Сайт о телевидении

Сайт о телевидении

» » Во флэш накопителях используется ввести значение память. Флешки и карты памяти: типы и классы

Во флэш накопителях используется ввести значение память. Флешки и карты памяти: типы и классы

Что такое Flash Memory?

Flash Memory/USB-накопитель или флэш-память - это миниатюрное запоминающее устройство, применимое в качестве дополнительного носителя информации и ее хранения. Устройство подключается к компьютеру или другому считывающему устройству через интерфейс USB.

USB-накопитель предназначен для многократного прочитывания записанной на нем информации в течение установленного срока эксплуатации, который обычно составляет от 10 до 100 лет. Производить же запись на флэш-память можно ограниченное количество раз (около миллиона циклов).

Флеш-память считается более надежным и компактным по сравнению с жесткими дисками (HDD), поскольку не имеет подвижных механических частей. Данное устройство довольно широко используется при производстве цифровых портативных устройств: фото и видеокамер, диктофонов и MP3-плееров, КПК и мобильных телефонов. Наряду с этим, Flash Memory используется для хранения встроенного ПО в различном оборудовании, таком как модемы, мини-АТС, сканеры, принтеры или же маршрутизаторы. Пожалуй, единственным недостатком современных USB-накопителей является их относительно малый объем.

История Flash Memory

Первая флеш-память появилась в 1984 году, ее изобрел инженер компании Toshiba Фудзио Масуокой (Fujio Masuoka), коллега которого Сёдзи Ариидзуми (Shoji Ariizumi) сравнил принцип действия данного устройства с фотовспышкой и впервые назвал его «flash». Публичная презентация Flash Memory состоялась в 1984 году на Международном семинаре по электронным устройствам, проходившем в Сан-Франциско, штат Калифорния, где данным изобретением заинтересовалась компанию Intel. Спустя четыре года ее специалисты выпустили первый флеш-процессор коммерческого типа. Крупнейшими производителями флэш-накопителей в конце 2010 года стали компания Samsung, занимающей 32% данного рынка и Toshiba - 17%.

Принцип работы USB-накопителя

Вся информация, записанная на Flash-накопитель и сохраненная в его массиве, который состоит из транзисторов с плавающим затвором, именуемыми ячейками (cell). В обычных устройствах с одноуровневыми ячейками (single-level cell), любая из них "запоминает" только один бит данных. Однако некоторые новые чипы с многоуровневыми ячейками (multi-level cell или triple-level cell) способны запомнить и больший объем информации. При этом на плавающем затворе транзистора должен использоваться различный электрический заряд.

Основные характеристики USB-накопителя

Объем представленных в настоящее время флэш-накопителей измеряется от нескольких килобайт до сотен гигабайт.

В 2005 году специалисты компаний Toshiba и SanDisk провели презентацию NAND-процессора, общий объем которого составил 1 Гб. При создании данного устройства они применили технологию многоуровневых ячеек, когда транзистор способен хранить несколько бит данных, используя различный электрический заряд на плавающем затворе.

В сентябре следующего года компания Samsung представила общественности уже 4-гигабайтный чип, разработанный на основе 40-нм технологического процесса, а в конце 2009 года, технологи Toshiba заявили о создании 64 Гб флэш-накопителя, который был запущен в массвое производство уже в начале следующего года.

Летом 2010-го состоялась презентация первого в истории человечества USB-накопителя объемом 128 Гб, состоящий из шестнадцати модулей по 8 Гб.

В апреле 2011 года компании Intel и Micron объявили о создании MLC NAND флэш-чипа на 8 Гбайт, площадью 118 мм, почти вполовину меньше аналогичных устройств, серийное производство которого стартовало в конце 2011 года.

Типы карт памяти и Flash-накопителей

Применяется он в основном в профессиональном видео- и фото-оборудовании, поскольку имеет довольно большие размеры 43х36х3,3 мм, в результате чего довольно проблематично установить слот для Compact Flash в мобильные телефоны или MP3-плееры. При этом карта считается не очень надежной, а также не обладает высокой скоростью обработки данных. Максимально допустимый объём Compact Flash в настоящее время достигает 128 Гбайт, а скорость копирования данных выросла до 120 Мбайт/с.

RS-MMC/Reduced Size Multimedia Card - карта памяти, которая в два раза по длине меньше стандартной карты MMC - 24х18х1,4 мм и весом около 6 гр. При этом сохранены все остальные характеристики и параметры обычной MMC-карты. Для использования карт RS-MMC необходимо использовать адаптер.

MMCmicro - миниатюрная карта памяти с размерами всего 14х12х1,1 мм и предназначенная для мобильных устройств. Для ее применения необходимо использовать стандартный слот MMC и специальный переходник.

Несмотря на очень схожие с ММС-картой параметры и размеры 32х24х2,1 мм, данную карту нельзя использовать со стандартным слотом ММС.

