar.gz в Linux, но та статья ориентирована больше на новичков, которым нужно не столько разобраться, сколько получить готовую программу.

В этой же статье тема рассмотрена более детально. Как вы понимаете, для превращения исходного кода в команды процессора нужно специальное программное обеспечение. Мы будем использовать компилятор GCC. Для установки его и всех необходимых инструментов в Ubuntu выполните:

sudo apt install build-essential manpages-dev git automake autoconf

Затем вы можете проверить правильность установки и версию компилятора:

Но перед тем как переходить к самой компиляции программ рассмотрим более подробно составляющие этого процесса.

Как выполняется компиляция?

Компиляция программы Linux - это довольно сложный процесс. Все еще сложнее, потому что код программы содержится не в одном файле и даже не во всех файлах ее исходников. Каждая программа использует множество системных библиотек, которые содержат стандартные функции. К тому же один и тот же код должен работать в различных системах, содержащих различные версии библиотек.

На первом этапе, еще до того как начнется непосредственно компиляция, специальный инструмент должен проверить совместима ли ваша система с программой, а также есть ли все необходимые библиотеки. Если чего-либо нет, то будет выдана ошибка и вам придется устранить проблему.

Дальше идет синтаксический анализ и преобразование исходного кода в объектный код, без этого этапа можно было бы и обойтись, но это необходимо, чтобы компилятор мог выполнить различные оптимизации, сделать размер конечной программы меньше, а команды процессора эффективнее.

Затем все объектные файлы собираются в одну программу, связываются с системными библиотеками. После завершения этого этапа программу остается только установить в файловую систему и все. Вот такие основные фазы компиляции программы, а теперь перейдем ближе к практике.

Компиляция программ Linux

Первое что нам понадобиться - это исходники самой программы. В этом примере мы будем собирать самую последнюю версию vim. Это вполне нейтральная программа, достаточно простая и нужная всем, поэтому она отлично подойдет для примера.

Получение исходников

Первое что нам понадобиться, это исходные коды программы, которые можно взять на GitHub. Вы можете найти исходники для большинства программ Linux на GitHub. Кроме того, там же есть инструкции по сборке:

Давайте загрузим сами исходники нашей программы с помощью утилиты git:

git clone https://github.com/vim/vim

Также, можно было скачать архив на сайте, и затем распаковать его в нужную папку, но так будет удобнее. Утилита создаст папку с именем программы, нам нужно сделать ее рабочей:

Настройка configure

Дальше нам нужно запустить скрипт, который проверит нашу программу на совместимость с системой и настроит параметры компиляции. Он называется configure и поставляется разработчиками программы вместе с исходниками. Весь процесс компиляции описан в файле Makefile, его будет создавать эта утилита.

Если configure нет в папке с исходниками, вы можете попытаться выполнить такие скрипты чтобы его создать:

./bootstrap
$ ./autogen.sh

Также для создания этого скрипта можно воспользоваться утилитой automake:

aclocal
$ autoheader
$ automake --gnu --add-missing --copy --foreign
$ autoconf -f -Wall

Утилита automake и другие из ее набора генерируют необходимые файлы на основе файла Mackefile.am. Этот файл обязательно есть в большинстве проектов.

После того как вы получили configure мы можем переходить к настройке. Одним из огромных плюсов ручной сборки программ есть то, что вы можете сами выбрать с какими опциями собирать программу, где она будет размещена и какие дополнительные возможности стоит включить. Все это настраивается с помощью configure. Полный набор опций можно посмотреть, выполнив:

./configure --help

Рассмотрим наиболее часто используемые, стандартные для всех программ опции:

  • --prefix=PREFIX - папка для установки программы, вместо /, например, может быть /usr/local/, тогда все файлы будут распространены не по основной файловой системе, а в /usr/local;
  • --bindir=DIR - папка для размещения исполняемых файлов, должна находится в PREFIX;
  • --libdir=DIR - папка для размещения и поиска библиотек по умолчанию, тоже в PREFIX;
  • --includedir=DIR - папка для размещения man страниц;
  • --disable-возможность - отключить указанную возможность;
  • --enable-возможность - включить возможность;
  • --with-библиотека - подобно enable активирует указанную библиотеку или заголовочный файл;
  • --without-библиотека - подобное disable отключает использование библиотеки.

