Сайт о телевидении

Сайт о телевидении

» » §4.8. Линейная зависимость строк и столбцов матрицы. Линейная независимость

§4.8. Линейная зависимость строк и столбцов матрицы. Линейная независимость

Заметим, что строки и столбцы матрицы можно рассматривать как арифметические векторы размеров m и n , соответственно. Таким образом, матрицу размеров можно интерпретировать как совокупностьm n -мерных илиn m -мерных арифметических векторов. По аналогии с геометрическими векторами введем понятия линейной зависимости и линейной независимости строк и столбцов матрицы.

4.8.1. Определение. Строка
называетсялинейной комбинацией строк с коэффициентами
, если для всех элементов этой строки справедливо равенство:

,
.

4.8.2. Определение.

Строки
называютсялинейно зависимыми , если существует их нетривиальная линейная комбинация, равная нулевой строке, т.е. существуют такие не все равные нулю числа


,
.

4.8.3. Определение.

Строки
называютсялинейно независимыми , если только их тривиальная линейная комбинация равна нулевой строке, т.е.

,

4.8.4. Теорема. (Критерий линейной зависимости строк матрицы)

Для того, чтобы строки были линейно зависимыми, необходимо и достаточно, чтобы хотя бы одна из них была линейной комбинацией остальных.

Доказательство:

Необходимость. Пусть строки
линейно зависимы, тогда существует их нетривиальная линейная комбинация, равная нулевой строке:

.

Без ограничения общности предположим, что первый из коэффициентов линейной комбинации отличен от нуля (в противном случае можно перенумеровать строки). Разделив это соотношение на , получим


,

то есть первая строка является линейной комбинацией остальных.

Достаточность. Пусть одна из строк, например, , является линейной комбинацией остальных, тогда

то есть существует нетривиальная линейная комбинация строк
, равная нулевой строке:

а значит, строки
линейно зависимы, что и требовалось доказать.

Замечание.

Аналогичные определения и утверждения могут быть сформулированы и для столбцов матрицы.

§4.9. Ранг матрицы.

4.9.1. Определение. Минором порядка матрицы размера
называется определитель порядка с элементами, расположенными на пересечении некоторых ее строк и столбцов.

4.9.2. Определение. Отличный от нуля минор порядка матрицы размера
называетсябазисным минором , если все миноры матрицы порядка
равны нулю.

Замечание. Матрица может иметь несколько базисных миноров. Очевидно, что все они будут одного порядка. Также возможен случай, когда у матрицы размера
минор порядка отличен от нуля, а миноров порядка
не существует, то есть
.

4.9.3. Определение. Строки (столбцы), образующие базисный минор, называются базисными строками (столбцами).

4.9.4. Определение. Рангом матрицы называется порядок ее базисного минора. Ранг матрицы обозначается
или
.

Замечание.

Отметим, что в силу равноправности строк и столбцов определителя ранг матрицы не меняется при ее транспонировании.

4.9.5. Теорема. (Инвариантность ранга матрицы относительно элементарных преобразований)

Ранг матрицы не меняется при ее элементарных преобразованиях.

Без доказательства.

4.9.6. Теорема. (О базисном миноре).

Базисные строки (столбцы) линейно независимы. Всякая строка (столбец) матрицы может быть представлена в виде линейной комбинации ее базисных строк (столбцов).

Доказательство:

Проведем доказательство для строк. Доказательство утверждения для столбцов может быть проведено по аналогии.

Пусть ранг матрицы размеров
равен, а
− базисный минор. Без ограничения на общность предположим, что базисный минор расположен в левом верхнем углу (в противном случае можно привести матрицу к этому виду с помощью элементарных преобразований):

.

Докажем сначала линейную независимость базисных строк. Доказательство проведем от противного. Предположим, что базисные строки линейно зависимы. Тогда согласно теореме 4.8.4 одна из строк может быть представлена в виде линейной комбинации остальных базисных строк. Следовательно, если вычесть из этой строки указанную линейную комбинацию, то мы получим нулевую строку, а это означает, что минор
равен нулю, что противоречит определению базисного минора. Таким образом, мы получили противоречие, следовательно, линейная независимость базисных строк доказана.