SDHC/SD High Capacity - это SD-карта памяти высокой ёмкости, известные современным пользователям как SD 1.0, SD 1.1 и SD 2.0 (SDHC). Данный устройства различаются максимально допустимым объемом данных, который можно на них разместить. Так предусмотрены ограничения по емкости в виде 4 Гб для SD и 32 Гб для SDHC. При этом SDHC-карта обратно совместима с SD. Оба варианта могут быть представлены в трех форматах физических размеров: стандартный, mini и micro.

microSD/Micro Secure Digital Card - это самое компактное по данным на 2011 год съёмное устройствами флеш-памяти, его размеры составляют 11х15х1 мм, что позволяет использовать его мобильных телефонах, коммуникаторах и т. д. Переключатель защиты от записи расположен на адаптере microSD-SD, а максимально возможный объём карты составляет 32 Гб.

Memory Stick Micro/M2 - карта памяти, формат которой конкурирует по размеру с microSD, но при этом преимущество остается за устройствами Sony.

  • Физика ,
  • Электроника для начинающих
  • Предисловие

    Новый Год – приятный, светлый праздник, в который мы все подводим итоги год ушедшего, смотрим с надеждой в будущее и дарим подарки. В этой связи мне хотелось бы поблагодарить всех хабра-жителей за поддержку, помощь и интерес, проявленный к моим статьям ( , , , ). Если бы Вы когда-то не поддержали первую, не было и последующих (уже 5 статей)! Спасибо! И, конечно же, я хочу сделать подарок в виде научно-популярно-познавательной статьи о том, как можно весело, интересно и с пользой (как личной, так и общественной) применять довольно суровое на первый взгляд аналитическое оборудование. Сегодня под Новый Год на праздничном операционном столе лежат: USB-Flash накопитель от A-Data и модуль SO-DIMM SDRAM от Samsung.

    Теоретическая часть

    Постараюсь быть предельно краток, чтобы все мы успели приготовить салат оливье с запасом к праздничному столу, поэтому часть материала будет в виде ссылок: захотите – почитаете на досуге…
    Какая память бывает?
    На настоящий момент есть множество вариантов хранения информации, какие-то из них требуют постоянной подпитки электричеством (RAM), какие-то навсегда «вшиты» в управляющие микросхемы окружающей нас техники (ROM), а какие-то сочетают в себе качества и тех, и других (Hybrid). К последним, в частности, и принадлежит flash. Вроде бы и энергонезависимая память, но законы физики отменить сложно, и периодически на флешках перезаписывать информацию всё-таки приходится.

    Единственное, что, пожалуй, может объединять все эти типы памяти – более-менее одинаковый принцип работы. Есть некоторая двумерная или трёхмерная матрица, которая заполняется 0 и 1 примерно таким образом и из которой мы впоследствии можем эти значения либо считать, либо заменить, т.е. всё это прямой аналог предшественника – памяти на ферритовых кольцах .

    Что такое flash-память и какой она бывает (NOR и NAND)?
    Начнём с flash-памяти. Когда-то давно на небезызвестном ixbt была опубликована довольно о том, что представляет собой Flash, и какие 2 основных сорта данного вида памяти бывают. В частности, есть NOR (логическое не-или) и NAND (логическое не-и) Flash-память ( тоже всё очень подробно описано), которые несколько отличаются по своей организации (например, NOR – двумерная, NAND может быть и трехмерной), но имеют один общий элемент – транзистор с плавающим затвором.


    Схематическое представление транзистора с плавающим затвором.

    Итак, как же это чудо инженерной мысли работает? Вместе с некоторыми физическими формулами это описано . Если вкратце, то между управляющим затвором и каналом, по которому ток течёт от истока к стоку, мы помещаем тот самый плавающий затвор, окружённый тонким слоем диэлектрика. В результате, при протекании тока через такой «модифицированный» полевой транзистор часть электронов с высокой энергией туннелируют сквозь диэлектрик и оказываются внутри плавающего затвора. Понятно, что пока электроны туннелировали, бродили внутри этого затвора, они потеряли часть энергии и назад практически вернуться не могут.

    NB: «практически» - ключевое слово, ведь без перезаписи, без обновления ячеек хотя бы раз в несколько лет Flash «обнуляется» так же, как оперативная память, после выключения компьютера.

    Опять мы имеем двумерный массив, который необходимо заполнить 0 и 1. Так как на накопление заряда на плавающем затворе уходит довольно продолжительное время, то в случае RAM применяется иное решение. Ячейка памяти состоит из конденсатора и обычного полевого транзистора. При этом сам конденсатор имеет, с одной стороны, примитивное физическое устройство, но, с другой стороны, нетривиально реализован в железе:


    Устройство ячейки RAM.