Вы можете выполнить configure без опций, чтобы использовать значения по умолчанию, но также можете вручную указать нужные пути. В нашем случае./configure есть, и мы можем его использовать:

Во время настройки утилита будет проверять, есть ли все необходимые библиотеки в системе, и если нет, вам придется их установить или отключить эту функцию, если это возможно. Например, может возникнуть такая ошибка: no terminal library found checking for tgetent()... configure: error: NOT FOUND!

В таком случае нам необходимо установить требуемую библиотеку. Например, программа предлагает ncurses, поэтому ставим:

sudo apt install libncurces-dev

Приставка lib всегда добавляется перед библиотеками, а -dev - означает, что нам нужна библиотека со всеми заголовочными файлами. После удовлетворения всех зависимостей настройка пройдет успешно.

Сборка программы

Когда настройка будет завершена и Makefile будет готов, вы сможете перейти непосредственно к сборке программы. На этом этапе выполняется непосредственно преобразование исходного кода в машинный. Утилита make на основе Makefile сделает все необходимые действия:

После этого программа будет установлена в указанную вами папку, и вы сможете ее использовать. Но более правильный путь - создавать пакет для установки программы, это делается с помощью утилиты checkinstall, она позволяет создавать как deb, так и rpm пакеты, поэтому может использоваться не только в Ubuntu. Вместо make install выполните:

Затем просто установите получившийся пакет с помощью dpkg:

sudo dpkg install vim.deb

После этого сборка программы полностью завершена и установлена, так что вы можете переходить к полноценному использованию.

Если вы устанавливали программу с помощью make install, то удалить ее можно выполнив в той же папке обратную команду:

sudo make uninstall

Команда удалит все файлы, которые были скопированы в файловую систему.

Выводы

В этой статье мы рассмотрели, как выполняется компиляция программы Linux. Этот процесс может быть сложным для новичков, но в целом, все возможно, если потратить на решение задачи несколько часов. Если у вас остались вопросы, спрашивайте в комментариях!

На завершение видео о том, что такое компилятор и интерпретатор:

Компьютеры сами по себе способны выполнять только очень ограниченный набор операций, называемых машинными кодами. В старые времена, когда появились первые компьютеры, программы писались в машинных кодах, представляющих собой последовательности двоичных чисел, однозначно воспринимаемых компьютером. В конце 50-х кодов прошлого века появились первые языки программирования, такие как язык ассемблера и Фортран. Для того, чтобы компьютер мог понять программу, написанную на каком-то языке программирования, необходим переводчик ( транслятор ) такой программы в машинные коды. Отметим, что, если оператор языка ассемблера отображается при трансляции чаще всего 1Некоторые операторы языка ассемблера, например, такие, как операторы ввода/вывода, отображаются в несколько машинных команд. в одну машинную инструкцию, предложения языков более высокого уровня отображаются, вообще говоря, в несколько машинных инструкций.

Трансляторы бывают двух типов: компиляторы ( compiler ) и интерпретаторы ( interpreter ). Процесс компиляции состоит из двух частей: анализа ( analysis ) и синтеза ( synthesis ). Анализирующая часть компилятора разбивает исходную программу на составляющие ее элементы (конструкции языка) и создает промежуточное представление исходной программы. Синтезирующая часть из промежуточного представления создает новую программу, которую компьютер в состоянии понять. Такая программа называется объектной программой. Объектная программа может в дальнейшем выполняться без перетрансляции. В качестве промежуточного представления обычно используются деревья, в частности, так называемые деревья разбора. Под деревом разбора понимается дерево , каждый узел которого соответствует некоторой операции , а сыновья этого узла - операндам.