Докажем теперь, что всякая строка матрицы может быть представлена в виде линейной комбинации базисных строк. Если номер рассматриваемой строки от 1 доr , то тогда, очевидно, она может быть представлена в виде линейной комбинации c коэффициентом, равным 1 при строке и нулевыми коэффициентами при остальных строках. Покажем теперь, что если номер строкиот
до
, она может быть представлена в виде линейной комбинации базисных строк. Рассмотрим минор матрицы
, полученный из базисного минора
добавлением строкии произвольного столбца
:

Покажем, что данный минор
от
до
и для любого номера столбцаот 1 до.

Действительно, если номер столбца от 1 доr , то имеем определитель с двумя одинаковыми столбцами, который, очевидно, равен нулю. Если же номер столбца отr +1 до , а номер строкиот
до
, то
является минором исходной матрицы большего порядка, чем базисный минор, а это означает, что он равен нулю из определения базисного минора. Таким образом, доказано, что минор
равен нулю для любого номера строкиот
до
и для любого номера столбцаот 1 до. Разлагая его по последнему столбцу, получим:

Здесь
− соответствующие алгебраические дополнения. Заметим, что
, так как следовательно,
является базисным минором. Следовательно, элементы строкиk могут быть представлены в виде линейной комбинации соответствующих элементов базисных строк с коэффициентами, не зависящими от номера столбца :

Таким образом, мы доказали, что произвольная строка матрицы может быть представлена в виде линейной комбинации ее базисных строк. Теорема доказана.

Лекция 13

4.9.7. Теорема. (О ранге невырожденной квадратной матрицы)

Для того, чтобы квадратная матрица являлась невырожденной, необходимо и достаточно, чтобы ранг матрицы равен размеру этой матрицы.

Доказательство:

Необходимость. Пусть квадратная матрица размераn является невырожденной, тогда
, следовательно, определитель матрицы является базисным минором, т.е.

Достаточность. Пусть
тогда порядок базисного минора равен размеру матрицы, следовательно, базисным минором является определитель матрицы, т.е.
по определению базисного минора.

Следствие.

Для того, чтобы квадратная матрица была невырожденной, необходимо и достаточно, чтобы ее строки были линейно независимыми.

Доказательство:

Необходимость. Так как квадратная матрица является невырожденной, то ее ранг равен размеру матрицы
то есть определитель матрицы является базисным минором. Следовательно, по теореме 4.9.6 о базисном миноре строки матрицы являются линейно независимыми.

Достаточность. Так как все строки матрицы линейно независимы, то ее ранг не меньше размера матрицы, а значит,
следовательно, по предыдущей теореме 4.9.7 матрицаявляется невырожденной.

4.9.8. Метод окаймляющих миноров для нахождения ранга матрицы.

Заметим, что частично этот метод уже был неявно описан в доказательстве теоремы о базисном миноре.

4.9.8.1. Определение. Минор
называетсяокаймляющим по отношению к минору
, если он получен из минора
добавлением одной новой строки и одного нового столбца исходной матрицы.

4.9.8.2. Процедура нахождения ранга матрицы методом окаймляющих миноров.

    Находим какой-либо текущий минор матрицы отличный от нуля.

    Вычисляем все окаймляющие его миноры.

    Если все они равны нулю, то текущий минор является базисным, и ранг матрицы равен порядку текущего минора.

    Если среди окаймляющих миноров находится хотя бы один отличный от нуля, то он полагается текущим и процедура продолжается.

Найдем с помощью метода окаймляющих миноров ранг матрицы

.

Легко указать текущий минор второго порядка, отличный от нуля, например,

.

Вычисляем окаймляющие его миноры:




Следовательно, так как все окаймляющие миноры третьего порядка равны нулю, то минор
является базисным, то есть

Замечание. Из рассмотренного примера видно, что метод является достаточно трудоемким. Поэтому на практике гораздо чаще используется метод элементарных преобразований, речь о котором пойдет ниже.

4.9.9. Нахождение ранга матрицы методом элементарных преобразований.

На основании теоремы 4.9.5 можно утверждать, что ранг матрицы не меняется при элементарных преобразованиях (то есть ранги эквивалентных матриц равны). Поэтому ранг матрицы равен рангу ступенчатой матрицы, полученной из исходной элементарными преобразованиями. Ранг же ступенчатой матрицы, очевидно, равен количеству ее ненулевых строк.

Определим ранг матрицы

методом элементарных преобразований.

Приведем матрицу к ступенчатому виду:

Количество ненулевых строк полученной ступенчатой матрицы равно трем, следовательно,

4.9.10. Ранг системы векторов линейного пространства.

Рассмотрим систему векторов
некоторого линейного пространства. Если она является линейно зависимой, то в ней можно выделить линейно независимую подсистему.