    Опять-таки на ixbt есть неплохая , посвящённая DRAM и SDRAM памяти. Она, конечно, не так свежа, но принципиальные моменты описаны очень хорошо.

    Единственный вопрос, который меня мучает: а может ли DRAM иметь, как flash, multi-level cell? Вроде да , но всё-таки…

    Часть практическая

    Flash
    Те, кто пользуется флешками довольно давно, наверное, уже видели «голый» накопитель, без корпуса. Но я всё-таки кратко упомяну основные части USB-Flash-накопителя:


    Основные элементы USB-Flash накопителя: 1. USB-коннектор, 2. контроллер, 3. PCB-многослойная печатная плата, 4. модуль NAND памяти, 5. кварцевый генератор опорной частоты, 6. LED-индикатор (сейчас, правда, на многих флешках его нет), 7. переключатель защиты от записи (аналогично, на многих флешках отсутствует), 8. место для дополнительной микросхемы памяти.

    Пойдём от простого к сложному. Кварцевый генератор (подробнее о принципе работы ). К моему глубокому сожалению, за время полировки сама кварцевая пластинка исчезла, поэтому нам остаётся любоваться только корпусом.


    Корпус кварцевого генератора

    Случайно, между делом, нашёл-таки, как выглядит армирующее волокно внутри текстолита и шарики, из которых в массе своей и состоит текстолит. Кстати, а волокна всё-таки уложены со скруткой, это хорошо видно на верхнем изображении:


    Армирующее волокно внутри текстолита (красными стрелками указаны волокна, перпендикулярные срезу), из которого и состоит основная масса текстолита

    А вот и первая важная деталь флешки – контроллер:


    Контроллер. Верхнее изображение получено объединением нескольких СЭМ-микрофотографий

    Признаюсь честно, не совсем понял задумку инженеров, которые в самой заливке чипа поместили ещё какие-то дополнительные проводники. Может быть, это с точки зрения технологического процесса проще и дешевле сделать.

    После обработки этой картинки я кричал: «Яяяяязь!» и бегал по комнате. Итак, Вашему вниманию представляет техпроцесс 500 нм во всей свой красе с отлично прорисованными границами стока, истока, управляющего затвора и даже контакты сохранились в относительной целостности:


    «Язь!» микроэлектроники – техпроцесс 500 нм контроллера с прекрасно прорисованными отдельными стоками (Drain), истоками (Source) и управляющими затворами (Gate)

    Теперь приступим к десерту – чипам памяти. Начнём с контактов, которые эту память в прямом смысле этого слова питают. Помимо основного (на рисунке самого «толстого» контакта) есть ещё и множество мелких. Кстати, «толстый» < 2 диаметров человеческого волоса, так что всё в мире относительно:


    СЭМ-изображения контактов, питающих чип памяти

    Если говорить о самой памяти, то тут нас тоже ждёт успех. Удалось отснять отдельные блоки, границы которых выделены стрелочками. Глядя на изображение с максимальным увеличением, постарайтесь напрячь взгляд, этот контраст реально трудно различим, но он есть на изображении (для наглядности я отметил отдельную ячейку линиями):


    Ячейки памяти 1. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

    Мне самому сначала это показалось как артефакт изображения, но обработав все фото дома, я понял, что это либо вытянутые по вертикальной оси управляющие затворы при SLC-ячейке, либо это несколько ячеек, собранных в MLC. Хоть я и упомянул MLC выше, но всё-таки это вопрос. Для справки, «толщина» ячейки (т.е. расстояние между двумя светлыми точками на нижнем изображении) около 60 нм.

    Чтобы не лукавить – вот аналогичные фото с другой половинки флешки. Полностью аналогичная картина:


    Ячейки памяти 2. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

    Конечно, сам чип – это не просто набор таких ячеек памяти, внутри него есть ещё какие-то структуры, принадлежность которых мне определить не удалось:


    Другие структуры внутри чипов NAND памяти

    DRAM
    Всю плату SO-DIMM от Samsung я, конечно же, не стал распиливать, лишь с помощью строительного фена «отсоединил» один из модулей памяти. Стоит отметить, что тут пригодился один из советов, предложенных ещё после первой публикации – распилить под углом. Поэтому, для детального погружения в увиденное необходимо учитывать этот факт, тем более что распил под 45 градусов позволил ещё получить как бы «томографические» срезы конденсатора.

    Однако по традиции начнём с контактов. Приятно было увидеть, как выглядит «скол» BGA и что собой представляет сама пайка:


    «Скол» BGA-пайки

    А вот и второй раз пора кричать: «Язь!», так как удалось увидеть отдельные твердотельные конденсаторы – концентрические круги на изображении, отмеченные стрелочками. Именно они хранят наши данные во время работы компьютера в виде заряда на своих обкладках. Судя по фотографиям размеры такого конденсатора составляют около 300 нм в ширину и около 100 нм в толщину.