Интерпретатор

В отличие от компилятора, интерпретатор не создает никакой новой программы, а просто выполняет каждое предложение языка программирования. Можно сказать, что результатом работы интерпретатора является "число".

Вообще говоря, интерпретатор , так же, как и компилятор , анализирует программу на входном языке, создает промежуточное представление , а затем выполняет операции , содержащиеся в тексте этой программы. Например, интерпретатор может построить дерево разбора, а затем выполнить операции , которыми помечены узлы этого дерева.

В том случае, если исходный язык достаточно прост (например, если это язык ассемблера или Basic ), то никакое промежуточное представление не нужно, и тогда интерпретатор - это простой цикл . Он выбирает очередную инструкцию языка из входного потока, анализирует и выполняет ее. Затем выбирается следующая инструкция . Этот процесс продолжается до тех пор, пока не будут выполнены все инструкции, либо пока не встретится инструкция , означающая окончание процесса интерпретации.


Компилятор


Компилятор переводит программы с одного языка на другой. Входом компилятора служит цепочка символов , составляющая исходную программу на языке программирования . Выход компилятора (объектная программа ) также представляет собой цепочку символов, но принадлежащую другому языку , например, языку некоторого компьютера. При этом сам компилятор написан на языке , возможно, отличающемся от первых двух. Будем называть язык исходным языком, язык - целевым языком, а язык - языком реализации. Таким образом, можно говорить о компиляторе как об Pascal и кончая современными объектно-ориентированными языками такими, как C# и Java . Практически каждый язык программирования имеет какие-то особенности с точки зрения создателя транслятора. Однако мы начнем с рассмотрения разнообразных целевых языков компиляторов.

Компиля́тор - программа или техническое средство, выполняющее компиляцию .

Компиляция - трансляция программы, составленной на исходном языке высокого уровня, в эквивалентную программу на низкоуровневом языке, близком машинному коду (абсолютный код, объектный модуль, иногда на язык ассемблера). Входной информацией для компилятора (исходный код) является описание алгоритма или программа напроблемно-ориентированном языке, а на выходе компилятора - эквивалентное описание алгоритма на машинно-ориентированном языке (объектный код).

Компилировать - проводить трансляцию машинной программы с проблемно-ориентированного языка на машинно-ориентированный язык.

Виды компиляторов

    Векторизующий . Транслирует исходный код в машинный код компьютеров, оснащённых векторным процессором.

    Гибкий . Сконструирован по модульному принципу, управляется таблицами и запрограммирован на языке высокого уровня или реализован с помощью компилятора компиляторов.

    Диалоговый . См.: диалоговый транслятор.

    Инкрементальный . Повторно транслирует фрагменты программы и дополнения к ней без перекомпиляции всей программы.

    Интерпретирующий (пошаговый) . Последовательно выполняет независимую компиляцию каждого отдельного оператора (команды) исходной программы.

    Компилятор компиляторов . Транслятор, воспринимающий формальное описание языка программирования и генерирующий компилятор для этого языка.

    Отладочный . Устраняет отдельные виды синтаксических ошибок.

    Резидентный . Постоянно находится в оперативной памяти и доступен для повторного использования многими задачами.

    Самокомпилируемый . Написан на том же языке, с которого осуществляется трансляция.

    Универсальный . Основан на формальном описании синтаксиса и семантики входного языка. Составными частями такого компилятора являются: ядро, синтаксический исемантический загрузчики.

Виды компиляции

    Пакетная . Компиляция нескольких исходных модулей в одном пункте задания.

    Построчная . То же, что и интерпретация.

    Условная . Компиляция, при которой транслируемый текст зависит от условий, заданных в исходной программе директивами компилятора. Так, в зависимости от значения некоторой константы, можно включать или выключать трансляцию части текста программы.

Структура компилятора

Процесс компиляции состоит из следующих этапов:

    Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.

    Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в дерево разбора.