4.9.10.1. Определение. Рангом системы векторов
линейного пространстваназывается максимальное количество линейно независимых векторов этой системы. Ранг системы векторов
обозначается как
.

Замечание. Если система векторов линейно независима, то ее ранг равен количеству векторов системы.

Сформулируем теорему, показывающую связь понятий ранга системы векторов линейного пространства и ранга матрицы.

4.9.10.2. Теорема. (О ранге системы векторов линейного пространства)

Ранг системы векторов линейного пространства равен рангу матрицы, столбцами или строками которой являются координаты векторов в некотором базисе линейного пространства.

Без доказательства.

Следствие.

Для того, чтобы система векторов линейного пространства являлась линейно независимой, необходимо и достаточно, чтобы ранг матрицы, столбцами или строками которой являются координаты векторов в некотором базисе, был равен количеству векторов системы.

Доказательство очевидно.

4.9.10.3. Теорема (О размерности линейной оболочки).

Размерность линейной оболочки векторов
линейного пространстваравна рангу этой системы векторов:

Без доказательства.

Пусть

Столбцы матрицы размерности . Линейной комбинацией столбцов матрицы называется матрица-столбец , при этом - некоторые действительные или комплексные числа, называемые коэффициентами линейной комбинации . Если в линейной комбинации взять все коэффициенты равными нулю, то линейная комбинация равна нулевой матрице-столбцу.

Столбцы матрицы называются линейно независимыми , если их линейная комбинация равна нулю лишь когда все коэффициенты линейной комбинации равны нулю. Столбцы матрицы называются линейно зависимыми , если существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Аналогично могут быть даны определения линейной зависимости и линейной независимости строк матрицы. В дальнейшем все теоремы формулируются для столбцов матрицы.

Теорема 5

Если среди столбцов матрицы есть нулевой, то столбцы матрицы линейно зависимы.

Доказательство. Рассмотрим линейную комбинацию, в которой все коэффициенты равны нулю при всех ненулевых столбцах и единице при нулевом столбце. Она равна нулю, а среди коэффициентов линейной комбинации есть отличный от нуля. Следовательно, столбцы матрицы линейно зависимы.

Теорема 6

Если столбцов матрицы линейно зависимы, то и все столбцов матрицы линейно зависимы.

Доказательство. Будем для определенности считать, что первые столбцов матрицы линейно зависимы. Тогда по определению линейной зависимости существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Составим линейную комбинацию всех столбцов матрицы, включив в нее остальные столбцы с нулевыми коэффициентами

Но . Следовательно, все столбцы матрицы линейно зависимы.

Следствие . Среди линейно независимых столбцов матрицы любые линейно независимы. (Это утверждение легко доказывается методом от противного.)

Теорема 7

Для того чтобы столбцы матрицы были линейно зависимы, необходимо и достаточно, чтобы хотя бы один столбец матрицы был линейной комбинацией остальных.

Доказательство.

Необходимость. Пусть столбцы матрицы линейно зависимы, то есть существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Предположим для определенности, что . Тогда то есть первый столбец есть линейная комбинация остальных.

Достаточность . Пусть хотя бы один столбец матрицы является линейной комбинацией остальных, например, , где - некоторые числа.

Тогда , то есть линейная комбинация столбцов равна нулю, а среди чисел линейной комбинации хотя бы один (при ) отличен от нуля.

Пусть ранг матрицы равен . Любой отличный от нуля минор - го порядка называется базисным . Строки и столбцы, на пересечении которых стоит базисный минор, называются базисными .

Понятие ранга матрицы тесно связано с понятием линейной зависимости (независимости) ее строк или столбцов. В дальнейшем будем излагать материал для строк, для столбцов изложение аналогично.

В матрице A обозначим ее строки следующим образом:

, , …. ,

Две строки матрицы называются равными , если равны их со­ответствующие элементы: , если , .

Арифметические операции над строками матрицы (умножение строки на число, сложение строк) вводятся как операции, прово­димые поэлементно:

Строка е называется линейной комбинацией строк ..., матрицы, если она равна сумме произведений этих строк на произвольные действительные числа:

Строки матрицы называются линейно зависимы­ми , если существуют такие числа , не равные одно­временно нулю, что линейная комбинация строк матрицы равна нулевой строке:

, =(0,0,...,0). (3.3)

Теорема 3.3 Строки матрицы линейно зависимы, если хотя бы одна строка матрицы является линейной комбинацией остальных.