    Из-за того, что чип разрезан под углом, одни конденсаторы рассечены аккуратно по середине, у других же срезаны только «бока»:


    DRAM память во всей красе

    Если кто-то сомневается в том, что эти структуры и есть конденсаторы, то можно посмотреть более «профессиональное» фото (правда без масштабной метки).

    Единственный момент, который меня смутил, что конденсаторы расположены в 2 ряда (левое нижнее фото), т.е. получается, что на 1 ячейку приходится 2 бита информации. Как уже было сказано выше, информация по мультибитовой записи имеется, но насколько эта технология применима и используется в современной промышленности – остаётся для меня под вопросом.

    Конечно, кроме самих ячеек памяти внутри модуля есть ещё и какие-то вспомогательные структуры, о предназначении которых я могу только догадываться:


    Другие структуры внутри чипа DRAM-памяти

    Послесловие

    Помимо тех ссылок, что раскиданы по тексту, на мой взгляд, довольно интересен данный обзор (пусть и от 1997 года), сам сайт (и фотогалерея, и chip-art, и патенты, и много-много всего) и данная контора , которая фактически занимается реверс-инжинирингом.

    К сожалению, большого количества видео на тему производства Flash и RAM найти не удалось, поэтому довольствоваться придётся лишь сборкой USB-Flash-накопителей:

    P.S.: Ещё раз всех с наступающим Новым Годом чёрного водяного дракона!!!
    Странно получается: статью про Flash хотел написать одной из первых, но судьба распорядилась иначе. Скрестив пальцы, будем надеяться, что последующие, как минимум 2, статьи (про биообъекты и дисплеи) увидят свет в начале 2012 года. А пока затравка - углеродный скотч:


    Углеродный скотч, на котором были закреплены исследуемые образцы. Думаю, что и обычный скотч выглядит похожим образом

    карта флэш-памяти это:

    Универсальный русско-немецкий словарь. Академик.ру. 2011 .

    LG P765 не включается. Замена флеш памяти 😉

    Глядеть что такое карта флэш-памяти в других словарях:

    карта флэш-памяти - Маленькая карточка памяти, совместимая с компьютером. Темы электросвязь, главные понятия EN flash memory card … Справочник технического переводчика.

    Флэш-карта - Сюда перенаправляется запрос Флэш карты. На тему «Флэш карты» нужна отдельная статья. USB накопитель на флеш‐памяти Флеш‐память (англ. Flash Memory) разновидность твердотельной полупроводниковой

    Флэш-диск - Сюда перенаправляется запрос Флэш карты. На тему «Флэш карты» нужна отдельная статья. USB накопитель на флеш‐памяти Флеш ‐память (англ. Flash Memory) разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти . Она#8230; … Википедия.

    Флэш-карты - Сюда перенаправляется запрос Флэш карты. На тему «Флэш карты» нужна отдельная статья. USB накопитель на флеш‐памяти Флеш‐память (англ. Flash Memory) разновидность твердотельной полупроводниковой . Она#8230; … Википедия.

    Флэш диск - Сюда перенаправляется запрос Флэш карты. На тему «Флэш карты» нужна отдельная статья. USB накопитель на флеш‐памяти Флеш‐память (англ. Flash Memory) разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти. Она#8230; … Википедия.

    Флэш-память - Сюда перенаправляется запрос Флэш карты. На тему «Флэш карты» нужна отдельная статья. USB накопитель на флеш‐памяти Флеш‐память (англ. Flash Memory) разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти . Она#8230; … Википедия.

    Универсальный флэш-накопитель - (англ. Universal Flash Storage )#160; предложенная общая спецификация флэш накопителей для цифровых фотоаппаратов, сотовых телефонов и потребительских видов электроники. Это могло бы привести к более высокой скорости передачи данных и#8230; … Википедия.

    EToken - смарт карта и USB ключ eToken PRO, eToken NG FLASH, eToken NG OTP, eToken PRO (Java) и eToken PASS eToken (от англ.#160;electronic#160; электронный и англ.#160;token#160; признак, жетон)#160; торговая марка для линейки персональных средств#8230; … Википедия.

    Intel - (Интел) Компания Intel, история компании, деятельность компании Информация о компании Intel, история компании, деятельность компании Содержание Содержание Core Описание Intel Продукция фирмы Intel Технические характеристики Преимущества и#8230; … Энциклопедия инвестора.

    СЭСППЗУ - Сюда перенаправляется запрос Флэш карты. На тему «Флэш карты» нужна отдельная статья. USB накопитель на флеш‐памяти Флеш‐память (англ. Flash Memory) разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти. Она#8230; … Википедия.