    Семантический анализ. Дерево разбора обрабатывается с целью установления его семантики (смысла) - например, привязка идентификаторов к их декларациям, типам, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным деревом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.

    Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах - например, над промежуточным кодом или над конечным машинным кодом.

    Генерация кода. Из промежуточного представления порождается код на целевом языке.

В конкретных реализациях компиляторов эти этапы могут быть разделены или, наоборот, совмещены в том или ином виде.

Генерация кода

Генерация машинного кода

Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен процессором. Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы, поскольку использует предоставляемые ею возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой производится компиляция, называется целевой машиной .

Результат компиляции - исполнимый модуль - обладает максимальной возможной производительностью, однако привязан к определённой операционной системе и процессору (и не будет работать на других).

Для каждой целевой машины (IBM, Apple, Sun и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы , позволяющие на одной машине и в среде одной ОС генерировать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут оптимизировать код под разные модели из одного семейства процессоров (путём поддержки специфичных для этих моделей особенностей или расширений наборов инструкций). Например, код, скомпилированный под процессоры семейства Pentium, может учитывать особенности распараллеливания инструкций и использовать их специфичные расширения - MMX, SSE и т. п.

Некоторые компиляторы переводят программу с языка высокого уровня не прямо в машинный код, а на язык ассемблера. Это делается для упрощения части компилятора, отвечающей за кодогенерацию, и повышения его переносимости (задача окончательной генерации кода и привязки его к требуемой целевой платформе перекладывается на ассемблер), либо для возможности контроля и исправления результата компиляции программистом.

Генерация байт-кода

Результатом работы компилятора может быть программа на специально созданном низкоуровневом языке, подлежащем интерпретации виртуальной машиной . Такой язык называется псевдокодом или байт-кодом. Как правило, он не является машинным кодом какого-либо компьютера и программы на нём могут исполняться на различных архитектурах, где имеется соответствующая виртуальная машина, но в некоторых случаях создаются аппаратные платформы, напрямую поддерживающие псевдокод какого-либо языка. Например, псевдокод языка Java называется байт-кодом Java (англ. Java bytecode ) и выполняется в Java Virtual Machine, для его прямого исполнения была создана спецификация процессора picoJava. Для платформы.NET Framework псевдокод называется Common Intermediate Language (CIL), а среда исполнения - Common Language Runtime (CLR).

Некоторые реализации интерпретируемых языков высокого уровня (например, Perl) используют байт-код для оптимизации исполнения: затратные этапы синтаксического анализа и преобразование текста программы в байт-код выполняются один раз при загрузке, затем соответствующий код может многократно использоваться без промежуточных этапов.

Динамическая компиляция

Основная статья: JIT-компиляция

Из-за необходимости интерпретации байт-код выполняется значительно медленнее машинного кода сравнимой функциональности, однако он более переносим (не зависит от операционной системы и модели процессора). Чтобы ускорить выполнение байт-кода, используется динамическая компиляция , когда виртуальная машина транслирует псевдокод в машинный код непосредственно перед его первым исполнением (и в при повторных обращениях к коду исполняется уже скомпилированный вариант).

CIL-код также компилируется в код целевой машины JIT-компилятором, а библиотеки.NET Framework компилируются заранее.

Декомпиляция

Существуют программы, которые решают обратную задачу - перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а такие программы - декомпиляторами. Но поскольку компиляция - это процесс с потерями, точно восстановить исходный код, скажем, на C++, в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах - например, существует довольно надёжный декомпилятор для Flash. Разновидностью декомпилирования являетсядизассемблирование машинного кода в код на языке ассемблера, который почти всегда выполняется успешно (при этом сложность может представлять самомодифицирующийся код или код, в котором собственно код и данные не разделены). Связано это с тем, что между кодами машинных команд и командами ассемблера имеется практически взаимно-однозначное соответствие.

Раздельная компиляция

Раздельная компиляция (англ. separate compilation ) - трансляция частей программы по отдельности с последующим объединением их компоновщиком в единый загрузочный модуль.