□ Действительно, пусть для определенности в формуле (3.3) , тогда

Таким образом, строка является линейной комбинат остальных строк. ■

Если линейная комбинация строк (3.3) равна нулю тогда и только тогда, когда все коэффициенты равны нулю, то строки называются линейно независимыми.

Теорема 3.4. (о ранге матрицы) Ранг матрицы равен максимальному числу ее линейно независимых строк или столбцов, через которые линейно выражаются все остальные ее строки (столбцы).

□ Пусть матрица A размера m n имеет ранг r (r min ). Это означает, что существует отличный от нуля минор r -го порядка. Всякий ненулевой минор r -го порядка будем называть базисным минором.

Пусть для определенности базисный минор есть ведущий или угловой минор. Тогда строки матрицы линейно независимы. Предположим противное, то есть одна из этих строк, например , является линейной комбинацией остальных . Вычтем из элементов r - ой строки элементы 1-й строки, умноженные на , затем элементы 2-й строки, умноженные на , … и элементы (r - 1) - ой строки, умноженные на . На ос­новании свойства 8 при таких преобразованиях мат­рицы ее определитель D не изменится, но так как r - я строка будет теперь состоять из одних нулей, то D = 0 - противоречие. Следовательно, наше предположение о том, что строки матрицы линейно зависимые, неверно.

Строки назовем базисными . Покажем, что любые (r+1) строк матрицы линейно зависимы, т.е. любая строка выражается через базисные.

Рассмотрим минор (r +1) - го порядка, который получается при дополнении рассматриваемого минора элементами еще одной строки i и столбца j . Этот минор равен нулю, так как ранг матрицы равен r , поэто­му любой минор более высокого порядка равен нулю.

Раскладывая его по элементам последнего (добавленного) столбца, получаем

Где модуль послед­него алгебраического дополнения совпадает с базисным мино­ром D и поэтому отлично от нуля, т.е. 0.

Система векторов одного и того же порядка называется линейно-зависимой, если из этих векторов путем соответствующей линейной комбинации можно получить нулевой вектор. (При этом не допускается, чтобы все коэффициенты линейной комбинации были равны нулю, так как это было бы тривиально.) В противном случае векторы называются линейно-независимыми. Например, следующие три вектора:

линейно зависимы, так как что легко проверить. В случае линейной зависимости любой вектор можно всегда выразить через линейную комбинацию остальных векторов. В нашем примере: или или Это легко проверить соответствующими расчетами. Отсюда вытекает следующее определение: вектор линейно независим от других векторов, если его нельзя представить в виде линейной комбинации из этих векторов.

Рассмотрим систему векторов, не уточняя, является ли она линейнозависимой или линейно-независимой. У каждой системы, состоящей из вектор-столбцов а, можно выявить максимально возможное число линейно-независимых векторов. Это число, обозначаемое буквой , и является рангом данной системы векторов. Так как каждую матрицу можно рассматривать как систему вектор-столбцов, ранг матрицы определяется как максимальное число содержащихся в ней линейнонезависимых вектор-столбцов. Для определения ранга матрицы пользуются и вектор-строками. Оба способа дают одинаковый результат для одной и той же матрицы, причем не может превосходить наименьшее из или Ранг квадратной матрицы порядка колеблется от 0 до . Если все векторы являются нулевыми, то ранг такой матрицы равен нулю. Если все векторы линейно независимы друг от друга, то ранг матрицы равен. Если образовать матрицу из приведенных выше векторов то ранг этой матрицы равен 2. Так как каждые два вектора могут быть сведены к третьему путем линейной комбинации, то ранг меньше 3.

Но можно убедиться, что любые два вектора из них являются-линейно-независимыми, следовательно, ранг

Квадратную матрицу называют вырожденной, если ее вектор-столбцы или вектор-строки линейно зависимы. Определитель такой матрицы равен нулю и обратной ей матрицы не существует, как уже было отмечено выше. Эти выводы эквивалентны друг другу. Вследствие этого квадратную матрицу называют невырожденной, или неособенной, если ее вектор-столбцы или вектор-строки независимы друг от друга. Определитель такой матрицы не равен нулю и обратная ей матрица существует (сравни со с. 43)

Ранг матрицы имеет вполне очевидную геометрическую интерпретацию. Если ранг матрицы равен , то говорят, что -мерное пространство натянуто на векторов. Если ранг то векторов лежат в -мерном подпространстве, которое всех их включает в себя. Итак, ранг матрицы соответствует минимально необходимой размерности пространства, «в котором содержатся все векторы», -мерное подпространство в -мерном пространстве называют -мерной гиперплоскостью. Ранг матрицы соответствует наименьшей размерности гиперплоскости, в которой еще лежат все векторы.