    Флеш память - Сюда перенаправляется запрос Флэш карты. На тему «Флэш карты» нужна отдельная статья. USB накопитель на флеш ‐памяти Флеш‐память (англ. Flash Memory) разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти . Она#8230; … Википедия.

    Тезисы

    Что такое флэш-память. Флеш- память – это вид твёрдотельной энергонезависимой, перезаписываемой памяти . Память Андроид-телефонов: RAM(ОЗУ), ROM(ПЗУ). То, что в ней МикроSD монтируется в /etc/SDCARD на телефоне . Эту память можно что такое. Что такое флэш-память. Что такое флэш-память? Флеш- память но в отличии от ОЗУ, флеш-память хранит данные при. Флеш-память - Википедия. Дело в том, что запись и В 2000 году флеш-память по технологии (есть и такое. Замена чипа памяти (flash) в телефоне HTC desire V. в телефоне htc Здравствуйте,Есть ли смысл заменять флеш память на что флеш. Замена флеш-памяти в телефоне | Ремонт. Замена флеш-памяти в телефоне. такое же написано что сломана флеш память. Моя борьба с сообщением "Память телефона. В Android-телефоне есть или как большой файл может быть загружен в память То, что в. Замена флеш (eMMC) памяти | Лучшая цена по. Что такое флеш память, в моделях Lenovo на процессорах MTK память в большинстве случаев. Глоссарий: Слот для карт памяти. Что такое Слот для. В мобильных На данный момент - это самая дорогая память из всех Что такое Слот. Что такое внутренняя память телефона. Что такое Но внутренняя память телефона в первую Мне из 8 гб в телефоне.

    В обиходе пользователей появилось новое слово - «флешка». Большинству людей точно известно, что данное устройство используется в цифровых фотоаппаратах, а также предназначено для переноса видеофильмов и музыки. А ведь это не полный перечень функций, которые выполняет флешка. Данное устройство является незаменимым в работе любого владельца не только компьютера, а и всевозможной электроники 21-го века. Темой данной статьи является флеш-память, её характеристики, виды, цены.

    Окунувшись в историю

    Переписыванием истории занимаются все гиганты ИТ-индустрии, устанавливая свое авторство над разными изобретениями. Так поступила и знаменитая американская компания Intel, которая присвоила себе изобретение флеш-памяти. Однако технология и производство первого в мире устройства принадлежат японскому гиганту Toshiba, который в далеком 1984 году представил миру свое открытие. Название «флеш-память» устройству дали тоже японцы, и не случайно. Процесс стирания информации на флеш-памяти отдаленно напоминает фотовспышку.

    Не прошло и нескольких лет с момента изобретения, а мировые гиганты ИТ-индустрии быстро нашли применение новому изобретению, поставив производство на конвейер.

    Не вся память относится к «флеш»

    Неглубоко погружаясь в мир физики, можно узнать, что память бывает нескольких видов.

    1. Оперативная память, которая работает по принципу «электрической емкости». Миллионы конденсаторов, удерживая заряд в оперативной памяти, являются хранителями информации. При отключении подачи электричества на устройство конденсаторы разряжаются, теряя информацию безвозвратно.
    2. Постоянная память. Информация на носителе сохраняется путем физического или химического воздействия. Примером служит оптический DVD-диск, информация на который записывается путем прожигания лазером микроскопических дырочек на поверхности пластика.
    3. Условно-постоянная энергонезависимая память. Сюда относятся флеш-память, магнитные жесткие диски, дискеты, видеопленка и прочие носители, которые умеют удерживать магнитный или электрический заряд при отсутствии постоянного источника электроэнергии.

    Применение флеш-памяти

    Для технологий 20-го века изобретению вполне хватало устройств, таких как карта памяти и USB-флеш-накопители. Но в 21-м веке произошел бум на носители информации с технологией флеш. В первую очередь флеш-памятью обзавелись все мобильные телефоны, планшеты, мультимедиа-проигрыватели и цифровые устройства. Позже ни одна интерактивная игрушка для детей не могла существовать без флеш-памяти. Технологии на этом не остановились. Ежедневно появляются все новые устройства, снабженные таким замечательным видом памяти. Взять хотя бы фонарик для полицейского. Благодаря наличию в нем флеш-памяти правозащитник может выбирать требуемую ему фокусировку и яркость луча из сохраненных настроек.

    Как много производителей устройств

    На рынке можно увидеть, что нужная флеш-память представлена сразу несколькими производителями. Имея практически одинаковые характеристики, накопители значительно отличаются в цене. Неужели самая дорогая покупка окажется самой лучшей? Не всегда! Часто покупателю приходится переплачивать за бренд, сервис и гарантию.

    В мире существует всего несколько заводов, которые производят модули флеш-памяти. Эти модули раскупаются гигантами ИТ-индустрии, которые создают красивый корпус и продают накопитель уже от своего имени. Единственное различие - скорость работы устройств, зависящая от способностей флеш-памяти. Будет память быстрой или нет, решают на заводе-изготовителе.

    О ценах на устройства флеш

    Любому, кто самостоятельно решил приобрести флеш-память, цены на рынке могут показаться странными. Одинаковые по объему накопители от двух малознакомых брендов имеют большой разбег в стоимости. В чем же дело? Существует набор требований к флеш-картам, благодаря которому производитель обязан определить класс устройства и произвести маркировку на корпусе товара. Часто в магазине можно встретить устройства, на которых нет маркировки, присутствует лишь логотип компании-производителя. Цены на такие карты памяти очень низкие, а продавец заявляет о высоких показателях в работе устройства. Отзывы специалистов на страницах уважаемых компьютерных изданий рекомендуют воздержаться от покупки немаркированных устройств, так как они являются подделкой или ввезены в страну нелегально.

    Что нужно знать о маркировках флеш-накопителей

    Раз речь зашла о маркировке накопителей, при покупке необходимо обращать внимание на цифры и надписи, указанные на корпусе флеш-устройств.

    1. Обязательно должно присутствовать название компании-производителя или её логотип.
    2. На носителе должен быть написан объем флеш-памяти.
    3. На корпусе должен быть указан класс флеш-устройства. Часто производители модулей USB класс указывают на упаковке товара, что не запрещается законодательством.

    В продаже можно встретить карты флеш-памяти без маркировки, но с длинным номером, который мелким шрифтом набит на корпусе устройства. Таким образом, производитель указывает партийный номер, по которому покупатель может найти устройство в сети интернет и ознакомиться с его техническими характеристиками.

    Скорость пропорциональна цене, но не эффективности

    Чем выше класс флеш-памяти, тем выше его скорость записи, и тем больше цена. А стоит ли покупать самую быструю память?

    1. Нулевой класс. Скорость записи не менее 0,6 Мб в секунду. В магазинах можно купить, не увидев отсутствие маркировки. Подойдет для хранения документации.
    2. Классы 2 и 4, со скоростями записи 2 и 4 Мб в секунду соответственно, тоже относятся в раздел офисных и предназначены для хранения и переноса документации.
    3. Шестой и восьмой классы со скоростью 6 и 8 Мб в секунду будут интересны всем покупателям, работающим с фото, музыкой, видео. Эти типы флеш-памяти раскрывают потенциал в работе с мультимедиа.
    4. Десятый класс и выше, включая Ultra, показывают скорости записи свыше 10 Мб в секунду. Применяются в работе с мультимедиа, в качестве дополнительных накопителей для рабочих станций, использовании в качестве оперативной памяти. Там, где критична скорость чтения и записи на носитель информации.

    Серьезные бренды, такие как Pretec и Corsair, делают высокоскоростные устройства с возможностью записи порядка 25 Мб в секунду, маркируя их восьмым или десятым классом. Цена на модули очень высокая, но в мире ИТ такие бренды очень уважаются пользователями.

    Каковы разные объемы флеш-памяти

    Ещё один критерий, от которого зависит цена на накопитель, - объем флэш-памяти. Пусть, технологии не стоят на месте, но всё-таки существуют некоторые пределы. Когда для увеличения объема памяти необходимо изменить техпроцесс, возникает дилемма - сохранив низкую цену, остановиться на достигнутом результате или развиваться дальше, ища богатых покупателей. В мире наступило некоторое затишье - покупателям предлагают купить карты памяти с максимальным объемом в 64 гигабайта, при большом желании, под заказ можно стать владельцем 128 Гб и 256 Гб, но для этого придется сильно раскошелиться. Неизвестно, сколько времени потребуется на переход к новым технологиям и доступность на рынке карт большого объема, но известно одно - 64 Гб вполне достаточно, чтобы удовлетворить любую задачу рядового пользователя.

    Чудо-зверь, имеющий большое будущее

    Есть ещё одно интересное устройство, использующее в своей работе флеш-память, - накопитель SSD. Наряду с объемом и скоростью записи, критичным для устройства является авторитет производителя, который обеспечивает продукт контроллером управления и специализированной прошивкой, которая управляет всем устройством. Одна ошибка производителя - и устройство может попасть в мусорное ведро. Всё сложно, дорого и очень серьезно, но за SSD-накопителем будущее. Прямой конкурент жестким дискам компьютера, которые работают с помощью магнетизма. Устойчив к тряскам, температуре и работает бесшумно. Не за горами тот день, когда магнитные жесткие диски разделят место в шкафу с шариковыми мышками, уступив место технологиям 21-го века.

    Как сэкономить на усовершенствовании компьютера

    Владельцам старых компьютеров и ноутбуков не раз приходилось слышать от специалистов по обслуживанию о причинах низкой скорости работы устройства. Недостаточно оперативной памяти, которая уже давно снята с производства. Специалист, глядя в глаза владельцу компьютера, убеждает, что единственным выходом из положения будет покупка современного компьютера. Спустя 5 лет этот же специалист придет и будет в очередной раз доказывать, что нет никаких решений, кроме покупки нового компьютера. Так построен мир. Мир для людей, которым не интересны знания в ИТ-технологиях.

    Оперативная флеш-память решит проблему раз и навсегда с минимальными для пользователя затратами. Достаточно скачать из сети Интернет программу под названием Ready Boost и изучить системные требования к накопителю. А уже затем приобретать в магазине необходимое устройство флеш-памяти. Подключить к компьютеру или ноутбуку накопитель, запустить программу и радоваться жизни. Ведь так приятно без капитальных вложений самостоятельно увеличить производительность компьютера.

    Какому бренду отдать предпочтение

    Из-за большого количества производителей очень тяжело определиться, кому отдать предпочтение. Специалисты рекомендуют составить список требований к накопителю, а потом выбирать бренд.

    1. Цель использования позволяет выявить необходимый класс устройства.
    2. Удобство и внешний вид подскажут, как флешка должна выглядеть. Например, для магнитолы в машину стоит обратить внимание на накопитель маленького размера, чтобы случайно не сломать в процессе использования.

    Найдя несколько требуемых вариантов, поинтересоваться у продавца, как решаются вопросы при поломке устройства, существует ли гарантийная замена. Флеш-память относится к расходным материалам и не подлежит ремонту - об этом нужно знать до покупки. Положительные отзывы заслуживают производители Corsair, Kingston, OCZ, Pretec, Silicon Power, Transcend и IBM.

    Как обезопасить себя от потери информации с флеш-носителя

    Как любой носитель информации, карта памяти подвержена воздействиям внешних факторов, о которых необходимо знать всем пользователям флеш-устройств и побеспокоиться о сохранности своей информации.

    1. Физическая поломка модулей. Пластиковые флеш-карты сломать очень легко, а восстановить невозможно, поэтому при покупке нужно обратить внимание на металлические флешки либо пользоваться очень аккуратно.
    2. Влага способна уничтожить накопитель. Стоит обратить внимание на влагозащищенные носители, если существует вероятность попадания воды на память.
    3. Заражение флеш-памяти вирусами. Порой восстановить информацию оказывается достаточно сложно, поэтому стоит обратить внимание на устройства, имеющие физическую защиту от записи в виде переключателя - это гарантированно не даст вирусам ни единого шанса.

    Выяснив принцип действия, виды, характеристики, цены и устройство флэш-памяти, необходимо доверить свой выбор профессионалам.

    1. Специалисты рекомендуют отдавать предпочтение проверенным брендам. Для этого достаточно обратиться к популярным источникам информации и почитать отзывы о продукте. Любой уважающий себя производитель в сети Интернет имеет собственный сайт. Вот его-то и стоит посетить, чтобы получить представление о компании.
    2. Не стоит доверять свой выбор китайским подделкам, которые предлагаются на рынке по очень низкой цене. Если нет других вариантов, обязательно перед покупкой нужно попросить продавца продемонстрировать работу носителя. Обычное форматирование устройства в среде Windows позволяет определить исправность флеш-памяти.
    3. Предпочтение стоит отдавать быстрым устройствам, которые имеют десятый класс. Так как часто случаются ситуации, когда время находится в приоритете. Тогда и флеш-память станет для пользователя универсальной под любое устройство.
    4. Покупая карты памяти для цифровой техники, стоит побеспокоиться о возможностях считывания данных на компьютере. Для этого существуют всевозможные переходники, которые часто предлагаются к покупке вместе с флеш-памятью.

    Всем доброго дня!
    Сегодняшняя статья положит начало новому, небольшому циклу статей, посвященному хранению информации, различным типам памяти, способам записывания/считывания информации и всему, что с этим связано 😉 И начнем мы с устройства хорошо нам всем знакомой Flash-памяти.

    Что из себя вообще представляет Flash-память? Да просто обычная микросхема, ничем внешне не отличающаяся от любой другой. Поэтому может возникнуть резонный вопрос – а что там внутри и как вообще происходят процессы сохранения/считывания информации.

    Итак, сердцем многих устройств памяти является полевой транзистор с плавающим затвором. Гениальнейшее изобретение 70-х годов 20-го века. Его отличие от обычных полевых транзисторов заключается в том, что между затвором и каналом, прямо в диэлектрике, расположен еще один проводник – который и называют плавающим затвором. Вот как все это выглядит:

    На рисунке мы видим привычные нам сток-исток-затвор, а также расположенный в диэлектрике дополнительный проводник. Давайте разберемся как же это устройство работает.