Исторически особенностью компилятора, отражённой в его названии (англ. compile - собирать вместе, составлять), являлось то, что он производил как трансляцию, так и компоновку, при этом компилятор мог порождать сразу абсолютный код. Однако позже, с ростом сложности и размера программ (и увеличением времени, затрачиваемого на перекомпиляцию), возникла необходимость разделять программы на части и выделять библиотеки, которые можно компилировать независимо друг от друга. При трансляции каждой части программы компилятор порождает объектный модуль, содержащий дополнительную информацию, которая потом, при компоновке частей в исполнимый модуль, используется для связывания и разрешения ссылок между частями.

Появление раздельной компиляции и выделение компоновки как отдельной стадии произошло значительно позже создания компиляторов. В связи с этим вместо термина «компилятор» иногда используют термин «транслятор» как его синоним: либо в старой литературе, либо когда хотят подчеркнуть его способность переводить программу в машинный код (и наоборот, используют термин «компилятор» для подчёркивания способности собирать из многих файлов один).

Общие замечания к интерпретаторам

Разработка интерпретаторов для интерпретации программ на заданном исходном языке является одной из основных задач информатики. Сте­пень трудности проблемы реализации интерпретатора зависит от сложно­сти исходного языка и степени его отличия от базисного языка, на кото­ром должен быть записан сам интерпретатор.

Чтобы обеспечить корректность интерпретатора, при его проектиро­вании мы должны исходить из семантического определения интерпрети­руемого языка или по меньшей мере верифицировать его на соответствие этому. Обратим внимание на то, что математическое определение семан­тики ЯП аналогично интерпретирующим программам.

Особое положение занимают интерактивные, инкрементальные (поша­говые) интерпретаторы. Для них не обязательно требуется сначала подго­товить всю программу целиком, включая вводимые данные, и только по­том ее интерпретировать. При интерактивной интерпретации можно программу и входные данные приготовить отдельными частями и полу­ченную часть - насколько это возможно - тут же проинтерпретировать (ЯП ВASIC специально ориентирован на инкрементальную интерпретацию).

Сейчас все ближе подходят к созданию интерпретаторов для таких языков, которые выглядят не так, как классические ЯП, ориентирован­ные на вычисления. В частности, в результате длительных исследований стала возможной интерпретация определенных языков, ориентированных скорее на спецификации, а не на вычисления (например, язык ПРОЛОГ, который служит для составления программ в машинно-интерпретируемой логике). Впрочем, для таких языков имеются определенные непре­одолимые преграды из-за границ вычислимости и сложности, которые для многих постановок задач делают практически невозможным исполь­зование этих языков.

Компилятор берет программу на исходномязыке в качестве своих входных данных и вырабатывает программу на объектном языке, понятном машине.

Если программу, написанную на ЯП высокого уровня, мы хотим выпол­нять многократно, со все новыми исходными данными, то часто бывает эффективнее программу не интерпретировать, а сначала перевести на уже реализованный язык, возможно более близкий к машинному языку, а затем уже выполнять порожденную таким образом программу. Такой способ позволяет лучше приспособить программу к структуре фактиче­ски используемой машины и тем самым добиться далеко идущей ее оп­тимизации. В принципе такой перевод можно осуществить вручную, од­нако это требует больших затрат времени и при этом могут быть допуще­ны ошибки. Поэтому для этой цели используются специальные переводящие программы, называемые переводчиками или компиляторами (англ. соmputer).



Компилятор и интерпретатор обычно являются довольно сложными программами, которые воспринимают программу на исходном языке в форме текста, устанавливают внутреннюю структуру так заданной про­граммы, проверяя при этом ее синтаксическую корректность (синтак­сический анализ), и переводят программу на другой (объектный) язык или выполняют эту программу путем соответствующих действий.

ЯП определяется его синтаксисом и семантикой. В процессе компи­ляции или интерпретации программа, понимаемая как синтаксический объект, берется в качестве входных данных и в соответствии с ее семан­тикой превращается в программу на другом языке или в последователь­ность действий (процесс выполнения).

Языки программирования бывают высокого и низкого уровней.

Языки, ориентированные на конкретный тип процессора и учитывающие его осо­бенности называются языками низкого уровня. Каждая команды языка низкого уровня не­посредственно реализует одну команду микропроцессора, и они всегда ориентированны на систему команд конкретного микропроцессора. Языком самого низкого уровня является язык ассемблера, который просто представляет каждую команду машинного кода, но не в виде чисел, а с помощью символьных условных обозначений, называемых мнемониками.

Языки высокого уровня позволяют задавать желаемые действия в программе с по­мощью определенного набора операторов. Они значительно ближе и понятнее человеку, чем компьютеру. Каждая команда такого языка может состоять из десятка и более команд микропроцессо­ра. Писать программы на ЯП ВУ легче.


1 – машинно-зависимые (Ассемблер). Языки низкого уровня.

2 – машинно-ориентированные (Си)

3 – универсальные (Фортран, Паскаль, Basic)

4 - проблемно-ориентированные (GPSS, Лого, объектно-ориентированные (форт, Смолток))

5,6,7 – (Пролог, Лисп, СНОБОЛ).

Си, Си++ - вся машинно-зависимая часть программы достаточно легко локализуется и модифицируется при переносе программы на другую архитектуру.

Фортран – первый язык высокого уровня (1958г., фирма IBM), используется и до сих пор, поддерживает модульное программирование, особенно предпочитается математиками.

Паскаль – один из наиболее популярных в учебных целях (Н.Вирт), реализует большинство идей структурного программирования.

Бейсик – для начинающих программистов, приближен к разговорному английскому языку, поддерживает модульное и структурное программирование.

Лого , среди проблемно-ориентированных языков – используется в основном для целей обучения. Это диалоговый процедурный язык (простой синтаксис).

GPSS – ориентирован на моделирование систем с помощью событий. Применяется там, где результаты исследований выражаются в терминах времени ожидания, длины очереди, использование ресурсов.

Смолток – один из ранних ОО ЯП, основная конструкция – это объект и действия с ним, предназначен для нечисловых задач (при построении систем искусственного интеллекта).

Форт – используется при решении задач имитационного моделирования в графических системах.

Языки функциональной группы используются в основном в системах искусственного интеллекта. У них мощная инструментальная поддержка, быстрый компилятор, встроенные средства организации многооконного режима, графика высокого разрешения, развитый набор математических функций.

Пролог – язык ИИ, даются термины и связи, а с его помощью создаются новые.

Лисп – имеет мощные графические конструкции, позволяет создавать программы проектирования (деталей, например). Он ориентирован на конструкторскую деятельность. Имеет библиотеку примитивов.

СНОБОЛ – язык ИИ.

Поколения языков программирования

Все языки программирования принято делить на 5 поколений.

1. Начало 50-х годов. Появились первые компьютеры и первые языки ассемблера, в которых программирование велось по принципу «Одна инструкция - одна строка».

2. Конец 50-х начало 60-х годов. Разработан символический Ассемблер, в котором появилось понятие переменной. Возросла скорость разработки и надежность программ.

3. 60-е года. Рождение языков высокого уровня. Простота программирования, не­зависимость от конкретного компьютера, новые мощные языковые конструк­ции.

4. Начало 70-х и по настоящее время. Проблемно-ориентированные языки, опери­рующие конкретными понятиями узкой предметной области. Мощные операто­ры, для которых на языках младшего поколения потребовались тысячи строк исходного кода.

5. Середина 90-х. Системы автоматического создания прикладных программ с помощью визуальных средств разработки, без знания программирования. Инст­рукции вводятся в компьютер в наглядном виде с помощью методов, наиболее удобных для человека незнакомого с программированием.

В нашем институте на различных курсах вы научитесь программировать на различных языках программирования.