Ортогональность. Два вектора а и b называются взаимно-ортогональными, если их скалярное произведение равно нулю. Если для матрицы порядка имеет место равенство где D - диагональная матрица, то вектор-столбцы матрицы А попарно взаимно-ортогональны. Если эти вектор-столбцы пронормировать, т. е. привести к длине, равной 1, то имеет место равенство и говорят об ортонормированных векторах. Если В - квадратная матрица и имеет место равенство то матрицу В называют ортогональной. В этом случае из формулы (1.22) следует, что Ортогональная матрица всегда невырожденная. Отсюда из ортогональности матрицы следует линейная независимость ее вектор-строк или вектор-столбцов. Обратное утверждение неверно: из линейной независимости системы векторов не следует попарная ортогональность этих векторов.

Рассмотрим произвольную, необязательно квадратную, матрицу А размера mxn.

Ранг матрицы.

Понятие ранга матрицы связано с понятием линейной зависимости (независимости) строк (столбцов) матрицы. Рассмотрим это понятие для строк. Для столбцов – аналогично.

Обозначим стоки матрицы А:

е 1 =(а 11 ,а 12 ,…,а 1n); е 2 =(а 21 ,а 22 ,…,а 2n);…, е m =(а m1 ,а m2 ,…,а mn)

e k =e s если a kj =a sj , j=1,2,…,n

Арифметические операции над строками матрицы (сложение, умножение на число) вводятся как операции, проводимые поэлементно: λе k =(λа k1 ,λа k2 ,…,λа kn);

e k +е s =[(а k1 +a s1),(a k2 +a s2),…,(а kn +a sn)].

Строка е называется линейной комбинацией строк е 1 , е 2 ,…,е k , если она равна сумме произведений этих строк на произвольные действительные числа:

е=λ 1 е 1 +λ 2 е 2 +…+λ k е k

Строки е 1 , е 2 ,…,е m называются линейно зависимыми , если существуют действительные числа λ 1 ,λ 2 ,…,λ m , не все равные нулю, что линейная комбинация этих строк равна нулевой строке: λ 1 е 1 +λ 2 е 2 +…+λ m е m =0 ,где0 =(0,0,…,0) (1)

Если линейная комбинация равна нулю тогда и только тогда, когда все коэффициенты λ i равны нулю (λ 1 =λ 2 =…=λ m =0), то строки е 1 , е 2 ,…,е m называются линейно независимыми.

Теорема 1 . Для того, чтобы строки е 1 ,е 2 ,…,е m были линейно зависимы, необходимо и достаточно, чтобы одна из этих строк была линейной комбинацией остальных строк.

Доказательство . Необходимость . Пусть строки е 1 , е 2 ,…,е m линейно зависимы. Пусть, для определенности в (1) λ m ≠0, тогда

Т.о. строка е m является линейной комбинацией остальных строк. Ч.т.д.

Достаточность . Пусть одна из строк, например е m , является линейной комбинацией остальных строк. Тогда найдутся числа такие, что выполняется равенство , которое можно переписать в виде ,

где хотя бы 1 из коэффициентов, (-1), не равен нулю. Т.е. строки линейно зависимы. Ч.т.д.

Определение. Минором k-го порядка матрицы А размера mxn называется определитель k-го порядка с элементами, лежащими на пересечении любых k строк и любых k столбцов матрицы А. (k≤min(m,n)). .

Пример. , миноры 1-го порядка: =, =;

миноры 2-го порядка: , 3-го порядка

У матрицы 3-го порядка 9 миноров 1-го порядка, 9 миноров 2-го порядка и 1 минор 3-го порядка (определитель этой матрицы).

Определение. Рангом матрицы А называется наивысший порядок отличных от нуля миноров этой матрицы. Обозначение - rg A или r(A).

Свойства ранга матрицы .

1) ранг матрицы A nxm не превосходит меньшего из ее размеров, т.е.

r(A)≤min(m,n).

2) r(A)=0 когда все элементы матрицы равны 0, т.е. А=0.

3) Для квадратной матрицы А n –го порядка r(A)=n , когда А невырожденная.