    Создадим между стоком и истоком разность потенциалов и подадим положительный потенциал на затвор. Что тогда произойдет? Правильно, через полевой транзистор, от стока к истоку потечет ток. Причем величина тока достаточно велика для того, чтобы “пробить” диэлектрик. В результате этого пробоя часть электронов попадет на плавающий затвор. Отрицательно заряженный плавающий затвор создает электрическое поле, которое начинает препятствовать протеканию тока в канале, в результате чего транзистор закрывается. И если отключить питание транзистора, электроны с плавающего затвора никуда не денутся и его заряд останется неизменным на долгие годы.

    Но, конечно же, есть способ разрядить плавающий затвор. Для этого надо всего лишь подать на “основной” затвор напряжение противоположного знака, которое и “сгонит” все электроны, в результате чего плавающий затвор останется не заряженным.

    Собственно так и происходит хранение информации – если на затворе есть отрицательный заряд, то такое состояние считается логической единицей, а если заряда нет – то это логический ноль.

    С сохранением информации разобрались, осталось понять как нам считать информацию из транзистора с плавающим затвором. А все очень просто. При наличии заряда на плавающем затворе его электрическое поле препятствует протеканию тока стока. Допустим при отсутствии заряда мы могли подавать на “основной” затвор напряжение +5В, и при этом в цепи стока начинал протекать ток. При заряженном плавающем затворе такое напряжение не сможет заставить ток течь, поскольку электрическое поле плавающего затвора будет ему мешать. В этом случае ток потечет только при напряжении +10В (к примеру =)). Таким образом, мы получаем два пороговых значения напряжения. И, подав, к примеру +7.5В мы сможем по наличию или отсутствию тока стока сделать вывод о наличии или отсутствии заряда на плавающем затворе. Вот таким образом и происходит считывание сохраненной информации.

    Как все это связано с Flash-памятью? А очень просто – полевой транзистор с плавающим затвором является минимальной ячейкой памяти, способной сохранить один бит информации. И любая микросхема памяти состоит из огромного количества расположенных определенным образом транзисторов. И вот теперь пришло время рассмотреть основные типы Flash-памяти. А именно я бы хотел обсудить NOR и NAND память.

    Оба этих типа памяти построены на основе транзисторов с плавающим затвором, которым мы сегодня уделили немало времени) А принципиальное отличие состоит в том, каким образом соединены эти транзисторы.

    Конструкция NOR использует двумерную таблицу проводников. Проводники называют линией битов и линией слов. Все стоки транзисторов подключаются к линии битов, а все затворы к линии слов. Рассмотрим пример для лучшего понимания.

    Пусть нам надо считать информацию из какой-то конкретной ячейки. Эта ячейка, а точнее этот конкретный транзистор, подключен затвором на одну из линий слов, а стоком на одну из линий битов. Тогда мы просто подаем пороговое напряжение на линию слов, соответствующую затвору нашего транзистора и считываем его состояние как в том примере, что мы рассмотрели чуть выше для одной ячейки.

    С NAND все несколько сложнее. Если возвращаться к аналогии с массивом, то ячейки NAND-памяти представляют собой трехмерный массив. То есть к каждой линии битов подключен не один, а сразу несколько транзисторов, что в итоге приводит к уменьшению количества проводников и увеличению компактности. Это как раз и является одним из главных преимуществ NAND-памяти. Но как же нам считать состояние определенного транзистора при такой структуре? Для понимания процесса рассмотрим схему:

    Как видно из схемы, одна линия битов соответствует нескольким ячейкам. И важной особенностью является следующее: если хотя бы один из транзисторов закрыт, то на линии битов будет высокое напряжение. Вот смотрите:

    Действительно, низкий уровень на линии битов будет только тогда, когда вся цепочка транзисторов окажется открытой (вспоминаем курс, посвященный полевым транзисторам 😉).

    С этим вроде бы понятно, возвращаемся к нашему вопросу – как же считать состояние конкретного транзистора? А для этого недостаточно просто подать на линию слов (на затвор транзистора) пороговое напряжение и следить за сигналом на линии битов. Необходимо еще чтобы все остальные транзисторы были в открытом состоянии. А делается это так – на затвор нашего транзистора, состояние которого нам нужно считать, подается пороговое напряжение (как и в случае с NOR-памятью), а на затворы всех остальных транзисторов в этой цепочке подается повышенное напряжение, такое чтобы независимо от состояния плавающего затвора транзистор открылся. И тогда считав сигнал с линии битов мы узнаем в каком состоянии интересующий нас транзистор (ведь все остальные абсолютно точно открыты). Вот и все)

    Такая вот получилась статейка сегодня) Разобрались мы с принципом работы и основными типами Flash, а также с устройством и принципом работы NAND и NOR-памяти. Надеюсь, что статья окажется полезной и понятной, до скорых встреч!