(Ранг диагональной матрицы равен количеству ее ненулевых диагональных элементов).

4) Если ранг матрицы равен r, то матрица имеет хотя бы один минор порядка r, не равный нулю, а все миноры больших порядков равны нулю.

Для рангов матрицы справедливы следующие соотношения:

2) r(A+B)≤r(A)+r(B); 3) r(AB)≤min{r(A),r(B)};

3) r(A+B)≥│r(A)-r(B)│; 4) r(A T A)=r(A);

5) r(AB)=r(A), если В - квадратная невырожденная матрица.

6) r(AB)≥r(A)+r(B)-n, где n-число столбцов матрицы А или строк матрицы В.

Определение. Ненулевой минор порядка r(A) называется базисным минором . (У матрицы А может быть несколько базисных миноров). Строки и столбцы, на пересечении которых стоит базисный минор, называются соответственно базисными строками и базисными столбцами .

Теорема 2 (о базисном миноре). Базисные строки (столбцы) линейно независимы. Любая строка (любой столбец) матрица А является линейной комбинацией базисных строк (столбцов).

Доказательство . (Для строк). Если бы базисные строки были линейно зависимы, то по теореме (1) одна из этих строк была бы линейной комбинацией других базисных строк, тогда, не изменяя величины базисного минора, можно вычесть из этой строки указанную линейную комбинацию и получить нулевую строку, а это противоречит тому, что базисный минор отличен от нуля. Т.о. базисные строки линейно независимы.

Докажем, что любая строка матрицы А является линейной комбинацией базисных строк. Т.к. при произвольных переменах строк (столбцов) определитель сохраняет свойство равенства нулю, то, не ограничивая общности, можно считать, что базисный минор находится в верхнем левом углу матрицы

А=, т.е. расположен на первых r строках и первых r столбцах. Пусть 1£j£n, 1£i£m. Покажем, что определитель (r+1)-го порядка

Если j£r или i£r, то этот определитель равен нулю, т.к. у него будет два одинаковых столбца или две одинаковых строки.

Если же j>r и i>r, то этот определитель является минором (r+1)-го порядка матрицы А. Т.к. ранг матрицы равен r, значит любой минор большего порядка равен 0.

Раскладывая его по элементам последнего (добавленного) столбца, получаем

a 1j A 1j +a 2j A 2j +…+a rj A rj +a ij A ij =0, где последнее алгебраическое дополнение A ij совпадает с базисным минором М r и поэтому A ij = М r ≠0.

Разделив последнее равенство на A ij , можем выразить элемент a ij , как линейную комбинацию: , где .

Зафиксируем значение i (i>r) и получаем, что для любого j (j=1,2,…,n) элементы i-й строки e i линейно выражаются через элементы строк е 1 , е 2 ,…,е r , т.е. i-я строка является линейной комбинацией базисных строк: . Ч.т.д.

Теорема 3. (необходимое и достаточное условие равенства нулю определителя). Для того, чтобы определитель n-го порядка D был равен нулю, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

Доказательство (с.40) . Необходимость . Если определитель n-го порядка D равен нулю, то базисный минор его матрицы имеет порядок r

Т.о., одна строка является линейной комбинацией других остальных. Тогда по теореме 1 строки определителя линейно зависимы.

Достаточность . Если строки D линейно зависимы, то по теореме 1 одна строка А i является линейной комбинацией остальных строк. Вычитая из строки А i указанную линейную комбинацию, не изменив величины D, получим нулевую строку. Следовательно, по свойствам определителей, D=0. ч.т.д.

Теорема 4. При элементарных преобразованиях ранг матрицы не меняется.

Доказательство . Как было показано при рассмотрении свойств определителей, при преобразованиях квадратных матриц их определители либо не изменяются, либо умножаются на ненулевое число, либо меняют знак. При этом наивысший порядок отличных от нуля миноров исходной матрицы сохраняется, т.е. ранг матрицы не изменяется. Ч.т.д.

Если r(A)=r(B), то А и В –эквивалентные: А~В.

Теорема 5. При помощи элементарных преобразований можно привести матрицу к ступенчатому виду. Матрица называется ступенчатой, если она имеет вид:

А=, где a ii ≠0, i=1,2,…,r; r≤k.

Условия r≤k всегда можно достигнуть транспонированием.

Теорема 6. Ранг ступенчатой матрицы равен количеству ее ненулевых строк.

Т.е. Ранг ступенчатой матрицы равен r, т.к. есть отличный от нуля минор порядка r: